DIVALENT TRANSITION METALS AND MAGNESIUM IN STRUCTURES THAT CONTAIN THE AUTUNITE-TYPE SHEET: ERRATA

Andrew J. LOCOCK§

Mineralogy, Department of Natural History, Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario M5S 2C6, Canada

PETER C. BURNS

Department of Civil Engineering and Geological Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, Indiana 46556, U.S.A.

THEODORE M. FLYNN

Department of Geology, University of Illinois, Urbana-Champaign, Illinois 61801, U.S.A.

Owing to incomplete transfer of certain tables from a PC-based system to the typographer's Mac-based system, fractions expressing atom coordinates in Tables 5, 6, 7, 8, 9, 10, 11 and 13 of the above article (*Can. Mineral.* 42, 1699-1718, 2004) disappeared. The correct tables are reproduced here, with apologies to the authors and readers.

TABLE 5. ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS (\mathring{A}^2) FOR MnUAs12

	х	y	z	$U_{ m eq}$
U(1)	0.2325(1)	0.7301(1)	0.0793(1)	0.013(1)
As(1)	0.7491(1)	0.7545(1)	0.0011(1)	0.013(1)
Mn(1)	1/2	1/2	1/2	0.030(1)
O(1)	0.5475(5)	0.6950(5)	0.0935(4)	0.021(1)
O(2)	0.9152(5)	0.7765(5)	0.0883(3)	0.020(1)
O(3)	0.7273(5)	0.9558(4)	-0.0909(4)	0.021(1)
O(4)	0.8084(5)	0.5869(4)	-0.0854(3)	0.021(1)
O(5)	0.2723(5)	0.7682(5)	-0.0784(4)	0.024(1)
O(6)	0.1889(5)	0.6874(5)	0.2380(4)	0.024(1)
O(7)W	-0.2884(7)	0.7053(6)	0.5258(5)	0.041(1)
O(8)W	0.3030(8)	0.7250(6)	0.4527(4)	0.045(1)
O(9)W	-0.0307(6)	0.2901(6)	0.3035(4)	0.040(1)
O(10)W	0.5765(7)	-0.0576(6)	0.6893(4)	0.039(1)
O(11)W	0.6313(7)	0.5003(7)	0.3161(4)	0.041(1)

 $U_{\rm eq}$ is defined as one third of the orthogonalized $U_{\rm ij}$ tensor.

O(12)W -0.1988(7) 0.9405(6) 0.3135(5) 0.042(1)

TABLE 6. ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS (\mathring{A}^2) FOR CoUAs12

	Х	y	z	$U_{ m eq}$
U(1)	0.2303(1)	0.7325(1)	0.0800(1)	0.013(1)
As(1)	0.7462(1)	0.7511(1)	-0.0018(1)	0.014(1)
Co(1)	0	0	1/2	0.027(1)
O(1)	0.5439(8)	0.7736(8)	0.0918(6)	0.020(1)
O(2)	0.9138(8)	0.6921(8)	0.0854(6)	0.021(1)
O(3)	0.8082(8)	0.9535(8)	-0.0961(6)	0.020(1)
O(4)	0.7233(8)	0.5849(8)	-0.0891(6)	0.022(1)
O(5)	0.2718(7)	0.7767(7)	-0.0804(5)	0.017(1)
O(6)	0.1866(8)	0.6878(8)	0.2412(6)	0.023(1)
O(7)W	-0.1942(10)	0.7926(10)	0.4744(7)	0.035(2)
O(8)W	0.2179(10)	0.8124(10)	0.4548(7)	0.038(2)
O(9)W	0.5592(10)	0.9241(10)	0.3134(7)	0.038(2)
O(10)W	0.5606(11)	-0.3020(11)	0.6825(8)	0.042(2)
O(11)W	0.7930(10)	0.4656(10)	0.3068(7)	0.041(2)
O(12)W	0.0022(10)	0.1310(10)	0.3218(7)	0.038(2)

 U_{eq} is defined as one third of the orthogonalized U_{ij} tensor.

[§] E-mail address: andrewl@rom.on.ca

TABLE 7. ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS (\mathring{A}^2) FOR MgUAs12

	х	у	z	$U_{ m eq}$
U(1)	0.7322(1)	0.2300(1)	0.0798(1)	0.012(1)
As(1)	0.7509(1)	0.7457(1)	-0.0015(1)	0.012(1)
Mg(1)	0	0	1/2	0.028(1)
O(1)	0.7759(6)	0.2688(6)	-0.0797(4)	0.011(1)
O(2)	0.6863(7)	0.1871(7)	0.2401(5)	0.021(1)
O(3)	0.7726(7)	0.5427(7)	0.0922(5)	0.019(1)
O(4)	0.6926(7)	0.9131(7)	0.0864(5)	0.021(1)
O(5)	0.5854(7)	0.7254(7)	-0.0894(5)	0.020(1)
O(6)	0.9546(7)	0.8049(7)	-0.0959(5)	0.019(1)
O(7)W	0.8013(8)	-0.1966(8)	0.4748(6)	0.034(1)
O(8)W	0.1286(9)	0.0028(9)	0.3236(6)	0.039(2)
O(9)W	0.8163(9)	0.2132(9)	0.4508(6)	0.039(2)
O(10)W	0.4675(9)	0.7906(9)	0.3071(6)	0.040(2)
O(11)W	0.0789(9)	0.4415(9)	0.6868(6)	0.039(2)
O(12)W	0.3002(9)	0.4404(9)	0.3149(6)	0.041(2)

 U_{eq} is defined as one third of the orthogonalized U_{ij} tensor.

TABLE 8. ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS (\mathring{A}^2) FOR NiUAs12

x y z U_{eq} U(1) 0.2301(1) 0.7327(1) 0.0802(1) 0.013(1) As(1) 0.7458(1) 0.7511(1) -0.0018(1) 0.014(1) Ni(1) 0 0 $\frac{1}{2}$ 0.025(1) O(1) 0.5437(4) 0.7756(5) 0.0926(3) 0.022(1) O(2) 0.9133(4) 0.6899(5) 0.0869(3) 0.021(1) O(3) 0.8065(4) 0.9530(4) -0.0956(3) 0.021(1) O(4) 0.7231(4) 0.5848(4) -0.0896(3) 0.022(1) O(5) 0.2711(4) 0.7764(5) -0.0806(3) 0.022(1) O(5) 0.2711(4) 0.7764(5) -0.0806(3) 0.022(1) O(6) 0.1858(4) 0.6878(5) 0.2424(3) 0.024(1) O(7)W -0.1892(5) 0.7975(6) 0.4726(3) 0.033(1) O(8)W 0.2148(5) 0.8173(6) 0.4544(3) 0.035(1) O(9)W 0.0034(5) 0.1287(6) 0.3253(3) 0.040(1)					
As(1) 0.7458(1) 0.7511(1) -0.0018(1) 0.014(1) Ni(1) 0 0 ½ 0.025(1) O(1) 0.5437(4) 0.7756(5) 0.0926(3) 0.022(1) O(2) 0.9133(4) 0.6899(5) 0.0869(3) 0.023(1) O(3) 0.8065(4) 0.9530(4) -0.0956(3) 0.021(1) O(4) 0.7231(4) 0.5848(4) -0.0894(3) 0.022(1) O(5) 0.2711(4) 0.7764(5) -0.0806(3) 0.028(1) O(6) 0.1858(4) 0.6878(5) 0.2424(3) 0.024(1) O(7)W -0.1892(5) 0.7975(6) 0.4726(3) 0.033(1) O(8)W 0.2148(5) 0.8173(6) 0.4544(3) 0.035(1) O(9)W 0.0034(5) 0.1287(6) 0.3253(3) 0.040(1) O(10)W 0.4404(5) 0.0746(6) 0.6835(4) 0.037(1) O(11)W 0.7893(6) 0.4653(6) 0.3082(4) 0.040(1) O(12)W 0.4374(5) 0.3013(6) 0.3187(4) 0.04		х	у	Z.	$U_{ m eq}$
Ni(1) 0 0 ½ 0.025(1) O(1) 0.5437(4) 0.7756(5) 0.0926(3) 0.022(1) O(2) 0.9133(4) 0.6899(5) 0.0869(3) 0.023(1) O(3) 0.8065(4) 0.9530(4) -0.0956(3) 0.021(1) O(4) 0.7231(4) 0.5848(4) -0.0894(3) 0.022(1) O(5) 0.2711(4) 0.7764(5) -0.0806(3) 0.028(1) O(6) 0.1858(4) 0.6878(5) 0.2424(3) 0.024(1) O(7)W -0.1892(5) 0.7975(6) 0.4726(3) 0.033(1) O(8)W 0.2148(5) 0.8173(6) 0.4544(3) 0.035(1) O(9)W 0.0034(5) 0.1287(6) 0.3253(3) 0.040(1) O(10)W 0.4404(5) 0.0746(6) 0.6835(4) 0.037(1) O(11)W 0.7893(6) 0.4653(6) 0.3082(4) 0.040(1) O(12)W 0.4374(5) 0.3013(6) 0.3187(4) 0.042(1) H(1) -0.3020(60) 0.7770(100) 0.4410(60) 0	U(1)	0.2301(1)	0.7327(1)	0.0802(1)	0.013(1)
O(1) 0.5437(4) 0.7756(5) 0.0926(3) 0.022(1) O(2) 0.9133(4) 0.6899(5) 0.0869(3) 0.023(1) O(3) 0.8065(4) 0.9530(4) -0.0956(3) 0.021(1) O(4) 0.7231(4) 0.5848(4) -0.0894(3) 0.022(1) O(5) 0.2711(4) 0.7764(5) -0.0806(3) 0.028(1) O(6) 0.1858(4) 0.6878(5) 0.2424(3) 0.024(1) O(7)W -0.1892(5) 0.7975(6) 0.4726(3) 0.033(1) O(8)W 0.2148(5) 0.8173(6) 0.4544(3) 0.035(1) O(9)W 0.0034(5) 0.1287(6) 0.3253(3) 0.040(1) O(10)W 0.4404(5) 0.0746(6) 0.6835(4) 0.037(1) O(11)W 0.7893(6) 0.4653(6) 0.3082(4) 0.040(1) O(12)W 0.4374(5) 0.3013(6) 0.3187(4) 0.042(1) H(1) -0.3020(60) 0.7770(100) 0.4410(60) 0.050 H(2) -0.1970(90) 0.8940(70) 0.407	As(1)	0.7458(1)	0.7511(1)	-0.0018(1)	0.014(1)
O(2) 0.9133(4) 0.6899(5) 0.0869(3) 0.023(1) O(3) 0.8065(4) 0.9530(4) -0.0956(3) 0.021(1) O(4) 0.7231(4) 0.5848(4) -0.0894(3) 0.022(1) O(5) 0.2711(4) 0.7764(5) -0.0806(3) 0.028(1) O(6) 0.1858(4) 0.6878(5) 0.2424(3) 0.024(1) O(7)W -0.1892(5) 0.7975(6) 0.4726(3) 0.033(1) O(8)W 0.2148(5) 0.8173(6) 0.4544(3) 0.035(1) O(9)W 0.0034(5) 0.1287(6) 0.3253(3) 0.040(1) O(10)W 0.4404(5) 0.0746(6) 0.6835(4) 0.037(1) O(11)W 0.7893(6) 0.4653(6) 0.3082(4) 0.040(1) O(12)W 0.4374(5) 0.3013(6) 0.3187(4) 0.042(1) H(1) -0.3020(60) 0.7770(100) 0.4410(60) 0.050 H(2) -0.1970(90) 0.8940(70) 0.4070(40) 0.050 H(3) 0.2020(90) 0.7560(90) 0.386	Ni(1)	0	0	1/2	0.025(1)
O(3) 0.8065(4) 0.9530(4) -0.0956(3) 0.021(1) O(4) 0.7231(4) 0.5848(4) -0.0894(3) 0.022(1) O(5) 0.2711(4) 0.7764(5) -0.0806(3) 0.028(1) O(6) 0.1858(4) 0.6878(5) 0.2424(3) 0.024(1) O(7)W -0.1892(5) 0.7975(6) 0.4726(3) 0.033(1) O(8)W 0.2148(5) 0.8173(6) 0.4544(3) 0.035(1) O(9)W 0.0034(5) 0.1287(6) 0.3253(3) 0.040(1) O(10)W 0.4404(5) 0.0746(6) 0.6835(4) 0.037(1) O(11)W 0.7893(6) 0.4653(6) 0.3082(4) 0.040(1) O(12)W 0.4374(5) 0.3013(6) 0.3187(4) 0.042(1) H(1) -0.3020(60) 0.7770(100) 0.4410(60) 0.050 H(2) -0.1970(90) 0.8940(70) 0.4070(40) 0.050 H(3) 0.2020(90) 0.7560(90) 0.3860(40) 0.050 H(5) -0.0310(90) 0.2530(40) 0.29	O(1)	0.5437(4)	0.7756(5)	0.0926(3)	0.022(1)
O(4) 0.7231(4) 0.5848(4) -0.0894(3) 0.022(1) O(5) 0.2711(4) 0.7764(5) -0.0806(3) 0.028(1) O(6) 0.1858(4) 0.6878(5) 0.2424(3) 0.024(1) O(7)W -0.1892(5) 0.7975(6) 0.4726(3) 0.033(1) O(8)W 0.2148(5) 0.8173(6) 0.4544(3) 0.035(1) O(9)W 0.0034(5) 0.1287(6) 0.3253(3) 0.040(1) O(10)W 0.4404(5) 0.0746(6) 0.6835(4) 0.037(1) O(11)W 0.7893(6) 0.4653(6) 0.3082(4) 0.040(1) O(12)W 0.4374(5) 0.3013(6) 0.3187(4) 0.042(1) H(1) -0.3020(60) 0.7770(100) 0.4410(60) 0.050 H(2) -0.1970(90) 0.8940(70) 0.4070(40) 0.050 H(3) 0.2020(90) 0.7560(90) 0.3860(40) 0.050 H(4) 0.3160(60) 0.8980(80) 0.4170(50) 0.050 H(5) -0.0310(90) 0.2530(40) 0.297	O(2)	0.9133(4)	0.6899(5)	0.0869(3)	0.023(1)
O(5) 0.2711(4) 0.7764(5) -0.0806(3) 0.028(1) O(6) 0.1858(4) 0.6878(5) 0.2424(3) 0.024(1) O(7)W -0.1892(5) 0.7975(6) 0.4726(3) 0.033(1) O(8)W 0.2148(5) 0.8173(6) 0.4544(3) 0.035(1) O(9)W 0.0034(5) 0.1287(6) 0.3253(3) 0.040(1) O(10)W 0.4404(5) 0.0746(6) 0.6835(4) 0.037(1) O(11)W 0.7893(6) 0.4653(6) 0.3082(4) 0.040(1) O(12)W 0.4374(5) 0.3013(6) 0.3187(4) 0.042(1) H(1) -0.3020(60) 0.7770(100) 0.4410(60) 0.050 H(2) -0.1970(90) 0.8940(70) 0.4070(40) 0.050 H(3) 0.2020(90) 0.7560(90) 0.3860(40) 0.050 H(4) 0.3160(60) 0.8980(80) 0.4170(50) 0.050 H(5) -0.0310(90) 0.2530(40) 0.2970(60) 0.050 H(6) 0.0700(80) 0.1060(100) 0.250	O(3)	0.8065(4)	0.9530(4)	-0.0956(3)	0.021(1)
O(6) 0.1858(4) 0.6878(5) 0.2424(3) 0.024(1) O(7)W -0.1892(5) 0.7975(6) 0.4726(3) 0.033(1) O(8)W 0.2148(5) 0.8173(6) 0.4544(3) 0.035(1) O(9)W 0.0034(5) 0.1287(6) 0.3253(3) 0.040(1) O(10)W 0.4404(5) 0.0746(6) 0.6835(4) 0.037(1) O(11)W 0.7893(6) 0.4653(6) 0.3082(4) 0.040(1) O(12)W 0.4374(5) 0.3013(6) 0.3187(4) 0.042(1) H(1) -0.3020(60) 0.7770(100) 0.4410(60) 0.050 H(2) -0.1970(90) 0.8940(70) 0.4070(40) 0.050 H(3) 0.2020(90) 0.7560(90) 0.3860(40) 0.050 H(4) 0.3160(60) 0.8980(80) 0.4170(50) 0.050 H(5) -0.0310(90) 0.2530(40) 0.2970(60) 0.050 H(6) 0.0700(80) 0.1060(100) 0.2500(30) 0.050 H(7) 0.4470(90) 0.1080(100) 0.760	O(4)	0.7231(4)	0.5848(4)	-0.0894(3)	0.022(1)
O(7)W -0.1892(5) 0.7975(6) 0.4726(3) 0.033(1) O(8)W 0.2148(5) 0.8173(6) 0.4544(3) 0.035(1) O(9)W 0.0034(5) 0.1287(6) 0.3253(3) 0.040(1) O(10)W 0.4404(5) 0.0746(6) 0.6835(4) 0.037(1) O(11)W 0.7893(6) 0.4653(6) 0.3082(4) 0.040(1) O(12)W 0.4374(5) 0.3013(6) 0.3187(4) 0.042(1) H(1) -0.3020(60) 0.7770(100) 0.4410(60) 0.050 H(2) -0.1970(90) 0.8940(70) 0.4070(40) 0.050 H(3) 0.2020(90) 0.7560(90) 0.3860(40) 0.050 H(4) 0.3160(60) 0.8980(80) 0.4170(50) 0.050 H(5) -0.0310(90) 0.2530(40) 0.2970(60) 0.050 H(6) 0.0700(80) 0.1060(100) 0.2500(30) 0.050 H(7) 0.4470(90) 0.1080(100) 0.7600(30) 0.050 H(8) 0.4330(90) -0.0560(30) 0.71	O(5)	0.2711(4)	0.7764(5)	-0.0806(3)	0.028(1)
O(8)W 0.2148(5) 0.8173(6) 0.4544(3) 0.035(1) O(9)W 0.0034(5) 0.1287(6) 0.3253(3) 0.040(1) O(10)W 0.4404(5) 0.0746(6) 0.6835(4) 0.037(1) O(11)W 0.7893(6) 0.4653(6) 0.3082(4) 0.040(1) O(12)W 0.4374(5) 0.3013(6) 0.3187(4) 0.042(1) H(1) -0.3020(60) 0.7770(100) 0.4410(60) 0.050 H(2) -0.1970(90) 0.8940(70) 0.4070(40) 0.050 H(3) 0.2020(90) 0.7560(90) 0.3860(40) 0.050 H(4) 0.3160(60) 0.8980(80) 0.4170(50) 0.050 H(5) -0.0310(90) 0.2530(40) 0.2970(60) 0.050 H(6) 0.0700(80) 0.1060(100) 0.2500(30) 0.050 H(7) 0.4470(90) 0.1080(100) 0.7600(30) 0.050 H(8) 0.4330(90) -0.0560(30) 0.7140(60) 0.050 H(9) 0.8360(80) 0.5440(90) 0.3670	O(6)	0.1858(4)	0.6878(5)	0.2424(3)	0.024(1)
O(9)W 0.0034(5) 0.1287(6) 0.3253(3) 0.040(1) O(10)W 0.4404(5) 0.0746(6) 0.6835(4) 0.037(1) O(11)W 0.7893(6) 0.4653(6) 0.3082(4) 0.040(1) O(12)W 0.4374(5) 0.3013(6) 0.3187(4) 0.042(1) H(1) -0.3020(60) 0.7770(100) 0.4410(60) 0.050 H(2) -0.1970(90) 0.8940(70) 0.4070(40) 0.050 H(3) 0.2020(90) 0.7560(90) 0.3860(40) 0.050 H(4) 0.3160(60) 0.8980(80) 0.4170(50) 0.050 H(5) -0.0310(90) 0.2530(40) 0.2970(60) 0.050 H(6) 0.0700(80) 0.1060(100) 0.2500(30) 0.050 H(7) 0.4470(90) 0.1080(100) 0.7600(30) 0.050 H(8) 0.4330(90) -0.0560(30) 0.7140(60) 0.050 H(9) 0.8360(80) 0.5440(90) 0.3670(50) 0.050 H(10) 0.8100(90) 0.5440(90) 0.3180	O(7)W	-0.1892(5)	0.7975(6)	0.4726(3)	0.033(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(8)W	0.2148(5)	0.8173(6)	0.4544(3)	0.035(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(9)W	0.0034(5)	0.1287(6)	0.3253(3)	0.040(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(10)W	0.4404(5)	0.0746(6)	0.6835(4)	0.037(1)
H(1) -0.3020(60) 0.7770(100) 0.4410(60) 0.050 H(2) -0.1970(90) 0.8940(70) 0.4070(40) 0.050 H(3) 0.2020(90) 0.7560(90) 0.3860(40) 0.050 H(4) 0.3160(60) 0.8980(80) 0.4170(50) 0.050 H(5) -0.0310(90) 0.2530(40) 0.2970(60) 0.050 H(6) 0.0700(80) 0.1060(100) 0.2500(30) 0.050 H(7) 0.4470(90) 0.1080(100) 0.7600(30) 0.050 H(8) 0.4330(90) -0.0560(30) 0.7140(60) 0.050 H(9) 0.8360(80) 0.5430(70) 0.2340(30) 0.050 H(10) 0.8100(90) 0.5440(90) 0.3670(50) 0.050 H(11) 0.5580(50) 0.3570(90) 0.3180(60) 0.050	O(11)W	0.7893(6)	0.4653(6)	0.3082(4)	0.040(1)
H(2) -0.1970(90) 0.8940(70) 0.4070(40) 0.050 H(3) 0.2020(90) 0.7560(90) 0.3860(40) 0.050 H(4) 0.3160(60) 0.8980(80) 0.4170(50) 0.050 H(5) -0.0310(90) 0.2530(40) 0.2970(60) 0.050 H(6) 0.0700(80) 0.1060(100) 0.2500(30) 0.050 H(7) 0.4470(90) 0.1080(100) 0.7600(30) 0.050 H(8) 0.4330(90) -0.0560(30) 0.7140(60) 0.050 H(9) 0.8360(80) 0.5430(70) 0.2340(30) 0.050 H(10) 0.8100(90) 0.5440(90) 0.3670(50) 0.050 H(11) 0.5580(50) 0.3570(90) 0.3180(60) 0.050	O(12)W	0.4374(5)	0.3013(6)	0.3187(4)	0.042(1)
H(3) 0.2020(90) 0.7560(90) 0.3860(40) 0.050 H(4) 0.3160(60) 0.8980(80) 0.4170(50) 0.050 H(5) -0.0310(90) 0.2530(40) 0.2970(60) 0.050 H(6) 0.0700(80) 0.1060(100) 0.2500(30) 0.050 H(7) 0.4470(90) 0.1080(100) 0.7600(30) 0.050 H(8) 0.4330(90) -0.0560(30) 0.7140(60) 0.050 H(9) 0.8360(80) 0.5430(70) 0.2340(30) 0.050 H(10) 0.8100(90) 0.5440(90) 0.3670(50) 0.050 H(11) 0.5580(50) 0.3570(90) 0.3180(60) 0.050	H(1)	-0.3020(60)	0.7770(100)	0.4410(60)	0.050
H(4) 0.3160(60) 0.8980(80) 0.4170(50) 0.050 H(5) -0.0310(90) 0.2530(40) 0.2970(60) 0.050 H(6) 0.0700(80) 0.1060(100) 0.2500(30) 0.050 H(7) 0.4470(90) 0.1080(100) 0.7600(30) 0.050 H(8) 0.4330(90) -0.0560(30) 0.7140(60) 0.050 H(9) 0.8360(80) 0.5430(70) 0.2340(30) 0.050 H(10) 0.8100(90) 0.5440(90) 0.3670(50) 0.050 H(11) 0.5580(50) 0.3570(90) 0.3180(60) 0.050	H(2)	-0.1970(90)	0.8940(70)	0.4070(40)	0.050
H(5) -0.0310(90) 0.2530(40) 0.2970(60) 0.050 H(6) 0.0700(80) 0.1060(100) 0.2500(30) 0.050 H(7) 0.4470(90) 0.1080(100) 0.7600(30) 0.050 H(8) 0.4330(90) -0.0560(30) 0.7140(60) 0.050 H(9) 0.8360(80) 0.5430(70) 0.2340(30) 0.050 H(10) 0.8100(90) 0.5440(90) 0.3670(50) 0.050 H(11) 0.5580(50) 0.3570(90) 0.3180(60) 0.050	H(3)	0.2020(90)	0.7560(90)	0.3860(40)	0.050
H(6) 0.0700(80) 0.1060(100) 0.2500(30) 0.050 H(7) 0.4470(90) 0.1080(100) 0.7600(30) 0.050 H(8) 0.4330(90) -0.0560(30) 0.7140(60) 0.050 H(9) 0.8360(80) 0.5430(70) 0.2340(30) 0.050 H(10) 0.8100(90) 0.5440(90) 0.3670(50) 0.050 H(11) 0.5580(50) 0.3570(90) 0.3180(60) 0.050	H(4)	0.3160(60)	0.8980(80)	0.4170(50)	0.050
H(7) 0.4470(90) 0.1080(100) 0.7600(30) 0.050 H(8) 0.4330(90) -0.0560(30) 0.7140(60) 0.050 H(9) 0.8360(80) 0.5430(70) 0.2340(30) 0.050 H(10) 0.8100(90) 0.5440(90) 0.3670(50) 0.050 H(11) 0.5580(50) 0.3570(90) 0.3180(60) 0.050	H(5)	-0.0310(90)	0.2530(40)	0.2970(60)	0.050
H(8) 0.4330(90) -0.0560(30) 0.7140(60) 0.050 H(9) 0.8360(80) 0.5430(70) 0.2340(30) 0.050 H(10) 0.8100(90) 0.5440(90) 0.3670(50) 0.050 H(11) 0.5580(50) 0.3570(90) 0.3180(60) 0.050	H(6)	0.0700(80)	0.1060(100)	0.2500(30)	0.050
H(9) 0.8360(80) 0.5430(70) 0.2340(30) 0.050 H(10) 0.8100(90) 0.5440(90) 0.3670(50) 0.050 H(11) 0.5580(50) 0.3570(90) 0.3180(60) 0.050	H(7)	0.4470(90)	0.1080(100)	0.7600(30)	0.050
H(10) 0.8100(90) 0.5440(90) 0.3670(50) 0.050 H(11) 0.5580(50) 0.3570(90) 0.3180(60) 0.050	H(8)	0.4330(90)	-0.0560(30)	0.7140(60)	0.050
H(11) 0.5580(50) 0.3570(90) 0.3180(60) 0.050	H(9)	0.8360(80)	0.5430(70)	0.2340(30)	0.050
	H(10)	0.8100(90)	0.5440(90)	0.3670(50)	0.050
H(12) 0.3470(80) 0.3720(80) 0.2750(50) 0.050	H(11)	0.5580(50)	0.3570(90)	0.3180(60)	0.050
	H(12)	0.3470(80)	0.3720(80)	0.2750(50)	0.050

 $U_{\rm eq}$ is defined as one third of the orthogonalized $U_{\rm ij}$ tensor. $U_{\rm eq}$ of H atoms constrained during refinement.

BOOK REVIEWS 849

TABLE 9. ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS (\mathring{A}^2) FOR *NiUP12*

 $\underline{U_{\mathrm{eq}}}$ Х y U(1) -0.2646(1)0.7316(1)0.0729(1)0.011(1)P(1) 0.2493(1)0.7536(1)0.0019(1)0.012(1)Ni(1) 0 1/2 1/2 0.023(1)O(1)0.0599(4)0.7039(5)0.0866(4)0.020(1)O(2)0.4087(4)0.7690(5)0.0827(3)0.020(1)O(3)-0.3056(5)0.6880(5)0.2359(3)0.020(1)O(4)0.2311(5)0.9453(5)-0.0818(3)0.019(1)0.2993(5) 0.5939(5) -0.0789(4) O(5) 0.020(1)0(6) -0.2246(6)0.7717(5) -0.0887(3) 0.028(1)O(7)W 0.5052(7) 0.3234(4) 0.1300(7)0.036(1)O(8)W -0.2068(7) 0.3103(6) 0.4708(4) 0.032(1) O(9)W 0.1896(7) 0.2801(6) 0.5438(4) 0.034(1)O(10)W 0.4728(6) 0.2917(7) 0.3046(5) 0.035(1)O(11)W 0.9245(6) 0.0609(7) 0.3113(5) 0.035(1)O(12)W 0.3075(7) 0.9332(7) 0.3185(5) 0.040(1)H(1)0.1390(110) 0.1550(60) 0.5740(80)0.050 H(2)-0.2730(100) 0.2050(80) 0.5180(70)0.050 H(3)0.2560(60) 0.4500(110) 0.3170(90) 0.050 H(4) 0.2650(100) 0.3110(120) 0.6030(60) 0.050 H(5)0.8680(110) 0.0710(120) 0.2370(40)0.050 H(6)-0.1500(110) 0.2480(110) 0.4040(50)0.050 H(7)0.5600(90) 0.3280(110) 0.2310(40) 0.050 H(8) 0.3600(110) 0.8850(120) 0.2460(50)0.050 H(9)0.0460(60) 0.0370(120)0.2680(70)0.050 H(10)0.5600(100) 0.2830(120) 0.3640(60) 0.050 0.2990(80) H(11)0.3740(100) 0.0530(60) 0.050

 $U_{\rm eq}$ is defined as one third of the orthogonalized $U_{\rm ij}$ tensor. $U_{\rm eq}$ of H atoms constrained during refinement.

0.5470(120)

0.2610(60)

0.050

0.0510(100)

H(12)

TABLE 10. ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS (Å²) FOR *MnUP10*

	x	у	z	$U_{ m eq}$
U(1)	0	0.2091(1)	1/2	0.013(1)
P(1)	0	0.2482(1)	0	0.016(1)
Mn(1)	0	0	0	0.042(1)
O(1)	0	0.1209(2)	1/2	0.024(1)
O(2)	0	0.2966(2)	1/2	0.027(1)
O(3)	0.0371(5)	0.2035(1)	0.1743(5)	0.023(1)
O(4)	0.3264(5)	0.2075(1)	0.5354(5)	0.023(1)
O(5)W	0.2991(7)	0.4203(3)	0.4268(7)	0.055(1)
O(6)W	0.1116(16)	0	-0.2925(16)	0.087(3)
O(7)W	0.0542(9)	0.4151(4)	0.7897(9)	0.072(2)

 $U_{\rm eq}$ is defined as one third of the orthogonalized $U_{\rm ij}$ tensor.

TABLE 11. ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS (\mathring{A}^2) FOR CoUP10

	x	у	z	$U_{ m eq}$
U(1)	0.4503(1)	0.2083(1)	0.9805(1)	0.009(1)
Co(1)	0	1/2	0	0.023(1)
P(1)	0.9484(3)	0.2515(1)	0.9779(3)	0.011(1)
O(1)W	0.5941(14)	0.0035(4)	0.2187(13)	0.039(2)
O(2)	0.4074(10)	0.2015(4)	0.3070(9)	0.019(1)
O(3)	0.4862(10)	0.2042(4)	0.6538(9)	0.019(1)
O(4)	0.1247(8)	0.2082(4)	-0.0614(10)	0.018(1)
O(5)	0.7790(9)	0.2047(4)	0.0213(10)	0.018(1)
O(6)	0.4545(10)	0.2975(4)	0.9848(9)	0.022(1)
O(7)	0.4463(9)	0.1193(4)	0.9789(9)	0.020(1)
O(8)W	0.2295(12)	0.5714(4)	0.0721(12)	0.031(2)
O(9)W	0.8283(12)	0.5817(4)	0.9404(12)	0.032(2)
O(10)W	0.0229(12)	0.0837(5)	0.7426(13)	0.038(2)
O(11)W	0.9350(18)	0.0739(6)	0.1491(17)	0.066(4)

 $U_{\rm eq}$ is defined as one third of the orthogonalized $U_{\rm ij}$ tensor. The largest residual peak in the difference Fourier map is at x 0.6541, y 0.2084, z 0.0672, height 16.5 e⁻/Å³; the nearest atoms are: O(5) 0.93 Å, U(1) 1.53 Å, P(1) 2.31 Å. The next largest peak has height 4.6 e/Å³. See text for discussion.

TABLE 13. ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS (\mathring{A}^2) FOR MgUAs10

	x	у	z	$U_{ m eq}$
U(1)	0.0592(1)	0.2044(1)	0.0227(1)	0.015(1)
As(1)	-0.4395(2)	0.2511(1)	0.0263(2)	0.016(1)
Mg(1)	-1/2	1/2	0	0.033(2)
O(1)	-0.2585(15)	0.2000(5)	-0.0214(15)	0.018(2)
O(2)	0.0561(17)	0.2922(6)	0.0168(16)	0.026(3)
O(3)	-0.4844(16)	0.3008(6)	-0.1584(14)	0.020(2)
O(4)	-0.6280(20)	0.2020(6)	0.0780(20)	0.034(3)
O(5)	-0.3940(15)	0.3040(6)	0.2065(15)	0.021(2)
O(6)	0.0614(14)	0.1161(5)	0.0261(13)	0.015(2)
O(7)W	-0.3320(20)	0.5798(6)	0.0700(19)	0.035(3)
O(8)W	-0.4100(20)	0.5039(6)	-0.2700(20)	0.041(3)
O(9)W	-0.7218(19)	0.5677(7)	-0.0720(20)	0.040(3)
O(10)W	-0.5240(20)	0.0816(8)	0.2670(20)	0.045(4)
O(11)W	-0.4190(40)	0.0739(11)	-0.1570(30)	0.099(9)

 $U_{\rm eq}$ is defined as one third of the orthogonalized $U_{\rm ij}$ tensor.