THE CRYSTAL STRUCTURE OF BERRYITE, Cu$_3$Ag$_2$Pb$_3$Bi$_7$S$_{16}$

DAN TOPA

Department of Material Science, Division of Mineralogy, University of Salzburg, Hellbrunnerstrasse 34/III, A–5020, Salzburg, Austria

EMIL MAKOVICE

Geological Institute, University of Copenhagen, Østervoldgade 10, DK–1350 Copenhagen K, Denmark

HUBERT PUTZ

Department of Geography, Geology and Mineralogy, University of Salzburg, Hellbrunnerstrasse 34/III, A–5020, Salzburg, Austria

W. GUS MUMME

CSIRO Minerals, Bayview Avenue, Clayton 3168, Australia

ABSTRACT

The crystal structure of berryite, ideally Cu$_3$Ag$_2$Pb$_3$Bi$_7$S$_{16}$, monoclinic, a 12.703(2), b 4.0305(7), c 28.925(5) Å, β 102.484(2)$^\circ$, space group $P2_1/m$, $Z = 2$, $D_{\text{calc}} = 6.899$ g/cm3, has been solved by direct methods and refined to an R_1 index of 6.4% for 2352 unique reflections measured with MoKα X-radiation on a three-circle diffractometer equipped with a CCD area-detector. There are fifteen unique Me sites and sixteen S sites in the asymmetric unit. Three Pb sites and two Bi sites are located on the surfaces of PbS-like slabs four layers thick, of two kinds; four Bi sites and two Ag sites are located in the interior of the slabs. Copper atoms in triangular coordination lie in a single S layer, with pseudohexagonal geometry. One Bi site straddles the interspace between the PbS-like slab and the S–Cu layer. Three primitive pseudotetragonal subcells of the PbS-like slab match with two orthohexagonal subcells of the Cu–S layer; this semicommensurate lock-in structure is made possible by the extension of the a parameter of the PbS-like slab by insertion of wide AgS$_2$ tetrahedra (linear S–Ag–S coordinations). The structure determined allowed us to derive model structures of orthorhombic berryite (a polytypic variant) and of watkinsonite, Cu$_2$PbBi$_4$(Se,S)$_8$. Structures of Ca$_2$Sb$_2$S$_5$ and La$_4$In$_5$S$_{13}$ follow the same modular principles.

Keywords: berryite, sulfosalt, crystal structure, electron-microprobe analysis, Grube Clara, Germany.

La structure cristalline de la berryite, de formule idéale Cu$_3$Ag$_2$Pb$_3$Bi$_7$S$_{16}$, monoclinique, a 12.703(2), b 4.0305(7), c 28.925(5) Å, β 102.484(2)$^\circ$, groupe spatial $P2_1/m$, $Z = 2$, $D_{\text{calc}} = 6.899$ g/cm3, a été résolue par des méthodes directes et affinée jusqu’à un résidu R_1 de 6.4% avec 2352 réflexions uniques mesurées au moyen d’un rayonnement MoKα et d’un diffractomètre à trois cercles muni d’un détecteur à aire de type CCD. Il y a quinze sites uniques Me et seize sites S dans la maille élémentaire. Trois sites Pb et deux sites Bi sont situés sur la surface de plaques de type PbS à quatre couches, et de deux types; quatre sites Bi et deux sites Ag sont situés à l’intérieur de ces plaques. Les atomes de Cu en coordination triangulaire sont situés dans une couche d’atomes S ayant une symétrie pseudohexagonale. Un site Bi chevauche l’espace interfoliaire entre les plaques de type PbS et le niveau S–Cu. Trois sous- mailles pseudotrégonales primitives de la plaque de type PbS sont raccordées à deux sous- mailles orthohexagonales de la couche Cu–S; cette structure semi-commensurée est rendue possible par l’extension du paramètre a de la plaque de type PbS par l’insertion de larges octaèdres AgS$_2$ (coordination S–Ag–S linéaire). La structure déterminée nous permet de dériver des modèles structuraux de la berryite orthorhombique (variété polytypique) et de la watkinsonite, Cu$_2$PbBi$_4$(Se,S)$_8$. Les structures de Ca$_2$Sb$_2$S$_5$ et de La$_4$In$_5$S$_{13}$ répondent aux mêmes principes modulaires.

Mots-clés: berryite, sulfosel, structure cristalline, analyses à la microsonde électronique, Grube Clara, Allemagne.

(Traduit par la Rédaction)
Berryite was first described and named by Nuffield & Harris (1966) from two type localities, the Nordmark mines, Sweden, and the Missouri mine, Colorado. The formula given in this original description was Pb(\text{Cu},\text{Ag})_3\text{Bi}_5\text{S}_11; this formula also was favored in the description of berryite from Owen Lake, British Columbia (Harris & Owens 1973).

In his description of berryite from Ivigtut, Greenland, Karup-Møller (1966) proposed the formula Pb(\text{Cu},\text{Ag})_3\text{Bi}_5\text{S}_16, on the basis of results of electron-microprobe analyses. He also recognized the pseudo-orthorhombic geometry of the monoclinic lattice of berryite. Further descriptions of berryite were given by Borodayev & Mozgova (1971) from three deposits in central Asia, Karup-Møller (1977) from Greenland, and Foord et al. (1988) from the Fairview mine, Nevada. More recent electron-microprobe analyses of berryite were reported by Cook (1998) and Gu et al. (2001). Crystallographic data were given by Nuffield & Harris (1966) and Karup-Møller (1966); W.G. Mumme and E. Makovicky obtained information in the 1990s, but it was not published. The crystal structure of berryite has remained unknown.

In the mid-1990s, berryite was identified by qualitative energy-dispersion spectrometry and X-ray powder-diffraction methods in material from the Grube Clara, Black Forest, Germany (Walenta 1995). It occurs as needle-like crystals up to 5 mm in length in quartz cavities, associated with fluorite and chalcopyrite. A new find of well-developed, free isolated crystals of berryite in the material from Grube Clara allowed us to perform a structure determination on this mineral.

Experimental

Chemical analysis

A needle-like fragment was extracted from the aggregate shown in Figure 1a. The fragment was split, and one half, after polishing, was used for optical microscopy and electron-microprobe investigations (Figs. 1b, d), whereas the other half was used for single-crystal investigation of the structure.

Quantitative chemical analyses were performed with a JEOL JXA–8600 electron microprobe (controlled by Advance Microbeam system of programs), operated at 25 kV and 40 nA, with a counting time of 20 s for peaks and 7 s for background. The following natural (n) and synthetic (s) standards and X-ray lines were used: n–CuFeS_2 (CuKα, FeKα), s–Bi_3S_3 (BiLa, SKn), n–PbS (PbLa), s–CdTe (CdLa, TeLa), n–Sb_2S_3 (SbLa) and pure metal for AgLa. Raw data were corrected with the on-line ZAF procedure. Standard deviations (error in wt. %) of elements sought in berryite are: Bi 0.18, Pb 0.19, S 0.06, Te and Se 0.04, Cu, Ag and Se 0.03.

Results of ten point-analyses randomly distributed over the aggregate in Figure 1d were averaged. Chemical data pertaining to the material used for the structural study as well as to berryite from other occurrences and the literature data are compiled in Table 1, and plotted in the diagram Bi–(Ag,Cu)–Pb (Fig. 2).

Single-crystal X-ray diffraction

A fragment of berryite with an irregular shape from Grube Clara was measured on a Bruker AXS three-circle diffractometer equipped with a CCD area detector using graphite-monochromated MoKα radiation. Crystal data are listed in Table 2. The SMART (Bruker AXS, 1998) system of programs was used for unit-cell determination and data collection, SAINT+ (Bruker AXS, 1998) for the calculation of integrated intensities, and XPREP (Bruker AXS, 1998) for empirical absorption-correction based on pseudo Ψ-scans. The centrosymmetric space-group P2_1/m proposed by the XPREP program was chosen, and it is consistent with the monoclinic symmetry of the lattice and intensity statistics (mean I/|E| = 11 = 0.988).

The structure was solved by direct methods (program SHELXS97, Sheldrick 1997a), which revealed most of the cation positions. In the subsequent cycles of the refinement (program SHELXL97 Sheldrick 1997b), cation positions were deduced from difference-Fourier syntheses by selecting among the strongest maxima at appropriate distances.

Experimental details of the data collection and refinement are given in Table 2, fractional coordinates, isotropic and anisotropic displacement parameters of the atoms are listed in Table 3, and selected Me–S bond distances are presented in Table 4. Selected geometrical parameters for individual coordination-polyhedra (Balić-Žunić & Makovicky 1996, Makovicky & Balić-Žunić 1998), calculated with the Ivtőn program (Balić-Žunić & Vickers 1996), are given in Table 5. The structure of berryite is presented in Figure 3, the site labeling in Figure 4, and the coordination polyhedra in Figure 5. The table of structure factors may be obtained from the Depository of Unpublished Data, CISTI, National Research Council, Ottawa, Ontario K1A 0S2, Canada.

Chemical composition

Table 1 shows that the results of the first electron-microprobe analyses of berryite (Karup-Møller 1966, Harris & Owens 1973) differ substantially from more recent results, even where the same material was analyzed (e.g., Karup-Møller 1977). Based on the personal experience of one of the authors (E.M.), these deviations are clearly a product of the imperfect state of correction procedures of electron-microprobe-produced analytical data on sulfides in the sixties and early seventies. Therefore, results of the early analyses are to be disregarded.
The analytical results for berryite from Grube Clara, the Mike mine and Silverton District, Colorado (Table 1, Fig. 2) are tightly clustered and positioned close to the structurally determined stoichiometry, $\text{Cu}_3\text{Ag}_2\text{Pb}_3\text{Bi}_7\text{S}_{16}$. The somewhat higher Bi values for the sample from the Silverton District, Colorado, may be due to contamination by surrounding Cu-rich benjaminite (dark lamellae: Cu 5.1, Ag 8.0, Pb 11.6, Bi 57.6, Se 0.4, S 17.3, total 100.0 wt.%, and bright lamellae: Cu 2.1, Ag 10.8, Pb 6.8, Bi 62.4, Se 0.2, S 17.5, total 99.8 wt.%) (Fig. 1c). The results of Cook (1998) and Gu et al. (2001) show considerable spread at right angles to one another in Figure 2.
TABLE 1. AVERAGE RESULTS OF ELECTRON-MICROPROBE ANALYSES OF BERRYITE FROM VARIOUS LOCALITIES

<table>
<thead>
<tr>
<th>No.</th>
<th>Sample</th>
<th>N.A.</th>
<th>Cu</th>
<th>Ag</th>
<th>Fe</th>
<th>Pb</th>
<th>Bi</th>
<th>Te</th>
<th>Se</th>
<th>S</th>
<th>Total</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Berryite: ideal formula</td>
<td>6.35</td>
<td>7.18</td>
<td>-</td>
<td>20.69</td>
<td>48.70</td>
<td>-</td>
<td>-</td>
<td>17.08</td>
<td>100.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Ivigtut, Greenland, No.1</td>
<td>7.10</td>
<td>4.90</td>
<td>-</td>
<td>21.60</td>
<td>49.20</td>
<td>-</td>
<td>-</td>
<td>17.20</td>
<td>100.00</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Ivigtut, Greenland, No.2</td>
<td>7.40</td>
<td>6.10</td>
<td>-</td>
<td>21.00</td>
<td>48.40</td>
<td>-</td>
<td>-</td>
<td>17.10</td>
<td>100.00</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Ivigtut, Greenland, No.3</td>
<td>7.80</td>
<td>8.60</td>
<td>-</td>
<td>20.80</td>
<td>47.50</td>
<td>-</td>
<td>-</td>
<td>17.20</td>
<td>100.10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Owen Lake, British Columbia</td>
<td>5.3(1)</td>
<td>7.4(3)</td>
<td>-</td>
<td>20.9(5)</td>
<td>49.5(5)</td>
<td>-</td>
<td>-</td>
<td>17.0(5)</td>
<td>100.10</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Ivigtut, Greenland, No. A</td>
<td>6.11(1)</td>
<td>6.8(1)</td>
<td>-</td>
<td>21.6(8)</td>
<td>48.9(1.4)</td>
<td>-</td>
<td>-</td>
<td>17.2(3)</td>
<td>100.60</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Manhattan, Nevada, No. B</td>
<td>5.8(1)</td>
<td>6.7(2)</td>
<td>-</td>
<td>19.5(5)</td>
<td>48.3(6)</td>
<td>-</td>
<td>-</td>
<td>17.3(1)</td>
<td>97.60</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Băiuț-Vârătec, Romania, (1)</td>
<td>6.81</td>
<td>5.67</td>
<td>0.26</td>
<td>21.29</td>
<td>46.47</td>
<td>0.19</td>
<td>2.13</td>
<td>16.02</td>
<td>98.80</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Băiuț-Vârătec, Romania, (2)</td>
<td>6.03</td>
<td>7.14</td>
<td>0.11</td>
<td>20.79</td>
<td>46.74</td>
<td>0.11</td>
<td>2.22</td>
<td>15.93</td>
<td>99.19</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Băiuț-Vârătec, Romania, (3)</td>
<td>5.80</td>
<td>8.54</td>
<td>0.00</td>
<td>19.30</td>
<td>48.39</td>
<td>0.12</td>
<td>1.95</td>
<td>16.11</td>
<td>100.27</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Băiuț-Vârătec, Romania, (4)</td>
<td>6.83</td>
<td>6.96</td>
<td>0.26</td>
<td>20.50</td>
<td>47.37</td>
<td>0.00</td>
<td>1.88</td>
<td>16.42</td>
<td>100.22</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Băiuț-Vârătec, Romania, (5)</td>
<td>7.45</td>
<td>7.45</td>
<td>0.25</td>
<td>19.68</td>
<td>46.68</td>
<td>0.00</td>
<td>1.78</td>
<td>16.39</td>
<td>99.68</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Funishan, China, e12</td>
<td>7.27</td>
<td>6.43</td>
<td>0.36</td>
<td>19.96</td>
<td>47.67</td>
<td>0.05</td>
<td>2.86</td>
<td>15.37</td>
<td>99.95</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Funishan, China, e29</td>
<td>7.59</td>
<td>6.95</td>
<td>0.35</td>
<td>19.10</td>
<td>46.19</td>
<td>0.45</td>
<td>2.86</td>
<td>15.63</td>
<td>99.12</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Funishan, China, e30</td>
<td>7.74</td>
<td>7.75</td>
<td>0.41</td>
<td>19.50</td>
<td>45.41</td>
<td>0.94</td>
<td>2.77</td>
<td>15.57</td>
<td>100.09</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Silverton District, Colorado</td>
<td>5.96(8)</td>
<td>7.01(12)</td>
<td>-</td>
<td>19.94(14)</td>
<td>49.59(12)</td>
<td>0.00</td>
<td>0.26(4)</td>
<td>16.94(4)</td>
<td>99.70(23)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Mike mine, San Juan, Colorado</td>
<td>6.14(2)</td>
<td>7.04(15)</td>
<td>-</td>
<td>20.47(10)</td>
<td>48.81(2)</td>
<td>0.11(2)</td>
<td>0.32(3)</td>
<td>16.95(4)</td>
<td>99.84(8)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Grube Clara, Germany</td>
<td>6.18(6)</td>
<td>6.88(14)</td>
<td>-</td>
<td>20.90(13)</td>
<td>49.04(15)</td>
<td>0.00</td>
<td>0.00</td>
<td>17.08(9)</td>
<td>100.09(26)</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Chemical formulae based on 31 atoms

1) Cu_{10.00}Ag_{16.06}Pb_{3.68}Bi_{1.10}Se_{1.00}
2) Cu_{13.15}Ag_{3.83}Pb_{1.16}Bi_{1.10}Se_{1.07}
3) Cu_{14.47}Ag_{16.06}Pb_{2.68}Bi_{0.90}S_{1.97}
4) Cu_{15.26}Ag_{16.06}Pb_{2.68}Bi_{0.90}S_{1.97}
5) Cu_{15.25}Ag_{16.06}Pb_{2.68}Bi_{2.20}S_{1.11}
6) Cu_{16.90}Ag_{16.06}Pb_{2.68}Bi_{0.90}S_{1.07}
7) Cu_{17.23}Ag_{16.06}Pb_{2.68}Bi_{1.10}S_{1.10}
8) Cu_{17.23}Ag_{16.06}Pb_{1.00}Bi_{0.90}S_{1.10}Se_{0.00}Te_{0.00}
9) Cu_{18.35}Ag_{16.06}Pb_{1.00}Bi_{0.90}S_{1.10}Se_{0.00}Te_{0.00}
10) Cu_{18.35}Ag_{16.06}Pb_{1.00}Bi_{0.90}S_{1.10}Se_{0.00}Te_{0.00}
11) Cu_{18.35}Ag_{16.06}Pb_{1.00}Bi_{0.90}S_{1.10}Se_{0.00}Te_{0.00}
12) Cu_{18.35}Ag_{16.06}Pb_{1.00}Bi_{0.90}S_{1.10}Se_{0.00}Te_{0.00}
13) Cu_{18.35}Ag_{16.06}Pb_{1.00}Bi_{0.90}S_{1.10}Se_{0.00}Te_{0.00}
14) Cu_{18.35}Ag_{16.06}Pb_{1.00}Bi_{0.90}S_{1.10}Se_{0.00}Te_{0.00}
15) Cu_{18.35}Ag_{16.06}Pb_{1.00}Bi_{0.90}S_{1.10}Se_{0.00}Te_{0.00}
16) Cu_{18.35}Ag_{16.06}Pb_{1.00}Bi_{0.90}S_{1.10}Se_{0.00}Te_{0.00}
17) Cu_{18.35}Ag_{16.06}Pb_{1.00}Bi_{0.90}S_{1.10}Se_{0.00}Te_{0.00}
18) Cu_{18.35}Ag_{16.06}Pb_{1.00}Bi_{0.90}S_{1.10}Se_{0.00}Te_{0.00}

The raw data are quoted in wt.%. N.A.: number of analyses.

![Fig. 2](image-url) Position of berryite compositions from Table 1 in the diagram (Cu,Ag)–Pb–Bi.
Description of the Structure

Coordination polyhedra

The crystal structure of berryite contains three distinct Pb positions, seven Bi sites, two Ag sites and three distinct Cu sites (Table 3). Sixteen distinct sulfur sites complete the picture. Atoms Pb1 and Pb2 are situated on the surfaces of the PbS-like slabs (pseudotetragonal Q₁ and Q₂ slabs in Fig. 6), whereas four bismuth sites (Bi2, Bi6, Bi3 and Bi7) and silver sites (Ag1 and Ag2) lie in the slab interior. Two more Bi sites (Bi5 and Bi4) are on the slab surfaces, adjacent to the Pb polyhedra. The remaining Bi1 site straddles the interspace between the slab and a pseudohexagonal layer (H in Fig. 6) built of single sulfur atoms (S1, S3, S9, S12) and triangular copper sites (Cu1, Cu2 and Cu3).

All three Pb sites form slightly asymmetric bicapped trigonal-coordination prisms (Table 4, 5). The least asymmetric site is Pb3; it is a position drawn from the PbS-like slab and paired with interlayer Bi1 into columns straddling the interspace. Asymmetry of Pb1 and Pb2 is caused by the fact that they are embedded in the PbS-like layer.

Considering the distribution of the short bonds (Table 4), the surface sites Bi4 and Bi5 have square coordination-pyramids oriented toward the interlayer of single sulfur atoms, i.e., into the interlayer space. Their indistinctly expressed lone-electron pairs point toward the PbS-like slab. The central Bi sites participate in elongate oval lone-electron-pair micelles along the median planes of the PbS-like slabs: the Bi2 and Bi3 sites are situated close to the largest opening of these micelle spaces, and as a consequence, are most asymmetric (Table 4, 5). The Bi6 sites are closer to the ends of the micelle and are forced into a more symmetrical coordination. In the case of Bi7, a more symmetrical coordination appears to be forced by the accommodation of the adjacent, most asymmetric Bi1 (Table 4, 5).

Table 2. X-ray Diffraction (Single Crystal): Experimental Details

<table>
<thead>
<tr>
<th>Crystal data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>Cu₂Ag₂Pb₃Bi₅S₁₈</td>
</tr>
<tr>
<td>Chemical formula weight</td>
<td>3803.75</td>
</tr>
<tr>
<td>Space group</td>
<td>P2₁/n</td>
</tr>
<tr>
<td>α (Å)</td>
<td>12.703(2)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>4.0305(7)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>28.925(5)</td>
</tr>
<tr>
<td>β (°)</td>
<td>102.484(2)</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>1445.9(4)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>D₁ (g/cm³)</td>
<td>6.899</td>
</tr>
<tr>
<td>Radiation type</td>
<td>Mo Kα</td>
</tr>
<tr>
<td>No. of reflections for cell parameters</td>
<td>2545</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>297(1)</td>
</tr>
<tr>
<td>Crystal habit</td>
<td>needle</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>0.015 × 0.025 × 0.100</td>
</tr>
<tr>
<td>Crystal color</td>
<td>metallic</td>
</tr>
</tbody>
</table>

Data collection

Absorption correction empirical (ellipsoidal function)

Refinement

Refinement method | oFo² |
R[F₂ > 2σ(F₂)] | 6.40% |
wR(F₂) | 14.17% |
S (Goodness of fit) | 1.174 |
No. of reflections used in refinement | 2167 |
No. of parameters refined | 187 |
Weighting scheme | w = [1/σ(F₂)² + (0.0654p² + 57.3p)²] where | p = (F₂² + 2F₁²)/3 |
(Δα)max	0.000
Δαₘₑₜ (eV⁻¹)	3.93 (1.01 Å from Pb3)
Δmₑₜ (eV⁻¹)	-2.93 (1.53 Å from Bi1)

Extraction method

Computer programs

Structure solution | SHELXS97 (Sheldrick 1997a) |
Structure refinement | SHELXL97 (Sheldrick 1997b) |
The Ag1 and Ag2 sites, in a flat-octahedral 2 + 4 coordination, divide the Pb-like slabs into regular intervals. The two short bonds of the linear two-fold coordination are 2.44–2.47 Å long, whereas the remaining four “perpendicular” distances are equal to 3.10–3.12 Å. The linear bonds comprise the angle of 178.1° and 177.7°, respectively, for the above Ag sites. Among the three trigonal planar sites, Cu1 has the shortest Cu–S bonds (2.25–2.28 Å), whereas the Cu2 and Cu3 positions display slightly longer distances (2.25–2.31 Å); the Cu3 site shows a trend toward tetrahedral coordination, with an additional Cu–S distance of 2.70 Å. All
Fig. 5. Coordination polyhedra for Cu, Ag, Pb and Bi in berrylite.

TABLE 4. SELECTED INTERATOMIC DISTANCES (Å) IN BERRYITE

<table>
<thead>
<tr>
<th>Bi1</th>
<th>Bi2</th>
<th>Bi3</th>
<th>Bi4</th>
<th>Bi5</th>
<th>Bi6</th>
<th>Bi7</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3</td>
<td>2.553(10)</td>
<td>S16</td>
<td>2.585(11)</td>
<td>S4</td>
<td>2.652(9)</td>
<td>S9</td>
</tr>
<tr>
<td>S1</td>
<td>2.718(6)</td>
<td>S13</td>
<td>2.740(7)</td>
<td>S10</td>
<td>2.744(8)</td>
<td>S6</td>
</tr>
<tr>
<td>S1</td>
<td>2.718(6)</td>
<td>S13</td>
<td>2.740(7)</td>
<td>S10</td>
<td>2.744(8)</td>
<td>S6</td>
</tr>
<tr>
<td>S14</td>
<td>3.014(9)</td>
<td>S2</td>
<td>2.995(8)</td>
<td>S15</td>
<td>2.949(9)</td>
<td>S11</td>
</tr>
<tr>
<td>S14</td>
<td>3.014(9)</td>
<td>S2</td>
<td>2.995(8)</td>
<td>S15</td>
<td>2.949(9)</td>
<td>S11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pb1</th>
<th>Pb2</th>
<th>Pb3</th>
<th>Ag1</th>
<th>Ag2</th>
<th>Cu1</th>
<th>Cu3</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2</td>
<td>2.868(11)</td>
<td>S5</td>
<td>2.841(9)</td>
<td>S1</td>
<td>2.871(8)</td>
<td>S6</td>
</tr>
<tr>
<td>S11</td>
<td>2.924(7)</td>
<td>S8</td>
<td>2.991(8)</td>
<td>S16</td>
<td>2.937(8)</td>
<td>S7</td>
</tr>
<tr>
<td>S11</td>
<td>2.924(7)</td>
<td>S8</td>
<td>2.991(8)</td>
<td>S16</td>
<td>2.937(8)</td>
<td>S7</td>
</tr>
<tr>
<td>S16</td>
<td>3.018(8)</td>
<td>S14</td>
<td>3.019(9)</td>
<td>S3</td>
<td>3.076(9)</td>
<td>S13</td>
</tr>
</tbody>
</table>
three positions are slightly non-planar. The sum of three central S–Cu–S angles is 350.1, 357.3 and 358.8° for Cu3, Cu2 and Cu1, respectively, as compared to 360° for the perfectly planar coordination.

The Cu and Ag assume very different roles in the crystal structure of berryite. A similar feature was already observed for the structure of neyite (Makovicky et al. 2001). The structural formula of berryite, Pb$_3$Bi$_7$Ag$_2$Cu$_3$S$_{16}$ $(Z = 2)$, is in very good agreement with the formula derived by Karup-Møller (1966).

Modular description

The structure of berryite shows modular affinities with (1) the non-commensurate structure of the Pb–Bi sulfosalt cannizzarite, and (2) the pavonite homologous series.

In the first category (1) of modular description of the berryite structure (Fig. 6, right-hand side), pseudotetragonal slabs that are four atom layers thick alternate with single-atom thick pseudohexagonal layers, in analogy to the (thinner) pseudotetragonal and (substantially thicker) pseudohexagonal layers in cannizzarite (Matzat 1979). In berryite, the pseudotetragonal slabs are populated by Pb, Bi and Ag in separate octahedral to semi-octahedral sites, whereas the pseudohexagonal layers contain the triangular copper sites. According to

![Fig. 6. Right-hand part: Pseudotetragonal four-layer slabs (Q) and pseudohexagonal (H) interlayers in berryite. Left-hand part: the pavonite-type component in berryite (shaded), interleaved with additional structural layers (white).](image)
the composition of surface layers (2Pb + Bi versus 2Bi + Pb), two slightly different pseudotetragonal slabs Q₁ and Q₂ alternate in the c direction of berryite.

In the interface of pseudotetragonal slabs and pseudohexagonal layers, three primitive pseudotetragonal subcells match with two centered, orthohexagonal subcells along the a direction (Fig. 7). Away of the three pseudotetragonal subcells, two are approximately square in shape, whereas the third one, representing the protruding Bi or Pb site, is rectangular. Two triangular copper coordinations are regular, whereas the third one is extended along the [100] direction. The triangular portions corresponding to the protruding (Bi, Pb) atoms are foreshortened in the [100] direction (Fig. 7).

In cannizzarite, a pure Pb–Bi sulfosalt (Matzat 1979), an approximate match between layers is achieved with five primitive pseudotetragonal subcells and three centered pseudohexagonal subcells. The change in the match ratio between cannizzarite and berryite is caused especially by a regular insertion of broad Ag octahedra in the pseudotetragonal slab, connected with the extension of this slab in the a direction and the elongation of the coordination rectangles of the protruding (Bi, Pb) atoms situated above the Ag octahedra (Fig. 7).

What is typical of berryite is the position of Bi and, to a lesser extent, Pb, in the interlayer space (Fig. 6), both of which protrude out of the pseudotetragonal slab. Such positions are absent in cannizzarite (Matzat 1979) and contribute to the exact, lock-in character of the semicommensurate (Makovicky & Hyde 1992) interlayer match in berryite, in contrast to the very complicated and potentially non-commensurate match in cannizzarite.

In relation (2) to the pavonite homologous series (Makovicky et al. 1977, Makovicky 1997), the berryite structure can be modeled as an intergrowth of (a) oblique slices of pavonite-like structure, one half of the pavonite a parameter in thickness, with (b) layers one to one and a half octahedron thick composed of octahedrally coordinated large cations with interspersed trigonally coordinated copper sites (Fig. 6, left-hand side).

The exact delineation of pavonite-like slices is arbitrary; the simplest choice is shown in Figure 6. The pairing of square coordination pyramids of Bi with bicapped coordination prisms of Pb leads in these slices to a structural analogy with cupromakovickyite and cupropavonite rather than to that with pavonite, in which only paired Bi pyramids occur in the thin, non-accretional layers (Topa et al. 2006). Alternation of (Bi, Pb) pairs with (Pb, Bi) pairs leads to a two-slab periodicity in cupromakovickyite, just as it does in berryite.

If one eliminates the interlayers between cupropavonite-like slices by means of crystallographic shear, a compact cupropavonite-like structure is obtained (Fig. 8). In the shearing process, the heights of atoms in adjacent slices have to be adjusted by 2 Å shifts along the 4 Å direction of the berryite structure. The columns of octahedra in the non-accretional thin layers in the model pavonite homologue derived from berryite are recreated by slicing and joining the Cu-containing polyhedra of the pseudohexagonal layer in berryite.

Derivation of a cupropavonite-like structure from the above-mentioned alternating, slightly different pseudotetragonal slabs in berryite (“Bi–Bi” and “Pb–Pb” slabs if their contributions to the interlayer coordinations are referred to) results in a structure that is a regular intergrowth of two different pavonite homologues: \(N_p = 6 \) for the Bi–Bi decorated slabs, whereas \(N_p = 5 \) for the

Fig. 7. Interlayer match in berryite. A pseudohexagonal layer \(3^6 \) with subcells situated above the surface layer of the pseudotetragonal slab. Symbols as in Figure 3.
Pb–Pb decorated (in fact, lillianite-like) slabs (Fig. 8). This model concerns only the topology of the structure, whereas its chemical composition requires adjustments (e.g., as Cu₈Pb₄Ag₄Pb₂Bi₁₂O₄S₄₂ with Pb in two different structural roles, Z = 1, monoclinic, C2/m, with a 13.35, b 4.03, c 35.2 Å, β 105.5°).

POLYTOPISM

The berryite material from Grube Clara is monoclinic. However, the berryite material from the type specimen of cuprobismutite (U.S.N.M 92902, Missouri mine, Park County, Colorado), examined by Mumme and Makovicky, consists of a parallel intergrowth of monoclinic and orthorhombic modifications of the mineral. The pseudo-orthorhombic character of the lattice of berryite, stressed by Karup-Møller (1966), invites a closer examination of possible polytypism as well.

Marking the centerpoints of pyramidal interslab Bi–Pb pairs as vertices, “component cells” of the “Bi–Bi” and “Pb–Pb” layers can be defined (Fig. 3). The first attempt was to construct berryite variants only from one type of slab, assuming thus a possible Cu + Pb → Bi substitution. This approach does not work; as can be observed from the monoclinic structure of berryite described here, the configuration and disposition of Cu polyhedra in the pseudohexagonal layer are a function of the Bi–Pb distribution (Fig. 3). Thus, Bi–Bi or Pb–Pb pairs lead to contradictions in the Cu distribution, demanding two diametrically opposed distributions of Cu for each interval at the same time.

Therefore, viable configurations must preserve the Bi–Pb pairs in the interlayer space, and the Cu distribution as well. This leaves only one possibility, which is the presence of one kind of layer, instead of the “Bi–Bi” and “Pb–Pb” layers observed in the present structure (note that these are pairs of cations observed on pseudotetragonal surfaces). Inner portions of the “Bi–Bi” and “Pb–Pb” layers are practically identical, with the same distribution of Ag–Ag pairs and the same configuration of the Bi polyhedra. Thus, combining one half of the “Bi–Bi” layer with the opposing, matching half of the “Pb–Pb” layer is free of obvious problems.
The sequence of interlayer Bi–Pb contacts leads then to an orthorhombic structure with $a \approx 12.7$, $b \approx 4$, $c \approx 26.7$ Å, the acentric space-group $Pcm2_1$ (Fig. 9), and an unchanged chemical formula $Cu_3Ag_2Pb_3Bi_7S_{16}$, for $Z = 2$.

Analysis of Weissenberg photographs obtained from the sample of orthorhombic berryite confirms that the principal phase corresponds to the space group $Pcm2_1$, both in systematic extinctions (the c glide plane) and in the identity of respective F_{h0l} and F_{hl0} values (i.e., disposition of atoms at $y = 0$ and $\frac{1}{2}$, respectively). The distribution of F values in the weighted reciprocal lattice is similar to that of the monoclinic polymorph studied here. Non-overlapping reflections of the monoclinic admixture (on lattice rows with h odd) are slightly diffuse and spaced between the sharp reflections of the orthorhombic phase. A search for more perfect crystals of the orthorhombic polymorph, suitable for a precise determination of the structure, is under way.

The two “polymorphs” of $Cu_3Ag_2Pb_3Bi_7S_{16}$ are actually polytypes; in the polytype description, unit layers have boundaries along the central planes of the pseudotetragonal slabs; each unit layer includes (a) the pseudohexagonal S–Cu layer along its median plane, (b) the interlayer Pb–Bi configurations, and (c) two layers of atoms from each of the adjacent pseudotetragonal slabs (Fig. 3 in blue). These unit layers are polar; their polarity is given by the orientation of the Bi–Pb pairs in their median portions. In the observed structure, adjacent unit-layers are oriented in the opposite sense; in the orthorhombic model, all of them preserve the same sense. Reversal and non-reversal polytypes such as the polytypes of berryite just described do not form an OD-family (Ďurovič 1997). This situation will not be changed even if the pairs of pseudotetragonal slabs in the central layer are defined as one kind of layer and their peripheral layers plus the pseudohexagonal layers as the other kind of layer, i.e. as a potential polytype composed of two kinds of unit layers.

RELATIONSHIP TO OTHER STRUCTURES

Structure model for watkinsonite

Watkinsonite, $Cu_2PbBi_4(Se, S)_8$ was described by Johan et al. (1987) from the selenide–telluride association of the Otish Mountains uranium deposit, in Quebec. The empirical formula of the mineral is $Cu_{2.36}Pb_{1.26}$.
Bi$_{3.70}$(Se$_{6.21}$S$_{1.74}$Te$_{0.05}$), thus suggesting a degree of the Bi + □ → Cu + Pb substitution. Johan et al. (1987) reported watkinsonite as being monoclinic, space group $P2_1/m$, $P2$ or Pm, with a 12.921 Å, b 3.997 Å, c 14.989 Å, β 109.2°. The crystal structure of watkinsonite was not determined at that time, and remains unknown.

Our attention was attracted by the d_{001} spacing of watkinsonite, 14.16 Å, very close to one half of the analogous spacing in berryite, 28.24 Å. It turns out that the unit cell of watkinsonite is practically identical to the “component cell” centered on the “Pb–Pb” slab in berryite (Fig. 3, the right one of the component cells outlined in red). However, the pseudo-hexagonal layers on two sides of the “Pb–Pb” slab in berryite are oppositely oriented, preventing a repetition by simple translation. Therefore, we assume that in watkinsonite, the layers are of the “Pb–Bi” type, and their sequence displays symmetry Pm.

The unit-cell content of watkinsonite according to the “Pb–Bi” berryite model is Cu$_3$M$_{12}$S$_{16}$, in contrast with Cu$_{4.8}$Pb$_{2.52}$Bi$_{17.40}$S$_{16}$ given by Johan et al. (1987). Recalculation invoking Cu-for-Bi substitution of the type observed in the pavonite series gives Cu$_3$(M$_{9.92}$ Cu$_{1.80}$)$_{11.72}$S$_{16}$, with a very good balance of charges.

The structure model for watkinsonite is different from that of orthorhombic berryite. The difference is caused by the necessity to reconstruct properly the pairs of Ag octahedra in the interior of pseudotetragonal slabs in the polytypic models of berryite; these are absent in the slabs of watkinsonite.

Related structures

To our knowledge, only two structures having modular principles analogous to berryite are known: Ca$_2$Sb$_2$S$_5$ (Cordier & Schäfer 1981) and La$_4$In$_5$S$_{13}$ (Guseinov et al. 1979). The monoclinic structure of Ca$_2$Sb$_2$S$_5$ (a 15.074 Å, b 5.694 Å, c 11.378 Å, β 110.99°, space group $P2_1/c$) shows many modular features similar to berryite (Fig. 10): PbS-like slabs four layers thick, with Sb and Ca atoms in the central layers of these slabs, and seven-coordinated Ca atoms at the surface of these slabs. The surface layers are half-occupied by cations, every second square mesh remaining unoccupied in a chessboard fashion; interlayer antimony resides above these empty squares.

The slabs are interleaved by single anionic layers of hexagonal character. In these layers, sulfur atoms

![Fig. 10. The crystal structure of Ca$_2$Sb$_2$S$_5$ (Cordier & Schäfer 1981). Blue spheres: Ca, red spheres: Sb, yellow and light spheres: S.](image-url)
THE CRYSTAL STRUCTURE OF BERRYITE

form 6^3 nets instead of the 3^6 nets of berryite, i.e., the central S atoms of hexagons are missing (Fig. 11). The interlayer Sb atoms have the two shortest bonds oriented into this layer, whereas the third shortest bond binds them to the pseudotetragonal slabs. This situation differs from berryite, in which all three short Bi–S bonds are oriented toward the hexagonal layer.

In order to achieve a simple description of the interlayer match (Fig. 11), we have to ignore the absence of some atoms of sulfur in the pseudohexagonal layer. Furthermore, we have to choose a centered pseudotetragonal mesh instead of the primitive mesh in berryite. Then, in the orthohexagonal cell description, the match is $3b_H = 2b_Q$ and $1c_H = 1c_Q$, both meshes being centered.

The crystal structure of La$_4$In$_5$S$_{13}$ (Guseinov et al. 1979) is orthorhombic (a 21.393, b 11.843, c 4.061 Å, space group $Pbam$). The combination of the coordination requirements of In$^{3+}$ and La$^{3+}$ leads to pseudotetragonal slabs that are three layers thick, instead of four layers in such slabs of berryite. Cations on the surface of the Q layer are the La atoms, protruding out of the square-pyramidal coordination, and tetrahedrally (or five-) coordinated In (Fig. 12).

The pseudohexagonal S layer is slightly wavy but complete, bonded both by La and four-to-five coordinated In. The interlayer match corresponds to that of berryite, i.e., $2b_H = 3b_Q$ and $1c_H = 1c_Q$ (Fig. 13). Lanthanum configurations are similar to those of the paired Pb sites Pb1 – Pb3 on the surface of Q slabs of berryite, whereas the five-coordinated In site bears a resemblance to Bi1 in berryite. The most interesting point is that the lateral expansion of the Q layer, provided for in berryite by the pair of broad Ag octahedra, is assured by an In octahedron in the layer interior in La$_4$In$_5$S$_{13}$, rotated by 90° about [001] against the rest of In octahedra (Fig. 13).

“Broken-up” versions of the structural principles in berryite and La$_4$In$_5$S$_{13}$ occur in the following structures of rod-layer type: SrBiSe$_3$ (Cook & Schäfer 1982), BaBiSe$_3$ (Volk et al. 1980) and moëloite, Pb$_6$Sb$_6$S$_{17}$ (Orlandi et al. 2002). In these cases, all of which contain

Fig. 11. Interlayer match in Ca$_2$Sb$_2$Se$_6$. A pseudohexagonal layer 6^3 (S atoms: light spheres) on top of a pseudotetragonal slab (S atoms in its top layer: shaded spheres). The a axis points upward to the right, the c axis, downward to the left.
Fig. 12. The crystal structure of La₄In₅S₁₃ (Guseinov et al. 1979). Large spheres: S, green spheres: La, small spheres: In. The pseudotetragonal slabs (Q) are shaded, interleaved by a single pseudohexagonal layer (H). The a axis points downward, the b axis, toward the left.

Fig. 13. Interlayer match in La₄In₅S₁₃. A pseudohexagonal layer 3⁶ (S atoms: light spheres) on top of the surface layer of the pseudotetragonal slab (S atoms: shaded spheres). For other conventions, see Figure 12. The b axis is horizontal, and the c axis, vertical.
pseudotetragonal fragments four layers of atoms thick and fragments of single pseudohexagonal layers of anions, the charge problems are solved by covalent bonding of two or three anions (Makovicky 1993). The small problem with electroneutrality in La₄In₆S₁₃ might be solved by some La positions being only partly occupied.

ACKNOWLEDGEMENTS

This study was funded by the Austrian Science Foundation (FWF) through grant P 17349 N10 to the first author. This support is gratefully acknowledged. Qualified assistance of Dr. Anna Bieniok and Mrs. Camilla Sarantaris is gratefully acknowledged. Mr. A.B. Todora (Salzburg) is thanked for the stereomicroscope images. The manuscript benefitted from comments of Dr. Luca Bindi, as well as from the editorial care of Prof. Robert F. Martin.

REFERENCES

Received February 7, 2005, revised manuscript accepted October 15, 2005.