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Abstract

The methods of group theory have been used to decompose the crystal structures of centrosymmetric perovskites, ABX3, that 
exhibit zone-boundary tilting of the BX6 octahedra. For the fourteen space-groups consistent with these phenomena, the associated 
structures are decomposed in terms of the magnitudes of an appropriate set of symmetry-adapted basis-vectors of the primitive 
cubic aristotype phase of perovskite at high-symmetry points on the surface of the Brillouin zone. The advantage of this param-
eterization is twofold; firstly, octahedron tilt angles can be determined precisely and independently of the effects of octahedron 
distortion, and secondly, the degrees of freedom required by the perovskite structure can be rigorously derived. The method is 
outlined using the results of a neutron-diffraction investigation of CaTiO3 in space group Pbnm, an example where the structural 
degrees of freedom are found to be one less than that required by the space group. Full results that can be very simply utilised in 
the decomposition of the other thirteen space-groups are tabulated. The advantages of decomposing perovskite-structured phases 
in this way are further illustrated using the temperature dependence of the crystal structure of KCaF3 between 4.2 and 542 K.
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Sommaire

Les méthodes de la théorie des groupes ont été utilisées afin de décomposer les structures cristallines des pérovskites centro-
symétriques, ABX3, qui font preuve d’inclinaison d’octaèdres BX6 en bordure de zones. Pous les quatorze groupes spatiaux qui 
peuvent subir ces phénomènes, les structures associées sont décomposées en termes de l’amplitude d’un ensemble approprié 
de vecteurs fondamentaux pour décrire la pérovskite primitive cubique, la phase aristotype, adaptés à la symétrie réelle, telle 
que déterminée à des points de symétrie élevée sur la surface de la zone de Brillouin. Il y a deux avantages de ce paramétrage: 
premièrement, les angles d’inclinaison des octaèdres peuvent être déterminés avec précision et indépendamment des effets dus 
à la distortion des octaèdres; deuxièmement, on peut en dériver rigoureusement les degrés de liberté requis par la structure de la 
pérovskite. On décrit cette méthode en utilisant les résultats d’une étude de CaTiO3 dans le groupe spatial Pbnm par diffraction 
de neutrons, un exemple dans lequel les degrés de liberté sont un de moins que ceux requis par le groupe spatial. Les résultats 
complets présentés dans les tableaux peuvent être très facilement utilisés dans la décomposition des treize autres groupes spatiaux. 
Les avantages d’une décomposition de phases ayant la structure de la pérovskite sont aussi illustrés en examinant la dépendance 
de la structure cristalline de KCaF3, ayant la structure de la pérovskite, entre 4.2 et 542 K.

	 (Traduit par la Rédaction)
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Introduction

The rich structural diversity exhibited by the 
perovskite family and related compounds, including 
both cation-ordered phases and inorganic–organic 
hybrids, which have been recently reviewed in an excel-
lent monograph by Mitchell (2002), presents significant 
challenges to the crystallographer. The aristotype phase 
of perovskite, ABX3, has space group Pm3m with a 
large cation (A) in a dodecahedrally coordinated site in 
Wyckoff position 1b, a smaller, octahedrally coordinated 
cation (B) in position 1a, and three anions (X) in posi-
tion 3d. Despite their chemical simplicity, the perovskite 
group of compounds and the structurally related, chemi-
cally ordered compounds, those of the elpasolite group, 
A2BB’X6, are crystallographically subtle. Both families 
generally show a strongly pseudocubic lattice metric 
that requires diffraction data collected at the highest 
possible resolution to be certain of the correct determi-
nation of the crystal system and space group. In addition 
to this requirement, the determination of the correct 
space-group for phases that exhibit tilting of the BX6 
and B’X6 octahedra is generally further exacerbated by 
the anions being light, usually oxygen, but occasionally 
halogens, whereas the A- and B-site cations are usually 
significantly heavier atoms. If this is indeed the case, 
X-ray-diffraction data will appear to be quasi-I-centered 
on the pseudocubic subcell (subscripted p) owing to 
the approximate separation of the A and B sites by 
the pseudocubic vector ½(ap + bp + cp), coupled with 
the weakness of the superlattice reflections that arise 
from the tilting of the octahedra. The importance of 
precisely characterizing these superlattice reflections 
has been emphasised by Glazer (1975) in a review of 
methods to reliably determine the crystal structures of 
perovskites. Neutron scattering lengths, unlike X-ray 
form factors, are neither dependent on atomic number,  
 
nor on Q (Q =

4π ϑ

λ

sin
, l, wavelength, u, half the  

 
scattering angle). Hence in neutron-diffraction patterns, 
the quasi-I-centering of the diffraction pattern is less 
pronounced, and the intensities of the superlattice reflec-
tions may have magnitudes that are comparable with 
those of the fundamental reflections. Hence, provided 
that samples can be prepared in bulk form, this property 
has made neutron diffraction the technique of choice for 
the detailed crystallographic analysis of heavy-atom-
bearing oxide systems.

Commensurate with the problems associated with 
pseudosymmetry is the presence of multiple twins 
in single crystals that have undergone ferroelastic 
phase-transitions on cooling from their temperature of 
synthesis. In the worst possible case, this can render 
single-crystal diffraction data difficult, if not impossible, 
to interpret; for example, in the case of the single-crystal 
data collected on MgSiO3 at 400 K, it was not even 

possible to determine the lattice parameters because of 
the high density of twins (Ross & Hazen 1989). Neither 
of these problems is of serious consequence to data 
collected on state-of-the-art high-resolution neutron or 
synchrotron powder diffractometers. As many synthetic 
perovskite phases, if not most, are prepared by solid-
state reaction, powder-diffraction techniques and the 
Rietveld method are generally employed to determine 
and refine the crystal structures of novel compounds. 
A discussion of the difficulty in characterizing poly-
crystalline perovskite-structured phases can be found 
in many places in the literature (Glazer 1975, Mitchell 
2002), and the crystal structures of many compounds 
can be seen to “evolve in time” to the correct solution 
as improvements have been made in instrumental reso-
lution and as alternative radiations become employed 
in data collection. Recent examples of cases where 
high instrumental resolution coupled with the intrinsic 
advantages of neutron diffraction have been used to 
resolve long-standing crystallographic ambiguities 
include the ambient-temperature crystal structure and 
the high-temperature phase transitions of the mixed-ion 
conductor, BaCexRE1–xO3–d (RE: rare earth, Y) (Knight 
1994, 2001), and the correct identification of the high-
temperature phases in SrZrO3 (Howard et al. 2000).

Once the correct space-group has been identified, 
and the crystal structure has been refined, it is necessary 
to interpret the physical properties or crystal-chemical 
parameters in terms of the observed structure. Despite 
the simplicity of the perovskite structure, the challenge 
of relating the structural distortions, manifested by 
changes in bond lengths and angles from the cations 
to the anions, to the physicochemical properties, is not 
always clearcut. In the work to be reported here, the 
crystal structures associated with the fourteen possible 
centrosymmetric space-groups consistent with tilting 
of the octahedra are parameterized in terms of a set 
of appropriate symmetry-adapted basis-vectors of the 
aristotype phase. To an excellent approximation, the 
displacements of the A-site cation and the anions can 
be written as linear combinations of the magnitudes 
(with sign) of an appropriate set of symmetry-adapted 
basis-vectors (sabvs) of the aristotype phase. In turn, 
the magnitudes of the sabvs, and estimates of their 
standard deviations, can be easily derived from the 
physical displacements and their estimated errors by 
the inverse process. Using results from powder neutron-
diffraction studies, the simplicity and advantage of this 
decomposition are illustrated for two particular cases; 
the precise refinement of the crystal structure of CaTiO3 
at room temperature, and a detailed parametric study of 
the temperature dependence of the crystal structure of 
KCaF3 in the Pbnm phase.

An identical analysis for elpasolite-structured phases 
has already been carried and is published in this issue 
(Knight 2009).



	  centrosymmetric zone-boundary-tilted perovskites	 383

Review of the Relevant Literature

In an investigation of the lattice dynamics of the 
cubic to tetragonal phase-transition in SrTiO3, Cowley 
(1964) showed that rigid unit rotation (tilting) of the 
TiO6 octahedron about <100> occurred for two zone-
boundary phonons; at the M point of the cubic Brillouin 
zone (½a* + ½b*) and symmetry-related points, with 
irreducible representation (irrep) M3, and at the R point 
(½a* + ½b* + ½c*), with irrep G25. In the Miller–Love 
notation (Bradley & Cracknell 1972), which has now 
become the standard used in all the recent group-theory 
studies of perovskites, these modes have the irreps M+

3 
and R+

4, respectively. By using projection operator tech-
niques, Cowley showed that the phonon with the irrep 
M+

3 requires successive layers of octahedra to rotate in 
the same sense, whereas the phonon with the irrep R+

4 
requires successive layers of octahedra to rotate in the 
opposite sense. If either, or both, modes are soft and 
condense on cooling from high temperature, then a 
superlattice reflection will be observed at these points 
in reciprocal space. The weakness of these superlat-
tice reflections when one uses X-ray-diffraction to 
characterize can hence be attributed to the fact that the 
displacements associated with these phonons only affect 
the anion and not the cation positions. In addition, for 
phases in which both the M point and the R point are 
reciprocal lattice vectors, then the vector between them 
is also a reciprocal lattice vector, this being the X point 
(½c*) of the pseudocubic Brillouin zone.

Systematic crystallographic classification of centro-
symmetric perovskite-structured phases exhibiting these 
zone-boundary tilting modes was first published in a 
seminal paper by Glazer (1972), in which twenty-three 
independent tilt systems were recognized and their 
corresponding space-groups identified. Glazer charac-
terized the two phonon-displacement patterns as either 
representing an in-phase tilt (M+

3), or an anti-phase 
tilt (R+

4), and described the possible patterns of tilting 
using a simple notation. The Glazer symbol (a#b#c#) for 
any space group summarizes the pattern of tilting in a 
particularly succinct manner; the literals represent the 
magnitudes of the tilts around the [100], [010] and [001] 
axes of the aristotype phase, whereas the superscripts 
(#), either +, – or 0, represent the nature of the tilt 
around that particular axis, + for an in-phase tilt, – for 
an anti-phase tilt, 0 for no tilt. Hence, a+a+a+ represents 
the phase with three equal in-phase tilts (space group 
Im3, whereas a–b–c+ represents the phase with two 
anti-phase tilts of different magnitude and an in-phase 
tilt of a third magnitude (space group P 1 1 21/m). In 
subsequent years, the original results determined by 
Glazer have undergone many reappraisals. In partic-
ular, tilt systems identified by Glazer in which both 
in-phase and anti-phase tilts have the same magnitude 
are inconsistent with Landau’s theory of second-order 
phase transitions (Landau & Lifshitz 1996), which only 
permits a single point in reciprocal space to become 

critical. Hence, the equality in magnitude of symmetry-
independent modes can only occur accidentally, and 
cannot be representative of a stable phase over a range 
of pressure–temperature space. As a result, the number 
of tilt systems is less than the twenty-three originally 
proposed by Glazer. Furthermore, experimental work 
on the compound CaFe2TiO6 showed the space group 
assigned to the tilt system a+a+c–, Pmmn, to be in error, 
and the correct space-group should in fact be P42/nmc 
(Leinenweber & Parise 1995).

In recent years, the problem of rigorously deter-
mining the correct space-groups and lattice metrics 
for the subgroups of the aristotype phase, subjected 
to a wide variety of structural distortions and schemes 
of chemical ordering, has been carried out using the 
group theory by Howard and co-workers (Howard & 
Stokes 1998, 2002, 2005, Howard et al. 2002, 2003, 
Howard & Zhang 2004a, 2004b, Stokes et al. 2002). 
Using the software Isotropy (www.physics.byu.
edu/~stokesh/isotropy.html), Howard & Stokes (1998, 
2002) determined the isotropy subgroups of the aris-
totype phase for the representation given by the direct 
sum M+

3  R+
4, i.e., those subgroups consistent with 

in-phase and anti-phase tilting of the BX6 octahedra. 
Of the twenty-five distinct isotropy subgroups found 
using Isotropy, only fourteen permit simple rotations 
of octahedra around <100>, and hence this set forms 
the allowed subgroups for the zone-boundary-tilted 
centrosymmetric perovskite hettotype phases. Howard 
& Stokes tabulated the fourteen space-groups and, using 
a tree diagram, showed how the tilt systems related to 
one another through hypothetical phase-transitions, in 
which the nature of the transition was identified as either 
discontinuous or potentially continuous. In finalizing 
this number of space groups, Howard & Stokes (1998) 
verified the experimental results of Leinenweber & 
Parise (1995), that is the space group associated with 
the tilt system a+a+c– is P42/nmc and not Pmmn.

Although group theory has permitted a rigorous clas-
sification of perovskite and elpasolite subgroups for the 
first time, the parameterization of the crystal structures 
of these phases, in contrast, has remained at best semi-
empirical; fairly recent examples of parameterization 
are provided in the work of Ranløv (1995) and Thomas 
(1998). Ranløv (1995) applied principal component 
analysis to the temperature dependence of the crystal 
structure of TbAl0.95Mg0.05O3–d, and found, probably 
unsurprisingly, that the TbO12 polyhedron becomes more 
regular with increasing temperature as the magnitude of 
the tilt angles of the octahedra lessens. Thomas (1998) 
has described a geometrically complex parameteriza-
tion for tetragonal, rhombohedral and orthorhombic 
perovskites using the ratio of the polyhedron volumes of 
the A and B sites and eight distances and angles defined 
in projection. However, this method relies totally on 
an empirical analysis of known crystal structures, and, 
as Mitchell (2002) has noted in his monograph, the 
method has not become widely used by workers in the 
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field. It is therefore somewhat surprising to note that the 
first precise parameterization of perovskite hettotypes 
in fact predates the work of Glazer (1972). In a paper 
essentially about the dynamics of zone-boundary phase 
transitions in perovskites, Cochran & Zia (1968) carried 
out a decomposition of the atomic displacements for 
two oxide perovskites (LaAlO3 and CaTiO3) in terms 
of the weights of frozen modes of a hypothetical aris-
totype phase. This methodology was not immediately 
followed up by the crystallographic community at the 
time, and over thirty years later, Darlington (2002a, 
2002b) carried out a similar detailed analysis for nine 
hettotype phases of perovskite and elpasolite. Knight 
et al. (2005a, 2005b) analyzed high-pressure results 
on SrCeO3 and low-temperature results on KCaF3 
using the lattice-dynamical analysis of Cochran & 
Zia (1968), but unfortunately they did not relate the 
changes in the mode magnitudes to the changes in the 
crystal structure. Mitchell et al. (2007) have presented 
mode-displacement amplitudes for NaMgF3 at 3.6 and 
300 K. An extremely detailed study of the octahedron 
tilt modes in the perovskite-related compounds ABX4 
and A2BX4 has been made by Swainson (2005); in that 
case, displacements have been analyzed in terms of 
the primitive tetragonal Brillouin zone. However, in 
a recent study of the thermoelastic properties of the 
protonic conducting perovskite SrCe0.95Yb0.05Oj (j � 3), 
Knight et al. (in prep.) have discussed the temperature 
dependence of the crystal structure purely in terms of 
the magnitudes of the condensed modes of a hypo-
thetical aristotype phase.

Methodology

Determination of the symmetry-adapted basis-vectors

The decomposition of the fractional coordinates of 
perovskite-structured materials in terms of the appro-
priate set of symmetry-adapted basis-vectors for each of 
the fourteen space-groups consistent with simple tilting 
of the octahedra has been determined by applying repre-
sentation analysis to the aristotype phase at key points 
in reciprocal space. The methodology for determining 
the symmetry of lattice vibrations in crystals has been 
described in detail by Montgomery (1969), but the 
method briefly described below is derived from the 
study of the structural and magnetic phase-transition in 
SrMnO3 by Daoud-Aladine et al. (2007).

The atomic positions in the lower-symmetry phase 
are written

r r uni i ni= +0

for atoms in the unit cell indexed by Rn that occupy 
position ri

0 in the aristotype phase, and which are now 
displaced by vectors uni. The displacement vectors are 
decomposed with the Fourier sum

u u uk
k R

k
k

k R
ni

i i i ie en n= +∑ −( ). * .2 2π π

where k is the wave-vector characterizing the way the 
translational symmetry is broken on entering the lower-
symmetry phase. In most simple perovskite hettotypes, 
the unit-cell dimensions double at most in the lower-
symmetry phases (bipartite hettotypes), and as a result, 
only the wave-vectors k = (0 0 ½), (½ ½ 0) and (½ ½ 
½) have to be considered in calculating the symmetry-
adapted basis-vectors. For each wave-vector in turn, the 
symmetry relationships between the vectors uni of the 
same crystallographic orbit are obtained for each irrep 
Gv using the projection operator

ˆ ( ) ˆ*P D g g
g Gk

ν
λµ

ν=










=
∑

where the sum is over the symmetry elements of the 
little group that transforms k into an equivalent wave-
vector and D gλµ

ν* ( )  are the elements of the matrix 
representation of g for the irrep v.

Cowley (1964) was the first to carry out this analysis 
for the aristotype phase of perovskite calculating the 
sabvs along the D (0 0 j), S (j j 0) and  (j j j) lines 
of the cubic Brillouin zone (Koster 1957), with the 
results being tabulated as an appendix to his paper. 
Table 1 shows the results of Cowley for the sabvs for 
the aristotype phase of perovskite calculated at the 
wave-vectors k = (0 0 ½), (½ ½ 0) and (½ ½ ½). In 
the Table, the irreps are labeled according to the nota-
tion of Miller and Love (Bradley & Cracknell 1972); 
for completeness, Cowley’s original notation for the 
irreps is given in parentheses. The fractional coordi-
nates of the three anions are differentiated following 
Cowley’s labeling; XI (0 0 ½), XII (0 ½ 0) and XIII (½ 
0 0). The sabvs reproduced in Table 1 have been inde-
pendently verified by using two computer programs, 
Isotropy and Basireps (http://www.ill.fr/dif/Soft/fp/
php/programsfa7c.html?pagina=GBasireps). Most of 
the tabulated basis-vectors shown in Table 1 are not 
found as frozen displacements within the perovskite 
hettotype phases, and to parameterize the crystal 
structure of any hettotype phase, all that is necessary 
is to identify the set that is potentially present for any 
particular space-group.

To decompose the fractional coordinates for each 
of the perovskite subgroups, the following assumptions 
are made:

1) The atomic displacements found in a centrosym-
metric, bipartite hettotype can be described in terms 
of the magnitudes of a set of orthogonal, symmetry-
adapted basis-vectors of the aristotype phase. The only 
basis-vectors that can condense out to produce the 
hettotype phase have wave-vectors at the R, M and X 
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points of the cubic Brillouin zone: these are ½ [a* + b* 
+ c*], ½ [a* + b*] (or symmetry-related points) and ½ 
[c*] (or symmetry-related points), respectively.

2) Each term in the Landau expansion of the excess 
free energy associated with a phase transition must 
be invariant with respect to all symmetry operations 
of the aristotype phase, i.e., the wave-vectors of the 

order parameters within that term must sum to zero 
or a reciprocal lattice vector. From assumption 1, it is 
clear that the sum of the three quoted wave-vectors is 
a reciprocal lattice vector of the aristotype, and hence 
displacements with wave-vector equal to ½ [c*] (or 
symmetry-related points) can only occur where both 
in-phase and anti-phase tilts of the octahedra are present 
in the structure.

3) The number of independent condensed basis-
vectors equals the number of degrees of freedom of the 
crystal structure in the particular space-group.

4) Where it is necessary for two basis-vectors 
to have equal magnitudes of displacement, they are 
required to have the same irreducible representation, 
but may have symmetry-related wave-vectors.

Hence, to determine the effect of any basis-vector 
displacement, a supercell of size 2 3 2 3 2 of the 
parent aristotype is required. Figure 1 illustrates eight 
such unit cells viewed down [001] with the B site placed 
at the origin of the unit cell. The anion XI at (0 0 ½) 
is cross-hatched, the anions XII at (0 ½ 0) and XIII at 
(½ 0 0) are both white, whereas the A site at (½ ½ ½) 
is black. The right-hand set of four unit cells sits on 
top of the left-hand set, giving rise to the complete 2 
3 2 3 2 supercell. For some space groups, the unit-
cell basis-vectors are related to the aristotype through 
the transformations 110/110/001 or 110/110/002, and 
the associated unit-cell is shown in the Figure with 
dashed lines. The wave-vector associated with the 
irrep indicates the direction(s) of unit-cell doubling, 
and a displacement vector is required to reverse in the 
neighboring unit-cell if the unit-cell doubles in that 
particular direction.

A-site displacements

The A-site displacements are only found in perovskite 
hettotypes that exhibit anti-phase tilting alone or those 
that permit both in-phase and anti-phase tilting; in either 
case the number of independent A sites is usually small. 
By contrast, hettotypes consistent with pure in-phase 
tilting show no atomic displacements but are gener-
ally characterized by the large number of symmetry-
independent A sites. 

Consider the A site in a hettotype with space group 
Pbnm, lattice basis-vectors 110/110/002 and Glazer 
symbol a–a–c+. For the four sites labeled 1, 2, 5, 6 in 
Figure 1, which are taken to be related by Pbnm space-
group symmetry, the fractional coordinates are given by: 
½ – u, v, ¼; u, ½ + v, ¼; ½ + u, –v, ¾, and –u, ½ – v, ¾, 
where u and v are generally small. If a component of a 
displacement vector Dr has R point character, then this 
component is identical in magnitude and direction for 
sites 1, 4, 6, 7, and in the opposite direction, but with 
equal magnitude, for sites 2, 3, 5, 8. For a component 
with M point character and wave-vector ½ [a* + b*], the 
magnitude of the displacement at sites 1, 4, 5, 8, is equal 
and opposite to that for the sites 2, 3, 6, 7, whereas for 
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the X point with wave-vector ½ [c*], the magnitude of 
the displacement at sites 1, 2, 3, 4 is equal and opposite 
to that for the sites 5, 6, 7, 8. The displacement pattern 
for the fractional coordinate displacement u can clearly 
be seen to be consistent with the R point, whereas that 
for v is consistent with the X point. From the data shown 
in Table 1, only one irrep is associated with the A site 
at the R point, namely R+

5 with sabvs A(x) and A(y), 
but these displacements are associated with the x and y 
directions of a cubic cell and not the x direction of an 
orthorhombic cell. Allowing these two displacements to 
have equal magnitude, with the correct relative phase, 
the vector sum will be in the x direction of an ortho
rhombic cell, and with the required R point character. 
Note that this result clearly ignores the second-order 
effect of the non-orthogonality of pseudocubic subcell 
associated with the orthorhombic unit-cell; taking the 
unit cell of CaTiO3 at room temperature as a typical 
example, the deviation of the shear angle from 90° is 
only of the order of 0.6°. Using a similar argument, the 
displacements in the y direction of an orthorhombic 
cell can be shown to arise from two equal-magnitude 
sabvs A(x) and A(y) with irrep X5

+. The displacement 
patterns associated with these two pairs of irreps are 
illustrated in Figure 2.

Writing the magnitude of the sabv A(x) with irrep 
R+

5 as d1, and that with sabv A(x) with irrep X+
5 as d2, 

the fractional coordinates of the A site in terms of the 

sabvs and the orthorhombic lattice constants a, b, c 
are therefore

2d

a
,

1

2
+

2d

b
,

1

4
1 2 .

The same methodology can be applied to all the 
space groups determined by Howard & Stokes (1998, 
2002) that exhibit A-site displacements, with only one 
particular space-group requiring additional detailed 
comments (Darlington 2002a, supplementary material). 
In space group P42/nmc, the A site splits into three orbits 
with Wyckoff positions 2a, 2b and 4d, which correspond 
to the labeled sites in Figure 1, (2, 7), (3, 6) and (1, 4, 
5, 8), respectively. Wyckoff positions 2a and 2b have 
fixed coordinates, whereas 4d (¼ ¼ ¼ + w) allows for 
displacements along [0 0 1]. To produce this pattern of 
displacements, it is necessary to have sabvs that cancel 
on the first two Wyckoff sites (2a, 2b) and reinforce on 
the third site (4d). As the space group allows for both 
in-phase and anti-phase tilting, displacements with X 
point character are therefore permitted. Following on 
from assumption 4, and transforming the results given 
in Table 1, it can be seen that this complex pattern of 
displacement can be replicated by two sabvs A(z) with 
equal magnitude but opposite directions of displace-
ment and symmetry-related irreps [½ 0 0] X+

5 and [0 
½ 0] X+

5.

Fig. 1.  A 2 3 2 3 2 supercell of perovskite, with the right-hand set of four subcells sitting on top of the left-hand set of four 
subcells. The conventional unit-cell of perovskite is designated by vectors subscripted c, the rotated unit-cell of perovskite is 
shown by dotted lines and vectors superscripted by primes. The three anions are differentiated using the labeling of Cowley 
(1964), whereas the A-site cations are numbered one to eight to aid discussion of the displacement patterns for three symme-
try-adapted basis-vectors with irreducible representations at the R point, M point and X point of the cubic Brillouin zone.
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Anion displacements

For all the centrosymmetric space-groups of 
perovskite consistent with simple tilting of octahedra, 
the number of independent anion positions either leaves 
the Cowley anion classes undifferentiated (e.g., in space 
group Im3, there is a unique anion position), partially 
differentiated (e.g., in space group I21/b 1 1, one anion 
site is associated with XI, whereas the second is asso-

ciated with XII and XIII) or unmixed (e.g., each of the 
three independent anion positions in space group F1 is 
uniquely associated with either XI, XII, or XIII).

If the anion displacements in the space group Pbnm 
are taken as an example, the fractional coordinates for 
the two anion sites O1 and O2 are u1, v1, ¼ and ¼ + 
u2, ¼ + v2, w2, respectively, where O1 is associated 
with XI, O2 is associated with both XII and XIII, and 
the displacement magnitudes u1, v1, u2, v2 and w2 are 

Fig. 2.  a) Displacement patterns of the A site associated with the symmetry-adapted basis-vectors at the R point. Black dot-
ted arrow: irreducible representation R+

5 with symmetry-adapted basis-vector A(x), grey dotted arrow: the same irreducible 
representation with symmetry-adapted basis-vector A(y). The resultant vector in the orthorhombic x direction is shown as the 
full black arrow. b) Displacement patterns of the A site associated with the symmetry-adapted basis-vectors at the X point. 
Black dotted arrow: irreducible representation X5

+ with symmetry-adapted basis-vector A(x), grey dotted arrow: irreducible 
representation X5

+ with symmetry-adapted basis-vector A(y). The resultant vector in the orthorhombic y direction is shown 
as the full black arrow.

b

a
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generally small. The Glazer symbol for this space group 
is a–a–c+, and writing d3 for the magnitude of the sabv 
associated with the anti-phase tilt [irrep R+

4, either sabv 
XI(x) = –XIII(z), or sabv XI(y) = –XII(z)], and d4 for the 
corresponding magnitude of the sabv for the in-phase 
tilt [(irrep M+

3, sabv XII(x) = –XIII(y)], the fractional 
coordinates become:
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For regular tilted octahedra, the following ratios there-
fore apply:
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i.e., the individual atomic displacements are not linearly 
independent in this simple model case. For CaTiO3 at 
ambient temperature (see the Results section for more 
details), u1/w2 is equal to –1.933 and u2/v2 is equal to 
–1.013, indicating that there is only a modest distortion 
of the TiO6 octahedron from ideality. This is in contrast 
to the crystal structure of KCaF3 at 4.2 K, where u1/w2 
is equal to –1.874 and u2/v2 is equal to –1.033, both 
values indicating a more significant deformation of the 
CaF6 octahedron in this case (Knight et al. 2005b).

To break the linear dependence of u1 with w2, it is 
necessary to find a sabv that permits displacements in 
the orthorhombic x direction for O1 and the z direction 
for O2. Noting that O1, like the A site, sits on a mirror 
plane, the same symmetry arguments that applied for 
the A site will apply yet again. Therefore, the required 
sabv has to have R point character. Examination of 
Table 1 shows that this can be satisfied by two equal 
magnitude sabvs, XI(x) = XIII(z) and XI(y) = XII(z) with 
irrep R+

5. Further consideration of the symmetry of the 
O1 site and Table 1 shows that v1 is associated with two 
equal-magnitude sabvs, XI(x) and XI(y), with irrep X+

5. 
Finally, to break the linear dependence of u2 with v2, a 
sabv is required that differentiates XIII(x) from XII(y). 
To be consistent with the in-phase tilt displacement, 
this sabv has to have M point character. Inspection of 
Table 1 shows this mode to have irrep M+

2 with sabv 
XIII(x) = –XII(y).

Gathering these results together, the fractional coor-
dinates for a perovskite in space group Pbnm written in 
terms of symmetry-adapted basis-vectors is therefore
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where d5 is the magnitude of the sabv XI(x) with irrep 
X+

5, d6 is the magnitude of the sabv XIII(x) = –XII(y) 
with irrep M+

2, and d7 is the magnitude of the sabv 
XI(x) with irrep R+

5.

Results

An identical analysis to that outlined above for space 
group Pbnm can be carried out for all of the thirteen 
remaining space-groups. The analysis presented in the 
previous section shows that the displacements of the 
fractional coordinates from the ideal positions that they 
would occupy in the aristotype phase can be written 
as a linear combination of the magnitudes of a set of 
symmetry-adapted basis-vectors of the aristotype phase. 
Writing d as the column vector of the sabv magnitudes 
and r as the column vector related to the physical 
displacements for specific atoms, then r = Md, and 
hence d = M–1r. Any centrosymmetric, tilted perovskite 
structure can therefore be simply decomposed (param-
eterized) in terms of the magnitudes of the appropriate 
symmetry-adapted basis-vectors, the orthogonality of 
the basis-vectors ensuring that the solution is unique.

The fractional coordinates, lattice basis, symmetry-
adapted basis-vectors, displacement vectors, the non-
zero elements of matrix M, and its inverse, are listed 
in Tables 2a–e, 3a–f and 4a–d for the fourteen centro-
symmetric perovskite hettotype space-groups consistent 
with zone-boundary tilting. Tables 2a–e relate to the 
pure in-phase tilted hettotypes, and includes the aristo-
type for completeness, Tables 3a–f pertain to the pure 
anti-phase tilted hettotypes, whereas the space groups 
consistent with both in- and anti-phase tilting are dealt 
with in Tables 4a–d. To avoid potential confusion with 
the matrix elements Mjk of M, in the Tables, the non-
zero elements of M–1 are labeled Milm.

The space-group settings have been chosen such 
that the interaxial angles are as close to 90° as possible; 
hence for the tilt system a–a–a–, F32/n is used in pref-
erence to R3c in either the primitive rhombohedral or 
hexagonal settings; for a–b–c–, F1 is used over P1 or I1 
for the same reason. Where at all possible, the B site has 
been placed at the origin of the unit cell. Statistical anal-
ysis of the frequency of occurrence of the tilt systems 
of octahedra in perovskites (Lufaso & Woodward 2001) 
has shown that ~50% exhibit the tilt system a–a–c+ in 
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space group Pbnm or some alternative setting of space 
group No. 62. Numerous structural phase-transition 
sequences starting from this tilt system have been char-
acterized, and to enable ease of comparison of sabvs 
from lower- or higher-symmetry space-groups that 
could be related by a continuous phase-transition from 
Pbnm, the lattice basis 110/110/002 for these subgroups 
and supergroups has been chosen. This inevitably leads 
to non-standard space-group settings, and where these 
are particularly unusual, the group generators are also 
included in Table 3.

Discussion and Examples of Application

Taking the room-temperature crystal structure of 
CaTiO3 in space group Pbnm as an illustrative example, 
and using the results from Table 4b, the relationship 

between the magnitudes of the sabvs and the atomic 
displacements is given by:
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Ambient-temperature structural parameters for CaTiO3, derived from a two-bank Rietveld fit to neutron time-of-
flight data collected using HRPD at ISIS, are listed in the non-italicized text in Table 5, with Figure 3 showing the 
quality of the fit to these data. Using these results and those in Table 4b for the elements of M–1, the magnitudes 
of the sabv in Å are therefore
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(Tamazyan & van Smaalen 2007). The major advantage 
of decomposing the perovskite structure in terms of 
sabvs is that it uniquely allows the precise determination 
of the tilt angles of the octahedron free from the effects 
of octahedron distortion. The individual tilt-angle 
component can be calculated as the arc tangent of the 
octahedral displacement to half the magnitude of either 
of the pseudocubic lattice constants normal to the tilt 
axis. Alternatively, and to an excellent approximation 
by averaging over all pseudocubic lattice constants, this 
angle can be calculated by

Fig. 3.  Two-bank Rietveld refinement of CaTiO3 perovskite 
at room temperature. The upper difference plot in both 
figures is derived from a refinement based on the full 
structural degrees of freedom permitted for such a struc-
ture in space group Pbnm, whereas the lower difference 
curve is derived from a refinement with the contribution 
of the symmetry-adapted basis-vector with irreducible 
representation M+

2 set to zero, i.e., with one less structural 
degree of freedom.

where it can be seen that the A-site displacement (d1, 
d2) is dominated by the sabv with irrep [0 0 ½] X+

5 (d2), 
whereas the anion displacements (d3 – d7) are dominated 
by the two tilt modes with irreps [½ ½ ½] R+

4 (d3) and 
[½ ½ 0] M+

3 (d4) and, to a lesser extent, the octahedral 
deformation mode with irrep [0 0 ½] X+

5 (d5). The sabv 
XIII(x)= –XII(y) with irrep M+

2 (d6) is zero within the 
estimated standard deviation.

With the exceptions of the tilt systems a0a0c+ (P4/
mbm), a0a0c– (I4/mcm) and a–a–a– (F32/n), in which 
the octahedra may be deformed but not distorted [see 
Megaw & Darlington (1975) for an explanation of the 
differences between these two terms] and from which 
the tilt angles can be calculated through simple trigo-
nometry, all other tilt systems permit the complication 
of both deformation and distortion of the BX6 octahe-
dron. The usual methods for the determinations of the 
tilt angles within these more complex tilt systems, often 
calculated using B – X – B bond angles, are generally 
approximations, and their evaluation can become a 
significant problem in low-symmetry space-groups 
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where fR and fM are the magnitudes of the anti- and 
in-phase tilt angles respectively, R+

4/M
+
3 is the magni-

tude of the corresponding displacement, V is the unit-
cell volume, and N is the number of primitive aristotype 
unit cells in volume V. The total angle of tilt of either 
type is given by the square root of the sum of the squares 
of the individual tilts of that particular type.

For crystallographic studies of perovskites as a 
function of temperature, pressure or applied electric or 
magnetic fields, the decomposition of the crystal struc-
tures in terms of the magnitudes of orthogonal basis-
vectors presents an alternative crystal-chemical analysis 
strategy to the conventional techniques of studying 
variations in bond lengths and angles. Note that as the 
deviation of the fractional coordinates from ideality are 
simply linear combinations of sabvs, the magnitude of 
bond lengths, bond angles and polyhedron volumes can 
be written as a function of the lattice parameters and 
the sabvs amplitudes, taking into account the associ-
ated sign.

The rapid data-collection protocols used in para-
metric studies where a great many data-points are 
collected as a function of one or more thermodynamic 
variables are particularly suited to this kind of analysis. 
In parametric studies, high structural precision at a 
limited number of points in thermodynamic space 
is sacrificed for more detailed trends at significantly 
lower precision. Variables that can be physically 
parameterized, e.g., the temperature dependence of the 
atomic displacement parameters in KMgF3 perovskite 
according to a Debye model (Wood et al. 2002) can be 
replaced by their fitted values, and the structure refine-
ment re-iterated. In general, the estimated standard 
deviations of the non-parametrizable variables are 
improved using this method (Sivia 1996), thus leading 
to improvements in the precision of the structural 
trends. A great many rapid collections of data at high 
resolution have been made by Darlington, Howard and 
Kennedy and their coworkers (Darlington et al. 1994, 
2003, 2005, Darlington & Knight 1994, 1999a, 1999b, 
Howard et al. 2000, 2002, 2007, Forrester et al. 2006, 
Kennedy et al. 2006, Carpenter et al. 2005, 2006, Zhang 
et al. 2006, 2007a, 2007b) to investigate the tempera-
ture dependence of the spontaneous strain, angles of 
octahedron tilt and ferroelectric displacements. One 
significant advantage of the sabv decomposition in para-
metric Rietveld studies is that it allows Occam’s razor 
to be applied in a statistically justifiable manner. If it is 
assumed that covariance terms are smaller than variance 

terms, then it is possible to estimate errors in the sabvs 
magnitudes using standard statistical methods (Sivia 
1996) simply by using derived, or published, estimated 
standard deviations of the structural parameters:
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If a data-collection protocol is followed where at least 
some of the data are collected long enough to allow 
precise structural parameters to be determined at a few 
points, these results can be decomposed into sabvs, and 
estimated errors can be assigned to each. If a sabv is 
found to be zero within esd, it can be set to zero and 
the coordinates can be recast taking the absence of this 
mode into account, thereby reducing the number of 
degrees of freedom in the crystal-structure refinement. 
If the space group Pbnm is taken as an example, should 
the sabv with irrep [0 0 ½] X+

5 (d5) have zero magnitude, 
then the y coordinate of O1 would be fixed at zero in 
the subsequent re-refinement of the crystal structure. 
In the particular case of CaTiO3 at room temperature, 
decomposition found that the sabv XIII(x)= –XII(y) with 
irrep M+

2 (d6) is zero within estimated standard devia-
tion. Setting the contribution of this mode to zero by 
the application of linear constraints, i.e., reducing the 
effective number of variables in the least-squares refine-
ment by one, the model was re-refined, giving rise to 
the results shown in italics in Table 5. At the statistical 
quality of the data recorded, the crystallographic results 
and agreement factors listed in Table 5 show that the 
anion-displacement pattern from this mode is not present 
in the crystal structure at room temperature. This result 
is in accordance with the conclusions drawn by Cochran 
& Zia (1968) based on their analysis of unpublished 
single-crystal X-ray-diffraction results for CaTiO3.
Hence, as this mode corresponds to a secondary-order 
parameter, and will reduce in magnitude with increasing 
temperature, it would be safe to set its contribution to 
zero in any future high-temperature parametric study of 
CaTiO3 in the phase with space group Pbnm.

Using the commonly available Rietveld software, it 
might not be possible to derive the correct set of linear 
constraints in significantly more complex cases than 
these; it should be possible, however, to program the 
crystal-structure refinement in terms of sabvs using the 
sophisticated algorithms employed in the new genera-
tion of Rietveld refinement software such as Topas 
(Kern & Coelho 1998).

As a final demonstration of the method, the decom-
position of the crystal structure of KCaF3 as a function 
of temperature between 4.2 and 542 K in the ortho
rhombic Pbnm phase is briefly described, as a more 
detailed analysis will be published elsewhere. The 
phase KCaF3 undergoes two first-order structural phase-
transitions, at 560 K from the aristotype to an ortho
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rhombic structure with space group Cmcm (a0b–c+), and 
at 551 K to an orthorhombic structure with space group 
Pbnm (a–a–c+) (Bulou et al. 1980, Knight et al. 2005b). 
High-resolution powder neutron-diffraction data were 
collected using HRPD at ISIS at 4.2 K, then at 10 K to 
50 K in 5 K steps, from 60 K to 500 K in 10 K steps, 
from 505 K to 535 K in 5 K steps, and finally from 538 
K to 574 K in 2 K steps. Long periods of data collection, 
approximately two hours in duration, were made at 4.2 
K, 25 K, 50 K and 50 K intervals to 500 K, then at 525 
K, 542 K, 566 K and 568 K. All other data collections 
were approximately fifteen minutes in duration.

Figure 4 shows the lattice-parameter variations 
with temperature, normalized to their values at 4.2 K 
(estimated standard deviations for each crystallographic 
axis are smaller than the plotting symbols used). Using 
expressions derived by O’Keefe & Hyde (1977) for 
the lattice constants of perovskites as a function of tilt 
angle, it can easily be shown for regular tilted octahedra 
in space group Pbnm that 
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applies. Knight et al. (2005b) have pointed out that the 
CaF6 octahedron in KCaF3 has a significant tempera-
ture-dependent distortion between 4.2 K and 300 K, 
and hence this expression is not even approximately 

obeyed over the temperature interval measured; this is 
in contrast to the almost ideal behavior of the protonic 
conductor SrCe0.95Yb0.05Oj (j � 3) between 373 and 
1273 K (Knight et al., in prep.). Consideration of 
Figure 4 shows that the b axis exhibits negative thermal 
expansion from 15 K to ~300 K, and only recovers 
the value it had at 4.2 K by about 500 K. The a and 
c axes, in contrast, exhibit the expected Grüneisen 
behavior of saturation at low temperature, an increase 
with increasing temperature and a constant coefficient 
of thermal expansion at higher temperatures.

Figures 5a–g shows the magnitudes of the seven 
symmetry-adapted basis-vectors within the ortho
rhombic Pbnm phase. The behavior of the K cation, 
shown in Figures 5a and 5b, is dominated by the 
displacement associated with the sabv A(x) with irrep 
X+

5 (d2), for which the reduction with temperature is 
approximately 4.5 times larger than that for the sabv 
A(x) with irrep R+

5 (d1). The magnitudes of the sabvs 
extrapolate to zero at ~790 K for d1 and ~700 K for 
d2, both significantly higher than the phase-transition 
temperature to the cubic phase.

The magnitudes of the two displacements associated 
with the tilting of the octahedra are shown in Figures 5c 
and 5d. At 4.2 K, the two tilt components have similar 
magnitudes, but with increasing temperature, the anti-
phase tilt shows only a limited saturation region, of the 
order of 50 K, before reducing rapidly. The in-phase tilt 
by comparison has a much larger region of saturation, of 

Fig. 4.  The temperature dependence of the normalized lattice-parameters of KCaF3 
between 4.2 and 542 K in the orthorhombic phase with space group Pbnm. The lattice 
parameters a and c show the typical expected Grüneisen behavior, whereas the b axis 
shows an unusual region of negative thermal expansion between 15 and 300 K.
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Fig. 5.  a) and b) The temperature dependences of the 
symmetry-adapted basis-vectors A(x) with irreducible 
representations R+

5 and X+
5. The displacement of the K 

cation from ideality is dominated by the changes in the 
mode magnitude for the basis-vector at the X point. The 
magnitudes of both modes extrapolate to zero significantly 
above the phase-transition temperature to the cubic phase. 
c) and d) The temperature variations of the octahedron tilt 
modes with irreducible representations R+

4 for the anti-
phase tilt and M+

3 for the in-phase tilt. The full line shown 
in c), based on fitting the data to a tricritical model with 
low-temperature saturation for the anti-phase tilt, shows 
that coupling between the two symmetry-independent 

a b

c d

e f

g
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the order of ~200 K, and exhibits a slower decrease with 
temperature. Using Landau theory, taking into account 
the theoretical coupling that could exist between the two 
modes, Carpenter (2007) has shown that the magnitudes 
of these displacements are related via a pair of non-
linear simultaneous equations.
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where q2 is the order parameter associated with the irrep 
M+

3, q4 is the order parameter associated with the irrep 
R+

4, Tc1, Tc2 are critical temperatures, Qs1, Qs2 are satura-
tion temperatures, a1, a2 are normal Landau coefficients, 
b1, b2, c1, c2 are renormalized Landau coefficients; l*, 
l5, l6, l7 are coupling coefficients and C44

0  is the bare 
elastic constant of the cubic phase. Despite evidence 
from inelastic neutron scattering, which finds the whole  
 
of the line 

1

2

1

2
ξ









  in reciprocal space to be soft (Rous 

 
seau et al. 1997), the fit to the data shown as the full 
line in Figure 5c is derived from the simplest possible 
assumptions, namely that the coupling between the two 
modes is negligible, and that the term b2 is zero. 

The behavior of the anti-phase tilt is therefore close 
to tricritical in behavior, with a saturation temperature 
Qs2 of 58(2) K and a critical temperature Tc2 of 580(1) 
K. The low-temperature region for the in-phase tilt 
appears to show a counterintuitive reduction in magni-
tude with decreasing temperature and is the subject of 
continuing work.

The distortion of the CaF6 octahedron mediated by 
sabvs with irreps X+

5, M
+
2 and R+

5 is shown in Figures 
5e–g. The dominant distortion arises from sabv with 
irrep X+

5, which is a factor of nearly nine times larger 
than the magnitude of the sabv with irrep R+

5. By 500 
K, the sabv with irrep R+

5 has negligible magnitude. 
For temperatures below ~400 K, the sabv with irrep 
M+

2 differs from zero by about two estimated standard 
deviations, unlike the case of CaTiO3, where it was 
found to be zero at room temperature. At temperatures 
greater than 400 K, it could be argued that this sabv has 
zero magnitude and that the structural model could be 
re-refined testing this hypothesis. Taking into account 
the strong temperature-dependence of the sabv with 
irrep X+

5 and, to a lesser extent, the weaker temperature-
dependence of the sabv with irrep R+

5, it is hardly 
surprising to find that the axial thermal expansion coef-
ficients do not obey the simple relationship expected of 
ideal, regular octahedra.

Conclusions

Centrosymmetric perovskite (ABX3) hettotypes, 
derived from the tilting of the constituent BX6 octahedra 
from the cubic aristotype phase, show two major struc-
tural characteristics. The first is the facile observation 
that the coordination at the B site remains octahedral in 
all hettotype phases, although the observed symmetry 
is frequently far from the ideal point-symmetry, m3m, 
of the aristotype phase. The second is that the A site 
shows a lower coordination-number than the twelve it 
exhibits in the aristotype phase; furthermore, the coor-
dination polyhedron is generally of a complex shape. 
Tilting of the octahedra occurs because the ionic radius 
of the A-site cation is too small with respect to that of 
the B-site cation to stabilize the aristotype structure. 
Rotation(s) of the octahedra permits the B-site cation 
to remain sixfold-coordinated while reducing the bond 
lengths to the A-site cation to acceptable lengths. Crys-
tallographic data for perovskite-structured phases as a 
function of a thermodynamic variable are generally 
interpreted in terms of the bond lengths and angles of 
the two constituent coordination-polyhedra. Whereas 
this analysis is generally simple to carry out for the B 
site, the interpretation of the A-site geometry is gener-
ally far from clearcut. An alternative methodology for 
crystallographic interpretation is to decompose the 
crystal structure of the perovskite hettotype into a set of 
frozen normal-mode amplitudes, the magnitudes of the 
symmetry-adapted basis-vectors. From these, the details 
of the structural distortions at both sites can readily be 
interpreted. These ideas are far from new, however; 
they were originally developed in the late 1960s by 
Cochran & Zia (1968) in a lattice dynamics, rather 
than crystallographic, context. The bridge between 
the lattice dynamics interpretation of Cochran & Zia 
(1968) and its real potential for use in a crystallographic 
interpretation was first made by Darlington (2002a, 

modes is small. e)–g) The temperature dependencies of 
the octahedron-distortion modes in KCaF3. The distortion 
is dominated principally by the symmetry-adapted basis-
vector with irreducible representation X+

5, with a minor 
role being played by the basis-vector with irreducible 
representation R+

5. The octahedron distortion mode with 
irreducible representation M+

2 is finite but very small at low 
temperatures in KCaF3, in contrast to CaTiO3, where it is 
found to be zero within the estimated standard deviation 
at room temperature.
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2002b). In the work reported in this paper, the method 
for parameterizing all fourteen space-groups consistent 
with zone-boundary tilting of the BX6 octahedra has 
been reported. The potential of the method for either the 
precise characterization of structure from high-quality 
crystallographic data, or as an aid in the study of struc-
tural trends from rapidly collected parametric data, has 
been outlined and illustrated by examples.

Using the large number of well-characterized 
perovskite crystal structures, it would be interesting to 
test whether the magnitudes of the associated symmetry-
adapted basis-vectors show particularly simple relation-
ships to the basic crystal-chemical variables, such as 
ionic radii, tolerance factors or electronegativities. 
Should this be so, provided the unit-cell metric and 
space group are known, one may also have the ability to 
predict the crystal structure of perovskite phases using 
this form of structural parameterization.
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