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"signif,cant numbers are far from id'eal, as a lneatus of expressing the
resul'ts oJ funil'amental' operations." (Dwyer, Lgil, p. L4')

AssrRAcr

The rounding rule in computation is based on the principle that no result of computa-
tion can have hore significant figures than the original data. Use of this principle in
statistics is ill-advised and leads to loss of information by rounding.

Rules for determining the maximum number of figures to be retained in simple
statistical calculations are developed.Letrn be the number of figures in the maximum
plus tJre minimum values of the sample of a observations, where n : f X 1S (/ is a
fractional number between 1 and 10 and & is an integer). Then:

(.4) for samples of at least 100 the maximum number of figures will be'
(a) m * h or m+e + 1 for the sum and the mean,
(b) 2m * h, 2m + k + I or 2m * h * 2 f.or the variance,
(c) one less than the variance for the standard deviation;

(.B) for smaller samples the maximum number of Ggures will be'
(a) m or m * | f.or the sum and the mean,
(b) 2rn, 2m * | or 2m * 2 for the variance,
(c) one less than the variance for the standard deviation;

(C) the first figures in the variance and standard deviation may be zeros;
i.p) *h"o a calculated statistic is to be used in further calculations it is preferable

not to round it first;
(E) the sum and sum of squares should be always included with summary statistics,

to prevent ambiguity.
Analogous meihod" can be readily applied to calculations of other statistics'

INrnoouctrox

Any scientist who has to submit data to statistical procedures has to

make decisions about significant figures and rounding errors. As far as can

be ascertained from a rather cursory survey of recent literature, there are

few guiding rules and those are mostly relevant to general computation

problems. The situation in statistical work is not necessarily the same.

It may be that rounding has received little attention because most

workers find it too rudimentary, although Eisenhart (19+7) has made a

penetrating study.* However, it is likely that the geochemical journals

will be inundated with ever-increasing numbers of analytical data in the

*Eisenhart's paper is concerned chiefly with the effects of rounding the original data'
and, although-fundamental to the topics here discussed, deals with them only
implicitly.
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years to come, and as Chayes (1953) has advisedly pointed out, the
presentation of summary statistics such as the sum or the sum of squares
should neither discard information contained in the original data, nor
attempt to add to it.

With Chayes, I believe that information is often discarded by over-
zealous rounding, but would go further than Chayes in retaining figures.

StaNneno PnacrrcB

Two texts on numerical analysis (Dwyer, 1951 ; Nielsen, 1956) give
some error theory and standard practice for approximate numbers.

Nielsen discusses briefly the manner in which rounding errors may
affect the results of computations. He gives the following (familiar) rule
(p. 3). "During the computation retain one more figure than that given
in the data and round off after the last operation has been peiformed."
He subsequently (p. 4) notes that no rule is infallible and that the pro-
cedure adopted should be dictated by the type of problem in hand.

Dwyer devotes a chapter of his book to a useful discussion of significant
numbers and to the consequence in computation of various types of error
symbolism and rounding. Two rules are proved:
(i) The product or quotient of two numbers, each containing zz signifi-

cant figures (at least two of which are not zero), is a significant
number of at least (m - 2) figures. If the leading digits of these
numbers are both equal to or greater than 2, then the product (or
quotient) has at least (m - 1) significant figures.

(ii) The square root of an m-place number is significant to (rn - l)
places if the first digit is (5 and to rn places if >5.

The first rule, giving the minimum number of significant figures, is not
much help. Thus, if we evaluate 1.112, where rn : 3, then the rule
merely tells us that in the product, 1.232t, at least the integer is
significant.

Another general rule which is commonly upheld states that no result of
computat'ion can have more s,ignif,cant fi,gures than the ori,ginal data. This
is equivalent to the first rule cited from Nielsen (1956). I do not believe
this to be valid in statistical operations, and will attempt to prove so. It
will be referred to as the rownd,,ing rule in the discussion which follows.

GBNBn-q:. CousroBnAttoNs

Let us first note that rounding in computation can be made at four
main levels: (a) on the raw data; (b) at one or more intermediate steps
in the computation; (c) on the result; (d) in the tabulation and publication
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of any of the preceding three. Item (d) is not of course part of the compu-
tation, but Chayes (1953) rightly stressed the obligation of authors to
publish data in a form such that the reader can verify the computations,
even if this means supplying more figures than would customarily be
regarded as significant.

The last sentence illustrates the paradox we are faced with: i,e., the
figures are necessary but not significant. This paradox results from
application of the rounding rule.

Numerical data fall in the categories of exact or approximate. If there
are233 zircons in a sample of 100,000 sand grains then the percentage of
zircon is 0.233 exactly. On the other hand, if a chemist finds 0.6899 gm.

SiOz in a sample of rock weighing 1.0035 gm., the content of 68.74937
etc. per cent is rounded off to the same number of significant figures as
the weighed SiO2,'i.e., to give 68.75. The weight of SiOz was not of course
exactly 0.6899 gm., but might have been anywhere between 0.68985
and 0.68995. The maximum error attached to the weighing thus is 5 in
the fifth place: similarly, the maximum error in the percentage 68.75
is *0.005. This last term is the round.'ing error.

In the following discussion we will first consider data which all possess

the maximum possible rounding error, then exact-number data. The usual
situation will be somewhere in between and will be treated last. Mean and
standard deviation calculations will be used as examples.

It will be convenient to refer to the total number of figures rather than
significant figures. The only difference will be that zeros at the beginning
will be included. Thus the difference between two 8 total figure numbers
with the same number of decimals will always be another 8-figure number:

e.g. 7 6L9.3425 - 7 613.2122 : 0006.1303

Customary usage would describe the difference as a five-figure signifi.cant
number, ignoring the first three zeros.

Also the number of figures rn in a set of data will include all the figures
in the largest plus the smallest observation. Thus if these are 12.11 and

0.002 respectively then nc is equal to 5.
These two conventions will facilitate subsequent discussion.

Mexruuu Rour.lornc Ennon Dera

Consider a set of a analyses for silica, each to 4 significant figures
(e.g. 68,75 wt. per cent): the maximum error is =t0.005. Let any actual

silica content xxbe measured as Xx with the maximum positive error

*e. Then
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X t : x t * e

239

E xo- -4 rl, I ne

X : i * e

This implies that the sum and the mean will each have the same number
of significant figures as an original observation. This is the rounding
rule. A similar conclusion arises of course if we take the maximum
negative error. For example, 110 chemical analyses of SiOz in the Mor-
tagne granite (Shaw, in press) give the following statistics:

E xo:7884.95, X : 71.681364 etc.

Assuming that every individual analysis (e.g.75.12) is in error by *0.005
then,

Exu:7884.95 - 0.55,

and
r : 7 1 . 6 8 1 3 6 4 - 0 . 0 0 5 .

We have therefore to round these numbers to

E  * u : 7 8 8 5 ,
and

i :  7I .68

Next consider the variance*:

( n - L ) a a r X 1 :

' l -  .  l ': ; "? -;L+ ",)
That is, the error term has dropped out and this implies that we can treat
X x as if it were )c 1 arrd the right-hand side of the equation will be evaulated
to the last place in the square of any of the terms:

e.g. square of 76.18 is 5803.3924, and LX*:565491.8801, so the
right-hand side of the equation above, which for the same example
works out to 287.9LI895455, is rounded off to 287.91L9: the variance
is obtained by dividing by 109 to obtain 2.6414 after rounding.

It should be noticed that figures have been lost as a result of the subtrac-
tion of two similar numbers. The variance is more correctly written as

*The usual computing form f.or (n - l) var x, as used here, is to be preferred over the
sum of the squares of the deviations from the mean, unless calculations are to be evaluated
to many decimal places.

E @,*.)'- *l+ t", +.)]'
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0002.6414, conforming to the 8 figures of the square of an analysis, but

customary usage forbids calling the zeros significant figures.
The standard deviation was computed as 01.62523645550 but should

presumably be rounded to 01.63, to have the same number of figures as

the data. Note however, that the square of 1.63 is 2.6569, so the rounded

standard deviation is of less value than the rounded variance.
It is clear that the foregoing treatment amounts to analysing the

situation where every reading is biassed by the constant amount e' The

results could have been obtained more simply if we assume that r is

N(p, o'), from the relationship that X must be N(p. ! e, o2).

This relationship is not likely to conform to most runs of experimental

values, where e will vary in magnitude and sign.

Exacr NuMssn Dera

An observation has m figures with no error. This situation could arise

in enumeration statistics, or alternatively with a continuous data-variable

in the case where the rounding error e is always zero: e.g.68,75: Xt
: x i l

If we have n values then write

n : fX t f f

where/ is a fractional number between 1 and 10 and fr is an integer. The

sum !, *e will have a maximum ol (m * k) or (rn + k + 1) figures,

all significant: the mean value f will have the same number.

e.g. in the previous example rn : 4; n : LLO : 1.10 X 10'
then I xr : 7884.95 and has 4 * 2 : 6 significant figures.

Moreover E : 7L.6814 and also has 6 significant figures.
This should be clear from the principle that the sum has no rounding

errors and the mean must permit the recalculation of all the figures in

the sum (110 X 71.68t4 equals 7884.95+).
Consider now the variance. The square of. an rn'figure observation will

have a maximum of 2m figures. The sum Eoxaz will therefore have a

maximum ol (2m I k) or (2m * h + 1) significant figures, as also will
(Lrx)'/n. Thus (z - l) oar r1 will be the difference bebreen these

two numbers, and will have a maximum of. (2m * fr) or (2m * k + L)

figures, thef,rst few of which may be zeros: the variance will have the same

number of figures, except that the operation of dividing by (n - L)

allows the additional possibility of (2m + k + 2) as a maximum.

Note that uncertainty only arises where division (or taking a root)

has to be carried out (rounding enters). The alternatives of (2m I k) ot
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(2m I k + l) figures for the sum of squares means simply that all the
figures are retained: similarly for the quantity (n - l) var x7. The
possibility ol (2m + h + 2) for the variance is seen clearly in the follow-
ing two examples:

.4.. First digit in n - t less than first digit in numerator:

(n - I) aar xc1 : 0022.9975 8 figures (2 zeros)
n - L : 1 0 9

quotient : 00.2109862385
aar *7 :00.210986 8 figures (2 zeros)

Check: 109 X 00.210986 : 0022.997474

B. First digit in n - | greater than first digit in numerator:

(n - l) I)ar xn : 0022.9975 8 figures (2 zeros)
n - I : 9 L 2

quotient : 00.02521655701
ilar x1:00.0252166 9 figures (3 zeros)

Check: gI2 X 00.0252166 : 0022.9975392,

but 912 X 00.025217 : 0022.997904 which is in error in the
eighth figure.

Thus for the data of the previous example we have

r n :  4  n :  l l 0  k  : 2

E xr' : 565491.8801 with 10 : 2m I & figures
(n - l) aar x,1:000287.911895455 significant to 4 decimals* (10 figures)

n - l : 1 0 9
quotient : 0002.64139353648

nar 3c1, : 0002.641394 : s'z

In order to calculate the standard deviation s we note that s2 must be
correct in the sixth decimal. The root of the variance must be taken to
the seventh decimal place and is 01.6252365. Two zeros have, however,
been lost from the beginning, thus reducing the total by one, to 2m

+k-r .
We may summarise the rules for exact numbers as follows:

(a) the sum and the mean will have a maximum ol (?n + k) or (m I h

*1) figures;
(&) the variance will have a maximum ol (2m I k), (2m * & * 1) or

( 2 m I k + 2 ) f i g u r e s ;

*The additional figures come from using an unrounded value for f.
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(c) the standard deviation will have one figure less than the variance;
(d) the first figures in the variance and standard deviation may be zeros.

These conclusions of course contravene the rounding rule.

Vanrasr,n Ennon

The two previous sections outline the rules for the limiting cases of
maximum rounding error and no rounding error. In practice we usually
have to deal with approximate number data where tJle rounding error
varies from zero to the maximum. That is

X n : x C l 1 ' e x

where c6 m4! be positive or negative. Let us assume that es is iy'(0, o2.).
Then

4 X r : t c t *

and
X:  f r I  a

Now
E(e) : g,

but in general ; will have a small finite value and will decrease as a
increases. In any case ; will be considerably less than the maximum
rounding error and the mean value X may legitimately be allowed more
significant figures than a single observation.

I propose arbitrarily, that for a large sample (n 2 I0O) a be disregarded,
so that the sum and the mean be allowed the same number of figures as
for exact datai i.e., (m * k) or Qn + k + L). For smaller samples reduce
each by one, to obtain rn and m + L respectively (since & : 1). This
conforms with the use of the rounding rule for small samples or srnall
numbers of operations. In presenting summary statistics however the
sum should always be included, since it cannot be accurately recalculated
from the rounded small sample mean.

For the variance, we have the relationship

var X : var x * oar e * 2 cozt,"

It is usually reasonable to assume that * and e are independent. The
expected value of the covariance rrill then be zero although the sample
value will not. Thus

S F : s 2 * s 2 " * 2 s , .

We do not know s2., but if the maximum rounding error is *0.005 then

4,'4
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we know that s2o < 0.000025. The two-decimal data which have this
error will square to four-decimal numbers, so the rounding error variance
will always be negligible.

The covariance can be put in the following form:

, r "  :  , \ / * ,  , ,  oo ,  u :  / .  S .561

where r is the correlation coefficient of r and e.
Thus

S F : s 2 * 2 r . s . s .

The population correlation coefficient p is zero: r however may have a
small finite value (within =t0.3 for a sample of size 50 for 95/6
probability).

We may, therefore, approximate again and write

SF : s2 =t 
J's'

2

The significance of the covariance term will thus depend on the magnitude
of s and no general rounding rule can be established. We know, however,
that the expected value of this term is zero and it will be very small for
any large sample. We also know from the previous discussion that the
maximum permissible number of figures must lie between 2rn (maximum

error) and 2m * k, 2m I h* 1 or 2m * k * 2 (no error).
It appears reasonable to accept an arbitrary rule similar to the one for

the sum and the mean. That is, for large samples (n )z LO} h ).2)
t h e  v a r i a n c e  c a n  b e  a l l o w e d  2 m * k , Z m * k  * 1 "  o r  2 m l k * 2
figures, as for exact number data. For smaller samples reduce by one to
obtain 2rn, 2m I I, 2m f 2 respectively. These alternatives all include
any beginning zeros.

As discussed above the standard deviation should be allowed one
figure less than the variance, this to include beginning zeros. We may
summarise as follows:

(,4) for samples of at least 100 the maximum number of figures will be,
(a) m * k or m + k + 1 for the sum and the mean,
(b) 2m I k, 2rn + k + t or 2m + k + 2 for the variance,
(c) one less than the variance for the standard deviation;

(3) for smaller samples the maximum number of figures will be,
(a) m or rn + | for the sum and the mean,
(b) 2m,2rn * I or 2m * 2 for the variance,
(c) one less than the variance for the standard deviation;

(Q the first figures in the variance and standard deviation may be zerosi
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(D) when a calculated statistic is to be used in further calculations it is
preferable not to round it first;

(E) the sum and sum of squares should be always included with summary
statistics, to prevent ambiguity.

Analogous methods can be readily applied to calculations of other
statistics.

It should be stressed that the foregoing discussion is solely concerned
with the manipulation and presentation of statistical data. The physical
meaning of the results must always provide the argument for any further
rounding.
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