# STUDIES OF MINERAL SULPHO-SALTS: XX BERRYITE,<sup>1</sup> A NEW SPECIES

E. W. NUFFIELD<sup>2</sup> AND D. C. HARRIS<sup>3</sup>

## Abstract

The new species occurs sparsely on the type specimen of cuprobismutite (U.S.N.M. 92902, Missouri mine, Park County, Colorado) as lath-like crystals measuring less than 1 mm. in length. The structural cell is monoclinic  $P2_1/m$ , with

a = 12.72, b = 4.02 (axis of elongation), c = 58.07 Å,  $\beta = 102\frac{1}{2}^{\circ}$ 

A pronounced pseudo-cell has

a' = a/3 = 4.24, b' = b = 4.02, c' = c/2 = 29.04 Å,  $\beta = 102\frac{10}{2}$ 

A second occurrence at the Nordmark mines, Sweden has provided more, although less pure, material for x-ray spectroscopy and density determinations. Based on the available data, the most likely cell contents are

 $Pb_{12}(Cu, Ag)_{18}Bi_{30}S_{66} = 6[Pb_2(Cu, Ag)_3Bi_5S_{11}]$ 

The calculated density 7.11, compares with a measured value of 6.7, corrected for an estimated 10 per cent contamination by quartz.

The name is for Professor L. G. Berry of Queen's University, Canada.

In a study (Nuffield, 1952) which led to the resurrection of cuprobismutite,  $12[\text{CuBiS}_2]$ , as a valid species, small cavities on the type specimen from the Missouri mine, Park County, Colorado, (U.S.N.M. 92902) yielded a few tiny, prismatic crystals which could not be identified with any known sulpho-salt mineral. The x-ray powder pattern of this mineral resembled that of benjaminite from Nye County, Nevada (Nuffield, 1953), a silver-bismuth sulpho-salt whose precise chemical formula still is not known. However, x-ray single crystal examination showed that the similarity was only superficial. The powder pattern was found to be identical with a pattern in the University of Toronto files, obtained by Professor L. G. Berry in 1939, on material from another locality labelled "galenobismutite, Nordmark mines, Värmland, Sweden," comprising fragments of specimen 125 from the collection of Hj. Sjögren.

The structural cell of the new mineral was investigated by the senior author at this time, but because he was unable to arrange for a microchemical analysis of the small amount of material, the study was put

 $<sup>{}^{1}\</sup>mathrm{The}$  name has been approved by the Commission of New Minerals and Mineral Names, I.M.A.

<sup>&</sup>lt;sup>2</sup>Department of Geology, University of Toronto.

<sup>&</sup>lt;sup>3</sup>Department of Mineralogy, Royal Ontario Museum.

aside. The development of x-ray spectroscopic methods in this laboratory for analyzing less-than-ten milligram quantities of the ore minerals, has made it possible to return to the problem.

The material at hand was not suitable for undertaking a complete mineralogical study. The U.S.N.M. specimen seemed too precious to section in search of the very sparse, almost microscopic, crystals. The Nordmark Mines material was more plentiful but consisted merely of small unattached grains which furnished only a meagre indication of the mineral's environment in this locality. Galena is common in this ore and an examination of a polished section of three grains showed that small amounts of finely disseminated chalcopyrite, sphalerite and quartz also are present and are intimately associated with the new mineral. The grains are without crystal form and quite unsuitable for single crystal work. However, it has been possible to utilize the two sets of specimens to determine the structural cell, establish the probable chemical composition and unit cell contents, and obtain definitive x-ray powder data to aid in recognizing other occurrences which may prove more fruitful.

# Structural crystallography

The mineral occurs sparsely on the Colorado specimen as very tiny prismatic bluish-grey crystals in a few of the numerous cavities, together with three rare bismuth sulpho-salts of copper: aikinite, emplectite and cuprobismutite. The crystals are so rare and difficult to distinguish from these minerals that several days were required to find a number of suitable crystals for the *x*-ray single crystal study, and enough material for a very small powder specimen.

The crystals, none measuring more than 1 mm in greatest dimension, were mounted with the prismatic axis parallel to the axis of the goniometer head. Weissenberg films showed that the crystals are typically aggregates of two or three not-quite-parallel individuals. However, one of the crystals proved to be eminently favourable and gave sharp reflections.

The structural cell is monoclinic with

$$a = 12.72$$
 Å,  $b = 4.02$  Å,  $c = 58.07$  Å,  $\beta = 102\frac{1}{2}^{\circ}$ 

(in which [010] is the axis of elongation), but geometrically orthorhombic and then *B*-centered with a = 12.72 Å, b = 4.02 Å, c = 113.32 Å. The systematically-absent reflections conform to the space group  $P2_1/m$ . Very long exposures are necessary to bring out k0l reflections for which  $h \neq 3n$ , and only a close scrutiny of zero level films reveals the few weak reflections for which l is odd. Consequently the cell is characterized by a strong pseudo-cell with

$$\begin{array}{l} a' &= a/3 = 4.24 \text{ Å} \\ b' &= b = 4.02 \text{ Å} \\ c' &= c/2 = 29.04 \text{ Å} \\ \beta &= 102\frac{1}{2}^{\circ} \\ V' &= V/6 = 2897/6 = 482.8 \text{ Å}^3 \end{array}$$

The crystals are invariably twinned, the individuals being related by reflection across (001).

# X-ray spectrographic analysis

About 70 mg. of reasonably clean material was obtained from the Nordmark specimen and analyzed in three lots (Table 1). Lot number 1,

| Sample Lot Number           |                      | 1                                                            | 2                                                             | 3                                                          |
|-----------------------------|----------------------|--------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------|
| Weight of Sample (mg)       |                      | 12                                                           | 10                                                            | 48                                                         |
| Measured weight proportions | Pb<br>Cu<br>Ag<br>Bi | $.40\\.13\\.15\\1.00$                                        | $\begin{array}{c} .40 \\ .16 \\ .11 \\ 1.00 \end{array}$      | .40<br>.14<br>.17<br>1.00                                  |
| Measured atomic proportions | Pb<br>Cu<br>Ag<br>Bi | $\begin{array}{c} .40 \\ .44 \\ .30 \\ 1.00 \end{array}$ .74 | $egin{array}{c} .40 \\ .53 \\ .22 \end{smallmatrix}$ .75 1.00 | $egin{array}{c} .40 \\ .46 \\ .33 \\ 1.00 \end{array}$ .79 |
|                             | Cu/Ag                | 1.5                                                          | 2.4                                                           | 1.4                                                        |
| Probable atomic proportions | Pb<br>(Cu, Ag)<br>Bi | $\begin{array}{c} 4\\ 6\pm 1\\ 10 \end{array}$               |                                                               |                                                            |

TABLE 1. BERRYITE: X-RAY SPECTROGRAPHIC ANALYSIS

weighing 12 mg., was obtained from a single grain which was estimated in polished section, to include 5 per cent chalcopyrite, very minor sphalerite, and 15 per cent quartz, much of it in a very finely disseminated state. After removal from the section, the grain was crushed and cleaned by hand-picking the fragments under a binocular microscope. It must be assumed, on the basis of the polished section examination, that not all of the chalcopyrite was removed in the process. Another quantity was obtained by picking a fraction of the ore sample free of extraneous minerals under the microscope, and crushing and re-picking the remaining grains in several stages. In this manner 58 mg. of material were separated. This was broken arbitrarily into a small lot weighing 10 mg. (lot 2, Table 1) and a larger lot weighing 48 mg. (lot 3). Presumably these lots too suffer from some contamination of chalcopyrite.

The three samples were fused with 100 parts of K<sub>2</sub>S<sub>2</sub>O<sub>7</sub> and then

powdered. Qualitative analysis showed that the mineral is a lead, bismuth sulpho-salt of silver and copper. For quantitative analysis, the net peak density ratios  $\text{Bi}L\alpha/\text{Pb}L\alpha$ ,  $\text{Cu}K\alpha/\text{Pb}L\alpha$ ,  $\text{Ag}K\alpha''/\text{Pb}L\alpha$  were measured and compared with standard curves for the corresponding ratios, to obtain weight-fraction ratios by interpolation. Finally, the atomic proportions given in Table 1 were deduced.

The atomic ratio, Pb/Bi, is constant at 2/5 for the three samples. The ratios of Cu and Ag to Bi are less certain, however. Although the atomic proportion (Cu + Ag)/Bi is virtually the same in the three samples, the agreement is probably more fortuitous than real in view of the variation in the Cu/Ag ratio from one sample to the next. Test analyses of synthetic products of similar (known) composition indicate that the method of analysis is not in error. It is reasonable, in light of the evidence provided by the polished section examination, to attribute the variation to contamination by chalcopyrite and to assume that the sum of Cu and Ag in the structure of the mineral is less than is indicated by the analyses. The statement

Pb:(Cu, Ag):Bi = 
$$4:6 \pm 1:10$$

is an attempt to account for this and probably includes the true atomic proportions.

## The density

The Colorado crystals were much too small to attempt density determinations. The Nordmark material occurs in grains which are large enough for torsion balance trials, but are so consistently and finely contaminated with quartz and chalcopyrite that it is virtually impossible to select a pure grain. A series of traverses under the microscope across the polished surfaces of two seemingly-clean grains indicated quartz contents of 10 and 11 per cent respectively by volume.

Four determinations of the density of grains ranging in weight from 19 to 28 mg. gave values between 5.7 and 6.2. Seven determinations on smaller grains weighing from 8 to 14 mg. ranged over a wider variation (5.5 to 6.3), as might be expected. Assuming that a grain contains 10 per cent quartz and gives a value of 6.2 for the density, the density of the pure mineral is 6.7. When compared with the densities of the established lead-bismuth sulpho-salts of copper and silver (Table 2), this value appears to be small. The table suggests that the true value is near 7.0.

# The cell contents

It is possible to deduce a number of cell contents for the large cell of

410

| Aikinite     | PbCuBiS <sub>3</sub>               | 7.22      |
|--------------|------------------------------------|-----------|
| Gladite      | PbCuBi₅S <sub>9</sub>              | 6.96      |
| Lindstromite | PbCuBi <sub>3</sub> S <sub>6</sub> | 7.01      |
| Rezbanyite   | $Pb_4Cu_4Bi_{10}S_{21}$            | 6.24*,6.9 |
| Un-named†    | $Pb_7(Cu, Ag)_2Bi_6S_{17}$         | 7.11      |

TABLE 2. DENSITIES OF THE ESTABLISHED LEAD-BISMUTH SULPHO-SALTS OF COPPER AND SILVER

\*Frenzel (1883).

†Alice Arm, B.C., Canada, Priv. comm. Professor R. M. Thompson, University of British Columbia.

the new mineral which are in approximate agreement with the spectrographic analysis. One of the possibilities, namely

 $Pb_{12}(Cu, Ag)_{18}Bi_{30}S_{66} = 6[Pb_2(Cu, Ag)_3Bi_5S_{11}]$ 

appears the most likely. The value of the (Cu, Ag) component stands at the midpoint of the range predicted by the analyses (Table 1). The calculated density is 7.11. The value of Z is compatible with the size of the pseudo-cell which has a volume equal to 1/6 of the volume of the true cell.



FIG. 1. X-ray powder contact print; Ni filtered Cu radiation; film radius =  $180/\pi$  mm. (1 mm. on film =  $1^{\circ} \theta$ ).

## The powder pattern

The powder pattern of the new mineral (Fig. 1), distinguishes it from the lead-bismuth sulphosalts of copper and silver listed in Table 2, and from benjaminite, schirmerite and alaskaite. The only remaining known minerals of this general composition are the three Gladhammar, Sweden species: gladite, hammarite and lindstromite which still rest on the original meagre descriptions of Johansson (1924). No powder data are available for comparison. However, the chemical formulas proposed for these minerals are markedly different from the formula derived for the new mineral:

| Hammarite    | Pb2Cu2Bi4S9 |
|--------------|-------------|
| Lindstromite | PbCuBi₃S₅   |
| Gladite      | PbCuBi₅S₀   |

The powder pattern (Table 3) has been indexed on the basis of the

pseudo-cell a' = a/3 = 4.24, b' = b = 4.02, c' = c/2 = 29.04 Å,  $\beta = 102\frac{1}{2}^{\circ}$  to a *d* value of 2.18 Å.

| $a' = a/3 = 4.24, b' = b = 4.02, c' = c'/2 = 29.04\text{\AA}, \beta = 102\frac{1}{2}^{\circ}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |                |                  |                                                                                            |                                      |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------|------------------|--------------------------------------------------------------------------------------------|--------------------------------------|
| I                                                                                             | $2\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d(meas.)             | hkl                                                                             | d(calc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I   | 20             | d(meas.)         | hkl                                                                                        | d(calc.)                             |
| 12                                                                                            | 24.02°<br>26.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.66 Å<br>4.18       | $ \begin{cases} 006\\ 10\overline{1}\\ 10\overline{2} \end{cases} \end{cases} $ | 4.72 Å<br>4.23<br>4.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2   | <b>3</b> 9.65° | 2. <b>8</b> 6 Å  | 017<br>0.0.10<br>111                                                                       | 2.85 Å<br>2.83<br>2.83               |
| 1<br>2<br>1                                                                                   | 27.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.06                 | 100<br>103<br>007                                                               | $4.14 \\ 4.13 \\ 4.05 \\ 2.87$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7   | 40.53          | 2.80             | 106<br>$11\overline{4}$<br>$10\overline{9}$                                                | 2.83<br>2.82<br>2.82                 |
| $\frac{2}{2}$                                                                                 | 29.30<br>30.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.83                 | 012                                                                             | 3.87<br>3.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12  | 41.70          | 2.72             | $112 \\ 115$                                                                               | $2.75 \\ 2.74$                       |
| 1/2                                                                                           | 31.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.56                 | {008<br>{103                                                                    | 3.54<br>3.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/2 | 43.53          | 2.61             | $\begin{cases} 107\\ 1.0.\overline{10} \end{cases}$                                        | 2.62<br>2.62                         |
| 10<br>1<br>1                                                                                  | $32.42 \\ 34.92 \\ 35.42 \\ 22.42 \\ 35.42 \\ 22.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.42 \\ 35.4$ | 3.47<br>3.23<br>3.18 | 106<br>107<br>009                                                               | $3.51 \\ 3.27 \\ 3.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ $ | 12  | 47.00          | 2.43             | $     108     1.0.\overline{11}     115     115   $                                        | $2.44 \\ 2.44 \\ 2.43$               |
| \$<br>1<br>2                                                                                  | 36.63<br>37.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.08<br>3.03         | $016 \\ 105 \\ 10\overline{8} \\ 11\overline{1}$                                | 3.06<br>3.04<br>3.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1   | 50.05          | 2.29             | 118<br>116<br>119                                                                          | 2.42<br>2.31<br>2.31                 |
| 8                                                                                             | 39.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.89                 |                                                                                 | 2.91<br>2.91<br>2.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4   | 52.75          | 2.18             | $ \begin{array}{c} 109\\ 1.0.\overline{12}\\ 117\\ 1.1.\overline{10}\\ 0.0.13\end{array} $ | 2.28<br>2.27<br>2.20<br>2.19<br>2.18 |
| <br>                                                                                          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d(meas.)             | I                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d   | (meas.)        |                  | 20.0.13<br>20                                                                              | 2.10<br>2.17<br>d(meas.)             |
| 3                                                                                             | 55 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 10                 |                                                                                 | 71 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | 1 661          | 1                | 04 81                                                                                      | 1 910                                |
| 3                                                                                             | 55.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.07                 | 2                                                                               | 73.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | 1.628          | 2                | 96.36                                                                                      | 1.300                                |
| 4                                                                                             | 57.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.00                 | 1                                                                               | 76.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | 1.556          | 1                | 97.36                                                                                      | 1.290                                |
| 1                                                                                             | 59.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.967                | 2                                                                               | 84.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | 1.447          | 1                | 99.11                                                                                      | 1.273                                |
| 2                                                                                             | 62.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.863                | 12                                                                              | 85.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | 1.433          | 12               | 99.21                                                                                      | 1.272                                |
| 2                                                                                             | 64.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.828                | 1                                                                               | 86.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | 1.412          | 12               | 111.91                                                                                     | 1.169                                |
| 2                                                                                             | 65.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.793                | 1                                                                               | 87.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | 1.405          | 1                | 114.46                                                                                     | 1.152                                |
| 2                                                                                             | 66.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.762                | 12                                                                              | 90.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | 1.365          | 12               | 118.11                                                                                     | 1.129                                |
| 3                                                                                             | 67.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.738                | 1/2                                                                             | 91.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | 1.354          | 12               | 119.16                                                                                     | 1.123                                |
| 12                                                                                            | 69.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.701                |                                                                                 | 94.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | 1.323          | 1<br>2<br>1<br>3 | $\begin{array}{c}121.01\\121.71\end{array}$                                                | $\substack{1.113\\1.109}$            |

Table 3. X-ray Powder Data\* for Berryite  $6[Pb_2(Cu, Ag)_8Bi_8S_{11}]$ Nordmark Mines, Sweden

\*Mn filtered Fe radiation; Debye-Scherrer method, camera diameter 114.6 mm.

## The name

We propose to name the new mineral berryite for Professor L. G. Berry, who obtained the first powder pattern.

We are indebted to the National Research Council for generous financial assistance (to E. W. N.) to develop x-ray spectroscopy at the University of Toronto and to Dr. George Switzer for the loan of the type specimen of cuprobismutite (U.S.N.M. 92902).

## References

JOHANNSON, K. (1924): Bidrag till Gladhammar-gruvornas mineralogi, Arkiv Kemi, Mineral., Geol., 9 (8), 11 (in Dana's System of Mineralogy, 1, 1944).
 NUFFIELD, E. W. (1952): Studies of mineral sulpho-salts: XIV-Cuprobismuthite, Am. Mineral., 37, 447-452.

---- (1953): Benjaminite, Am. Mineral., 38, 550-552.

Manuscript received June 9, 1965, emended July 20, 1965