SHORTER COMMUNICATIONS

FRAMBOIDAL PYRITE AND CONCENTRIC TEXTURES IN ORES OF THE TILT COVE MINE, NORTHEASTERN NEWFOUNDLAND

K. KANEHIRA AND D. BACHINSKI

Chiba University, Chiba, Japan and Geological Survey of Canada, Ottawa

Introduction
Copper deposits associated with eugeosynclinal volcanic rocks in the Notre Dame Bay area of northeastern Newfoundland are being studied under the auspices of the National Advisory Committee on Research in the Geological Sciences. Several textures displayed by sulphide minerals in ores from the Tilt Cove mine were recognized as noteworthy during a brief examination of the deposits by the writers in 1964. This note is descriptive and is concerned solely with these textures.

The First Maritime Mining Corporation Ltd., especially A. Wilson, then geologist, is thanked for assistance rendered in the field. Dr. J. A. Chamberlain has read the manuscript critically and provided helpful suggestions. The assistance of a National Research Council of Canada grant is gratefully acknowledged by Kanehira.

General geology of the Tilt Cove Area
The geology and ore deposits of the area have been described by Snelgrove (1931), Douglas et al. (1940), Baird (1951) and Neale (1957). The sulphide deposits occur in the Snooks Arm Group of Ordovician age; these rocks include pillowed and massive lavas, tuff breccias and tuffs all of mafic to intermediate composition interbedded with minor argillite and chert. Serpentinite intrudes the Snooks Arm Group and the whole is unconformably overlain by the Cape St. John Group of probable Silurian age (Neale, in preparation). All these rocks are intruded by Devonian quartz porphyry dykes.

Donoghue et al. (1959) briefly described the occurrence of several lens-shaped massive sulphide orebodies and a stockwork-type deposit in the area. Chloritized and sheared andesitic pillow lavas and tuff breccia are hosts to the deposits. Pyrite and chalcopyrite are the predominant ore minerals; magnetite, pyrrhotite, sphalerite, native silver, electrum, specular hematite, limonite, and native copper have been recognized. Nickel sulphides and arsenides, of restricted occurrence, have been described by Papezik (1964). Wall rocks in contact with sulphide orebodies are altered and in places consist of monomineralic aggregates of

1Present address: Yale University, New Haven, Conn.
chlorite; considerable hematite is present locally and calcite veining is common in the ores and wall rocks.

Massive sulphide deposits

Polished sections were made of samples taken largely from the 30 stope, 1600 level of the East mine supplemented by specimens from the ore pile. For the most part the ores are massive, fine-grained aggregates of pyrite and chalcopyrite with subordinate amounts of sphalerite, hematite and magnetite. Pyrrhotite and ilmenite are present in minor amounts. Brecciation and compositional banding are occasionally noted in hand specimens. Coarse-grained hematite occurs as patches and fracture fillings in the massive sulphide ores. Gangue constituents include chlorite, quartz, muscovite and carbonates.

Framboidal pyrite and concentric textures

Pyrite occurs as euhedral grains, pelletal or framboidal microforms and displays mesh-like textures and concentric growths.

Pyrite spheroids or pellets 12μ in average diameter were found in five polished sections (Fig. 2a). Grain size distribution of the spheroids based on measurements on polished surfaces is shown in Fig. 1. Individual pellets are composed of pyrite grains 1μ or less in diameter (Fig. 2b)

![Frequency diagram showing the apparent grain size distribution of pyrite pellets.](image)
Concentric intergrowths of pyrite and chalcopyrite are common; this texture is typified by Fig. 3a in which layers of acicular pyrite crystals are interlayered with thin layers of chalcopyrite. The intergrowths display a fan-shape and usually are about 0.1 mm in diameter. Concentric growths of fine-grained pyrite are also found in a sphalerite matrix (Fig. 3b). Concentric texture was observed in one polished section of brecciated sulphide ore: finely interlayered pyrite and chalcopyrite form growths 0.1 to 0.3 mm in diameter. These concentric intergrowths are brecciated in similar fashion to other sulphide aggregates present (Fig. 3c).
Chalcopyrite may display concentric banding with sphalerite (Fig. 3d); the outer zone of the intergrowth is angular. This texture appears to be a rhythmic overgrowth of sphalerite and chalcopyrite.

These textures warrant brief comment. All of them suggest deposition of sulphides under near-surface conditions. Regardless of their exact mode of formation, the mere fact that such fabrics are preserved is significant. It is well known that rapid reactions in the solid state are
characteristic of sulphides (e.g., B. J. Skinner in Roedder, 1965). Preservation of the above fabrics indicates little post-depositional change occurred. The ores of the Tilt Cove area have therefore suffered only mild metamorphism.

Studies (Bachinski) are continuing on the Tilt Cove and related deposits in the area. An attempt is being made to reconstruct the volcanic-sedimentary sequences and to place constraints on the time of mineralization. Further consideration of the textures described in this note is thus being deferred until completion of the project.

References

——— King’s Point Area, Newfoundland. Geol. Surv. Canada, Mem., in preparation.

Manuscript received October 12, 1966

SOME PROPERTIES OF RAMMELSBERGITE AND PARARAMMELSBERGITE

DENNIS RADCLIFFE

Department of Geology, University of Georgia, Athens, Ga. 30601 USA

A number of nickel diarsenide specimens were examined in the course of a larger investigation of transition metal arsenide minerals (Radcliffe 1966) using electron microprobe, density, and x-ray diffraction techniques.

Rammelsbergite has the space group Pnmm (58) (Peacock & Dadson, 1949). This was confirmed by Kaiman (1946) who showed that it has the marcasite structure (C18 type).

Pararammelsbergite has the space group Pbcn (61) determined by Yund (1961) for synthetic material and by Berry & Thompson (1962) for