POLARIZED INFRARED STUDY OF SINGLE CRYSTALS OF APATITES1

College of Dentistry, New York University, New York, New York

Since the use of the KBr pellet technique is of limited value for the assignment of the bands in the spectra of the apatites, it became necessary to study single crystals with polarized IR reflectance techniques. This technique can give additional information on the orientation of the groups and the directions of their various transition moments and thus allows the assignment of the bands.

The positions of the bands in the reflectance spectra are comparable to those in the absorption spectra. However, in the reflectance spectra, the intensities vary considerably with the orientation of the crystal, being maximal in a certain position and minimal in a position 90° to it. In the reflection from the (100) face of an F-apatite crystal, the v_4 band looks like a single degenerate strong band at 575 cm-1 when the c-axis of the crystal is aligned parallel to the E-vector of the IR beam. After turning the crystal so that the c-axis is perpendicular to the E-vector, a peak at 605 cm-1 has appeared with a high intensity while the 575 band is reduced. Reflection from the (001) face shows the 605 peak at its maximum. In addition, the v_1 band is maximal and a new band is detected at 1125 cm-1. Tilting the crystal to obtain the reflection from the (111) face presents the v_3 band as a definite triplet with 3 distinct peaks at 610, 588, and 575 cm-1. This establishes that the 588 peak (which has been observed as a shoulder in the absorption spectrum) is definitely a member of the v_4 mode and the band at 1125 cm-1 (not observed in the absorption spectrum) is a member of the v_3 mode of the PO\textsubscript{4} group.

1Supported by USPHS Research Grant No. DE-00159.

CARBONATE SUBSTITUTION IN THE APATITE STRUCTURE1

College of Dentistry, New York University, New York, New York

The carbonate in the carbonate-containing apatites has been proposed to be either adsorbed on the surface of the apatite crystallites or to be within the apatite structure, substituting either for OH or for PO\textsubscript{4} groups.

In the present study of a series of CO\textsubscript{3}OH- and CO\textsubscript{2}F- apatites prepared for aqueous solutions, the length of the a-axis has been found to decrease proportionally to the increase in the carbonate content of the precipitate. The a-axis contraction with carbonate inclusion indicates that the planar CO\textsubscript{3} group is substituting for the larger tetrahedral PO\textsubscript{4} group.3 The IR absorption spectra of these precipitates are similar to the spectra of the various carbonate-containing mineral apatites (dahlite, francolite).

Synthetic carbonate apatites prepared at high temperature by passing dry CO\textsubscript{2} over OH-apatite show an expansion of the a-axis, indicating a CO\textsubscript{3} for OH substitution.3 Their IR spectra differ from those of the mineral apatites.

We consider, therefore, that in the mineral apatites the carbonate substitutes for the phosphate groups and not for the OH groups.

1Supported by the USPHS Research Grant No. DE-00159.
