Twenty-sixth list of new mineral names

M. H. HEY
Department of Mineralogy, British Museum (Natural History)

The present list includes 145 names, of which 11 are errors, one a spelling variant, 3 new and unnecessary synonyms for known minerals, and one an accepted new name to replace a somewhat unsatisfactory older one. Names for inadequately characterized minerals (21) and unnecessary new names for minor varieties (13) remain as frequent as for some years past, and there are an increased number (10) of mineral names allotted to synthetic products or hypothetical end-members not known in nature, and two group names.

Many of the 83 new named species or varieties have been approved by the Commission on New Minerals and Mineral Names of the International Mineralogical Association, but there is still room for improvement in this respect. So long as some journals continue to accept for publication names that have not been submitted to the Commission mineralogy will carry an increasing burden of ill-defined species and superfluous names.

To save space, references to other valuable periodical lists of new minerals are given in shortened form: A.M. Amer. Min.; Bull., Bull. Soc. franç. Min. Crist.; Zap., Зап. Весёл. мин. общ. (Mem. All-Union Min. Soc.). References to Min. Abstr. (M.A.), formerly by volume and page, are now given by year (last two figures only) and serial number of the abstract.

Agardite. J. E. Dietrich, M. Orliac, and F. Permingeat, 1969. Bull. Soc. franç. Min. Crist. 92, 420. Greenish-blue hexagonal crystals from the Bou-Skour copper mine, Jebel Sarho, Ourzazate, Morocco, have the composition \((\text{Yt, CaH})\text{Cu}_6(\text{AsO}_4\text{OH})_4\cdot 3\text{H}_2\text{O}\), and are the rare-earth analogue of mixite. Named for J. Agard. [M.A. 70–1649].

The proposal by K. Walenta (Chemie der Erde, 29, 36, 1970) to transfer the name chlorotile (Frenzel, 1875), of uncertain connotation, to this mineral was rejected before publication by the Commission on New Minerals and Mineral Names of the International Mineralogical Association.

Aktashite. V. I. Vasilev, 1968. [Вопрос, металлологени ртуты. Изд. ‘Наяка’]; abstr. Zap. 99, 64 (1970). (Актасит). Sulpharsenite of Cu and Hg, with Cu around 24 %, Hg 33 %, As (+Sb) 20 %, and S 23 %, occurring at Aktash in the high Altai. The description is incomplete, and the name was published against the recommendation of the New Minerals Commission of the All-Union Mineralogical Society.

Aluminohydrocalcite, error for alumohydrocalcite (Canad. Min. 10, 88).

Anilite. N. Morimoto, K. Koto, and Y. Shimazaki, 1969. Amer. Min. 54, 1256. Orthorhombic Cu₅S₉, occurring as an intergrowth with djurleite at the Ani mine, Akita, Japan, in prismatic or platy crystals closely resembling chalcocite; has also been
obtained synthetically. Inverts to a digenite-type structure on grinding. Named for the locality. [M.A. 70–1640.]

Arsenodestinezite. J. Kratochvil, 1958. *Topogr. Min. Čech.* 2, 136. \(\text{Fe}_{2}^{3+}\text{AsO}_{4}\text{SO}_{4}(\text{OH})_{n}\text{H}_{2}\text{O} \), from Kaňík, Kutná Hora, Czechoslovakia, regarded as the arsenic analogue of destinezite; now renamed bukovskýite (q.v.). [A.M. 54, 994.]

Azoprite. A. A. Konev, V. S. Lebedeva, A. A. Kashaev, and Z. F. Ushchakovskaya, 1970. Zap. Vses. Vses. Min. Obsh. (Mem. All-Union Min. Soc.), 99, 225. (Azoprovit). \((\text{Mg}_{7.07}\text{Fe}_{2.03}\text{Mn}_{0.01})\text{Fe}_{1.49}\text{Ti}_{4.43}\text{Mg}_{1.06})\text{B}_{4}\text{O}_{19}\text{H}_{39} \) orthorhombic, from Tazheran; a highly tитianian member of the ludwigite group. The ideal formula is written \(4\text{MgO}.(\text{TiO}_{2}\text{MgO}).\text{B}_{2}\text{O}_{3} \). [M.A. 70–3432.]

Barringerite. P. R. Buseck, 1969. *Science*, 165, 169. Hexagonal (Fe,Ni)\(_{2}\)P occurs along the contacts of schreibersite and troilite in the Ollague meteorite. [A.M. 55, 317; M.A. 70–1647.]

Betecktininte. error for Betechtininte. (Min. Depos. 5, 33 (1970.))

Bideauxite. S. A. Williams, 1970. *Min. Mag.* 37, 637. Well-formed cubic crystals of \(\text{Pb}_{2}\text{AgCl}_{6}(\text{F,OH})_{2} \) occur on and replacing boléite on a few specimens from the Mammoth-St. Anthony mine, Tiger, Pinal County, Arizona. Named for its discoverer, Richard A. Bideaux. [M.A. 70–2610.]

Billingsleyite. C. Frondel and R. M. Honea, 1968. *Amer. Min.* 53, 1791. \(\text{Ag}_{2}\text{(As,Sb)S}_{6} \), as fine-grained lead-grey aggregates from the North Lily mine, East Timic district, Utah; orthorhombic. Named for P. Billingsley. [M.A. 69–2383; Bull. 92, 511; Zap. 99, 73.]

Binghamite. Author and date? 'A beautiful gemstone unique to Minnesota is the crystalline quartz replacement of fibrous goethite locally named binghamite in honor of William J. Bingham of St. Paul, who, with his son, discovered this attractive material in 1936' (J. Sinkankas, *Gemstones of North America*, 1959, 346).

formula given as (Ca,Na₂)(Ca,Na₂)₇Ln₂B₂₂O₄₃·7H₂O, but the observed density does not fit. [Empirical cell contents Ca₆₄Na₉₉Ln₂₃B₂₂·O₄₃·7·H₂O M.H.H.] Named for Professor Otto Braitsch. [M.A. 69-615; Bull. 92, 511; Zap. 98, 325.]

Bukovskytie. F. Novak, P. Povondra, and J. Vtělenský, 1967. Acta Univ. Carolinae, Geol. no. 4, 297. The mineral from Kaňik, Ktná Hora, formerly known as arseno-destinezite (this List) is distinct from both destinezite and sarmentite, and is accordingly renamed in honour of Professor Antonín Bukovsky. Composition Fe₄⁺AsO₄SO₄(OH)·7H₂O. [A.M. 54, 576 and 991; Zap. 97, 617; Bull. 92, 512.]

Chrominum. D. Adib and J. Ottemann, 1970. Min. Depos. 5, 86. Deep red monoclinic crystals from the T. Khuni mine, Anarak, Iran, have the composition Pb₂CrO₅. The description is seriously inadequate; no X-ray powder data are given, and the material has not been compared with synthetic Pb₂CrO₅. The name 'refers to the chemical composition' [it may also allude to minium, but is objectionable, as it suggests a new element. It also appears as 'chromium'. Almost certainly identical with phoenicochroite. M.H.H.]

Cliffordite. R. V. Gaines, 1969. Amer. Min. 54, 697. Bright yellow octahedra from the San Miguel mine, Moctezuma, Sonora, Mexico, agree in all respects with synthetic U⁴⁺Te₂O₆. Named for Dr. Clifford Frondel. [M.A. 70-750.]

Costibite. L. J. Cabri, D. C. Harris, and J. M. Stewart, 1970. Amer. Min. 55, 10. Type willyamite (cubic (Co,Ni)SbS₃, with Co > Ni) from the Consols Lode, Broken Hill, New South Wales, also carries lamellae of CoSbS₃, orthorhombic with space group P2₁mn and distinct from paracostibite. [M.A. 70-2607.]

Curiénite. F. Cesbron and N. Morin, 1968. Bull. Soc. franç. Min. Crist. 91, 453. The lead analogue of francediite, Pb(UO₃)(VO₃)₂·5H₂O, occurs as a microcrystalline powder on crystals of francediite at the Mounana mine, Gabon, and has been obtained synthetically. Named for Professor Hubert Curien. [A.M. 54, 1220; M.A. 69-1537; Bull. 92, 316; Zap. 99, 80.]

Donathite. E. Seeliger and A. Mücke, 1969. Neues Jahrb. Min., Monatsh. 49. A ‘chromite’ from Hestando Island, Norway, is distinctly anisotropic and splitting of X-ray diffractions shows that it is tetragonal; composition near Fe₃O₇Mg₂Cr₁₃Fe³⁺O₈, with a little Zn. Named for M. Donath, who described the material in 1930. [A.M. 54, 1218; M.A. 70–2615; Zap. 99, 75.]

Ericssonite. P. B. Moore, 1967. Canad. Min. 9, 301. Orthorhombic ‘BaMn₃Fe⁵⁺Si₂O₇(OH)’ perhaps in error for BaMn₃Fe³⁺(Si₂O₇)O(OH), related to lamprophyllite, from Långban, Sweden. [A.M. 53, 1426; Bull. 91, 305; Zap. 98, 330.]

Eveite. P. B. Moore, 1967. Canad. Min. 9, 301; Arkiv Min. Geol. 4, 473 (1969); Amer. Min. 53, 1841 (1968). Green orthorhombic crystals of Mn₂As₂O₇(OH), from Långban, Sweden, are isostructural with adamite. Named in allusion to this relation. [A.M. 53, 1426; 55, 319; M.A. 69–2397, 2398; Bull. 91, 305; Zap. 98, 328; 99, 79.]

Ferri-diopside. H. G. Huckenholz, J. F. Schairer, and H. S. Yoder, Jr., 1969. Min. Soc. Amer. Spec. Paper no. 2, 163. In synthetic preparations, diopside can contain in solid solution up to 33 wt % of CaFe²⁺SiO₄. The exact connotation intended for the name ferri-diopside, whether for this end-member or for the stable ferrian diopsides, is not clear.

Fersilicate and Ferdisilicate. V. Kh. Gevorkyan, 1969. Геол. журн. України (Geol. Journ. Ukraine), 29, 62]; abstr. Amer. Min. 54, 1737 (1969). Ferrosilicon found in drill cores from sandstones near Zachatisk, Donets region, Ukraine, is believed to be natural; it consists of intergrowths of cubic FeSi, fersilicate, and tetragonal FeSi₂, ferdisilicate. Named from the composition. [M.A. 70–747; Zap. 99, 71.]

Fluor-pectolite. P. S. Rogers, 1970. Min. Mag. 37, 741. NaCa₂Si₃O₈F, the fluorine analogue of pectolite; artificial, as a devitrification product in a glass.

Hydrophyllite, error for Hydrophilite (Amer. Min. 54, 1021). The confusion of -philitie and -phyllite is curiously common.

Julgoldite. P. B. Moore, 1967. Canad. Min. 9, 301. Monodinic Ca₂Fe²⁺Fe³⁺SiO₄Si₂O₇(OH)₆·H₂O, from Långban, Sweden. The iron analogue of pumpellyite. [A.M. 53, 1426 (Julgoldite); Bull. 91, 305; Zap. 98, 330.]

Kemmlitzite. J. Hak, Z. Johan, M. Kuacek, and W. Liebscher, 1969. Neues Jahrb. Min. Monatsh. 201. (Sr,Ce,La)Al₅AsO₄(P,SO₄)(OH)₆, the arsenate analogue of svanbergite, was found in the heavy fraction from kaolinized quartz porphyry from Kemmlitz, Saxony. Named for the locality. [A.M. 55, 320; Bull. 92, 512; Zap. 99, 79.]

Khuneiite. D. Adib and J. Ottemann, 1970. Min. Depos. 5, 86. Brownish-yellow crystals from the T. Khuni mine, Anarak, Iran, have a composition near Pb₁₋ₓZnₓCu₉₋ₓCrₓO₁₂; they are stated to be monoclinic, with sp. gr. 5·9; no other data are given. Named for the locality. [This mineral is probably identical with iranite (23rd List), which probably contains Cu and Zn, but without a more adequate description, and in particular without X-ray powder data, this surmise cannot be tested. M.H.H.]

Knorringite. P. H. Nixon and G. Hornung, 1968. Amer. Min. 53, 1833. A bluish-green garnet from the Kao kimberlite pipe, Lesotho, contains a major amount of the end-member Mg₃Cr₂(SiO₄)₃; named for Dr. Oleg von Knorring. [M.A. 69–2390; Bull. 92, 512; Zap. 99, 81.]

Lenoblite. F. Cesbron and H. Vachey, 1970. *Bull. Soc. franç. Min. Crist.* 93, 235. A sky-blue oxide of vanadium, distinct from duttonite (21st List), with which it occurs at Mounana, Gabon; partially oxidized; the unaltered material is probably V₂O₄·2H₂O (the same composition as duttonite). Named for André Lenoble. [M.A. 70-3426.]

Maigruen. B. H. Geier and J. Ottemann, 1970. *Min. Depos.* 5, 29. Sulphide of Cu and Ga, near Cu₂Ga₅S₄, with some Zn and V, in small (0·1 mm) grains with germainite and gallite in the Tsumeb ores. Only optical data and an electron-probe analysis given. (The publication of 'working names' is undesirable.)

Melkovite. B. L. Egorov, A. D. Dara, and V. M. Senderova, 1968. Зап. всесоюз. мин. обг. (Mem. All-Union Min. Soc.), 98, 207 (Мелковит). Minute crystalline films and veinlets in the oxidation zone of a molybdenite deposit in the Shunak Mts. Kazakhstan, have a composition near CaFeH_5(MoO_4)_3PO_4.6H_2O. Named for Vracheslav Gavrilovich Melkov. [A.M. 55, 320; M.A. 70–1648; Bull. 92, 516; Zap. 99, 80.] (Compare the molybdate-arsenate betpakdalite, 22nd List.) Not to be confused with Melnikovite.

Meta-aluminite. C. Frondel, 1968. Amer. Min. 53, 717. White, microcrystalline, monoclinic, with basaluminite and gypsum in sandstone at the Fuemrole mine, Temple Mountain, Emery County, Utah; Al_2(SO_4)(OH)_4.5H_2O; formed when aluminate is heated in air to 55 °C. [M.A. 69–619; Bull. 92, 317; Zap. 99, 78.]

Mukhinite. A. B. Shepel and M. V. Karpenko, 1969. Докл. Акад. наук СССР (Compt. Rend. Acad. Sci. URSS), 185, 1342 (Мукхинит). A vanadian clinozoisite (V_2O_5 11.29%) occurring in marble from the roof of the Tashelginsk iron ore deposit, Gornaya Shoriya, western Siberia, is named for A. S. Mukhin. [A.M. 55, 322; M.A. 70–746; Zap. 99, 80.]

Olsacherite. C. S. Hurlbut, Jr., and L. F. Aристарин, 1969. *Amer. Min.* 54, 1519. \(\text{Pb}_2\text{SO}_4\text{Se}_0\text{O}_4 \) occurs as an alteration product of penroseite at the Pacajakem mine, Colquechaca, Bolivia; the crystals are isostructural with anglesite and \(\text{PbSeO}_4 \), but have a doubled \(b \)-axis, and hence probably an ordered structure. Named for Professor Juan A. Olsacher. [M.A. 70–2611.]

Olsanskyite. M. A. Bogomolov, I. B. Nikitina, and N. N. Pertsev, 1969. *Докл. Акад. наук СССР (Compt. Rend. Acad. Sci. URSS)*, 184, 1398 (Ольшанский, олшанская). Veinlets in sakhaite from eastern Siberia contain fibrous, monoclinic or anorthic \(3\text{CaO} \cdot 2\text{B}_2\text{O}_3 \cdot 0.9\text{H}_2\text{O} \); as the infra-red spectrum shows OH bands but not \(\text{H}_2\text{O} \) bands, the formula is written \(\text{Ca}_4[\text{B(OH)}_2]_4(\text{OH})_8 \). Named for Yakov Iosifovich Olsanskii. [A.M. 54, 1737 (olshanskyite); M.A. 70–755 (olshanskyite); Zap. 99, 77.]

Oxonio-alunite. M.-A. Kashkai, 1969. *Зап. Всесоюз. мин. обл. (Mem. All-Union Min. Soc.)*, 98, 153 (Оксониоалунит). A name for the end-member \((\text{H}_2\text{O})\text{Al}_4(\text{SO}_4)_2(\text{OH})_6 \).

Plumangite. D. Adib and J. Ottemann, 1970. *Min. Depos.* 5, 86. A greyish mineral replacing murdocite along fractures, from the T. Khuni mine, Anarak, Iran, is formulated \(\text{Cu}_6\text{As}_5\text{Zn}_{10}\text{PbMn}_2\text{O}_{31} \) on the basis of electron-probe analysis. Some optical but no X-ray data are given. Named for the composition. [It is difficult to see how the cited formula, with some Mn in a valency state higher than 4, is arrived
at; if it is assumed that the manganese is all Mn$^{4+}$, the composition is close to that of an analogue of coronadite with the Mn$^{8+}$ replaced by Cu. The name is unfortunate in suggesting relation to plumosite or umangite. \textit{M.H.H.}]

\textbf{Plumboalunite.} M.-A. Kashkai, 1969. Зап. Весоюз. мин. обиц. (\textit{Mem. All-Union Min. Soc.}), 98, 153 (спинцовий алуний). A name for the end-member PbAl$_6$(SO$_4$)$_4$(OH)$_{12}$.\[M.H.H.\]

\textbf{Plumbozincocalcite.} M. Z. Kantor, 1964. \[\text{Изв. высш. учебн. завед., геол. разв.}

\textbf{Polarite.} A. D. Genkin, T. L. Evstigneeva, N. V. Troneva, and L. N. Vyaltsov, 1969. Зап. Весоюз. мин. обиц. (\textit{Mem. All-Union Min. Soc.}), 98, 708. The mineral described by L. J. Cabri (\textit{Canad. Min.} 8, 5, 1966) from Norilsk, western Siberia, has also been found in the Talnakh deposits; further study confirms its species status, and it is named polarite (Поларит).\[M.H.H.\]

\textbf{Ringwoodite.} R. A. Binns, R. J. Davis, and S. J. B. Reed, 1969. \textit{Nature}, 221, 943. Rounded grains and pseudomorphs after olivine in the Tenham meteorite have the composition of olivines with Fe$_{26–34}$\%, but with the structure of spinel. The name, for Professor A. E. Ringwood, is applied to the whole range of (Mg,Fe)$_2$Si$_4$O$_6$ spinels. [\textit{A.M.} 54, 1219; \textit{M.A.} 70–745.]

Metallic grey, tetragonal (Cu, Zn, Fe)$_3$(In, Sn)$_4$S$_4$, the indium analogue of k"esterite, with stannite, etc., in a vein of the Ikuno mine, Hyogo Prefecture, Japan. Named for Dr. Kin-ichi Sakurai. [Zap. 98, 321.]

Scheibeite. A. M"ucke, 1970. Neues Jahrb. Min., Monatsh. 276. A deep red basic lead chromate from the Santa Ana mine, Sierra Gorda, Caracoles, Chile, gives an identical powder pattern to those of a synthetic product formulated Pb$_6$(CrO$_4$)$_3$O$_5$ [but which may be contaminated by lead hydroxide] and of a specimen from Berezovsk labelled phoenicochroite; the author accepts Hermann’s very doubtful 1833 analysis and density as adequate evidence that this specimen was not phoenicochroite, and assigns the pre-empted name Scheibeite for Dr. R. Scheibe (the name was given, in honour of the same person, by O. von Linstow, Neues Jahrb. Min. Beil.-Bd. 33, 814 (1912), to a resin). [It seems probable that M"ucke’s mineral is a new occurrence of phoenicochroite. Further study is needed. M.H.H.]

Stannoidite. A. Kato, 1969; Bull. Nat. Sci. Mus. (Tokyo), 12, 165; Min. Journ. (Japan), 5, 417. A stannite-like mineral from the Konjo mine, Okayama Prefecture, Japan, has the composition Cu$_3$(Fe, Zn)$_3$SnS$_4$; orthorhombic, and distinct from hexastannite. [A.M. 54, 1495; M.A. 70–1642; Bull. 92, 514; Zap. 99, 73.]

Staringite. E. A. J. Burke, C. Kieft, R. O. Felius, and M. S. Adusumilli, 1969. Min. Mag. 37, 447. Small inclusions of Fe$_{0.9}$Sn$_{0.5}$TaO$_{12}$, with some Mn, Ti, and Nb, occur as inclusions in tapisolite from Seridózinho and Pedra Lavreda, Paraiba State, Brazil; tetragonal, probably with a trirutile structure. Named for Dr. W. C. H. Staring. [M.A. 70–759.]

Stenhuggarite. P. B. Moore, 1967. Canad. Min. 9, 301. Orange tetragonal crystals of CaFe$_3$SbO(AsO$_3$)$_4$ from Långban, Sweden, are named for Brian Mason (Swedish stenhuggar, stonemason). [A.M. 53, 1427; Bull. 81, 305; Zap. 98, 329.]
Strashimirite. I. Mincheva-Stefanova, 1968. Зап. Весесова. миц. общик. (Mem. All-Union Min. Soc.), 97, 470 (Страшимирит). Pale green spherulites in the Zapachitsa copper deposit, Stara-Planina, Bulgaria, are monoclinic, composition near Cu₂As₂O₁₀.125H₂O, with some Zn replacing Cu. Named for Strashimir Dimitrov of Bulgaria. [A.M. 54, 1221; M.A. 69–1541; Bull. 92, 318; Zap. 98, 328.]

Strashimirite, error for Strashimirite (M.A. 69–1541).

Tazheranite. A. A. Konev, Z. F. Ushchapovskaya, A. A. Kashaev, and V. S. Lebedeva, 1969. Докл. Акад. наук СССР (Compt. Rend. Acad. Sci. URSS), 186, 917 (Тазерванит). Irregular grains and cubic crystals in calciphyses from the Tazheran massif, west of Lake Baikal, Siberia, have a unit-cell content Zr₂₅₋₂₉Ca₀₇₇Ti₀₇₋₀₉Al₀₉₋₁₀Fe₀₉₋₁₀O₂₋₂₀: they are essentially the cubic modification of ZrO₂, stabilized by foreign cations. Named from the locality. [The name is unfortunately close to tacharinite (22nd List).] [A.M. 55, 318; M.A. 70–1638; Zap. 99, 75.]

Teremkovite. D. A. Timofeevskii, 1967. Зап. Весесова. миц. общик. (Mem. All-Union Min. Soc.), 96, 30 (Теремковит). Sulphantimonite of lead and silver, very near owyheeite, occurring in the Ust-Terenkii deposit of eastern Transbaikal. Named for the locality. The distinction from owyheeite is very slight, and the name seems unnecessary. [A.M. 54, 990; Zap. 97, 613; M.A. 69–1533.]

pegmatitic vein of a massif of the Turkestan-Alai province, southern Tienshan. Named for the locality. [A.M. 53, 1426; Zap. 97, 618.]

Titanoludwigite. A. A. Konev, V. S. Lebedeva, A. A. Kashaev, and Z. F. Ushchepovskaya, 1970. Zapis. Vsesoyuzn. min. obshch. (Mem. All-Union Min. Soc.), 99, 225 (Титанолудвигит). A titanian ludwigite from Tazheran, (Mg	extsubscript{0.25}Fe	extsuperscript{2+}	extsubscript{0.18}Mn	extsubscript{0.02}Ca	extsubscript{0.01}Na	extsubscript{0.02})(Fe	extsuperscript{3+}	extsubscript{0.20}Ti	extsuperscript{4+}	extsubscript{0.72}Mg	extsubscript{0.09}Al	extsubscript{0.12})B	extsubscript{4}O	extsubscript{10}O	extsubscript{19}Si	extsubscript{7}. An unnecessary name. Cf. Azoproite (this List).

Tunisite. Z. Johan, P. Povondra, and E. Slansky, 1969. Amer. Min. 54, 1. Tetragonal crystals and fine-grained aggregates found on the dumps of the Sakiet Sidi Toussef ore deposit, Tunisia, have the composition NaH	extsubscript{4}Al	extsubscript{4}(CO	extsubscript{3})	extsubscript{4}(OH)	extsubscript{10}. Named for the country of origin. [M.A. 69–2389; Bull. 92, 515; Zap. 99, 76.]

Tyanshanite, standard English transliteration of Тяньшаанит (Tienshanite, this List).

Weloganite. A. P. Sabina, J. L. Jambor, and A. G. Plant, 1968. Canad. Min. 9, 468. Yellow hexagonal (but optically biaxial) crystals from a sill in the Trenton limestone at St. Michel, Montreal Island, Quebec, have the composition Sr	extsubscript{2}Zr	extsubscript{2}(CO	extsubscript{3})	extsubscript{4}H	extsubscript{4}O. Named for Sir William E. Logan. [A.M. 54, 576; Bull. 92, 319; M.A. 70–1651; Zap. 98, 325.]

Wickenburgite. S. A. Williams, 1968. Amer. Min. 53, 1433; Canad. Min. 9, 582. Colourless hexagonal crystals, CaPb	extsubscript{2}Al	extsubscript{5}Si	extsubscript{10}O	extsubscript{36}(OH)	extsubscript{6}, from Wickenburg, Arizona. Named from the locality. [M.A. 69–1538; Bull. 92, 319; Zap. 98, 331.]

of talc, occurs near Barberton, Transvaal; light green, monoclinic. Named for Professor Johannes Wilhelmse. [A.M. 54, 1740; M.A. 70–2606.]

Wolframixiolite. A. L. Ginzburg, S. A. Gorzhevskaya, G. A. Sidorenko, and T. A. Ukhina, 1969. Зап. Всесоюз. мин. общ. (Mem. All-Union Min. Soc.), 98, 63 (Вольфрамиоксиолит). Prismatic grains intergrown with microcline, quartz, ilmenite, and fluorite on a specimen from an unknown locality have a composition (Nb, W, Fe, Mn, Ta, etc.)$_{197}$O$_4$.O.84H$_2$O, and are regarded as a variety of ixiolite. Named from its relation to both ixiolite and wolframite. [A.M. 55, 318; M.A. 70–2614; Zap. 99, 76.]

