MINERALOGICAL MAGAZINE, OCTOBER 1996, VOL. 60, PP 841-842

Ferrazite is identical to gorceixite

D. Atencio

A. M. Clark

Departamento de Mineralogia e Petrologia, Instituto de Geociências, Universidade de São Paulo, Caixa Postal 11348 - 05422-970, São Paulo SP, Brasil

> Mineralogy Department, The Natural History Museum, Cromwell Road, London SW7 5BD, UK

THE petrographer Dr Jorge Belmiro de Araujo Ferraz submitted for chemical analysis some pebbles ('favas') from the late Eugen Hussak's collection, bearing Hussak's own label 'Pb-Al hydrophost. D.3.095. Neu!'. The pebbles, found in diamondwashings, were discoid in shape, dark yellowishwhite, resembling old ivory, and in micro-sections showed a granular structure. The results of the analysis were published by Lee and Moraes (-Rego) (1919 and 1920). The provenance of the samples was not quoted by these authors but was quoted by Ferraz (1928) and Palache *et al.* (1951) as Diamantina, Minas Gerais, Brazil.

From the results of a preliminary analysis it appeared to Lee and Moraes that, in addition to Pb, Ba was also present, which led them to carry out a complete analysis, leading to the following results: BaO 8.87, CaO traces, PbO 45.63, Al_2O_3 3.48, SiO_2 2.44, P_2O_5 26.24, H_2O 14.20, total 100.86 wt.%.

After deducting silica and alumina, possibly derived from kaolin and wavellite, the formula was quoted as $3(Ba,Pb)O\cdot 2P_2O_5\cdot 8H_2O$. The density of the pebbles varied between 3.0 and 3.3. The mineral was named ferrazite after Dr J.B.A. Ferraz.

We have obtained a sample, with the same characteristics as above, from Dr J.B.A. Ferraz' collection (now in the Museu de Geociências do Instituto de Geociências da Universidade de São Paulo) labelled as 'Ferrazita. Diamantina, Minas Gerais' (Sample 41.5.8.1/3 - 625A/1). The sample was identified by X-ray powder diffraction (Table 1) and electron microprobe chemical data (Table 2) as gorceixite, $BaAl_3(PO_4)(PO_3OH)(OH)_6$.

The density measured by Hussak and by Lee and Moraes agrees with that for gorceixite ($D_{meas.}$ 3.1 and $D_{calc.}$ 3.41). A mean index of refraction now measured is between 1.620 and 1.625, as in gorceixite.

We have also carried out an electron probe and X-ray diffraction investigation of the type specimen of ferrazite stored in The Natural History Museum, London (B.M. 1920,131). The probe study was carried out on an energy-dispersive Hitachi instrument. The pebble was examined in an unpolished state, so the results should be regarded as semiquantitative. They are PbO 1.36, BaO 17.17, P_2O_5 19.09, FeO 0.52, ZnO 0.76, Al_2O_3 19.18 wt.%. The Debye-Scherrer X-ray film was taken at the same spot on the sample (film no. X10211) and is a good match for gorceixite.

Lee and Moraes did not quote the method of chemical analysis but they probably analysed Pb and

TABLE 1. X-ray powder diffraction data for 'ferrazite' and gorceixite

1		2			
d	%	d	%	hkl in Cm	
5.775	99	5.7692	93	-1 1 0	-2 0 1+
3.527	68	3.5292	56	-3 1 1	0 2 0+
3.003	100	3.0097	100	-3 1 2	0 2 1+
2.875	22	2.8852	15	0 0 2	2 2 0+
2.490	13	2.4952	11	$-2\ 2\ 2$	400
2.286	38	2.2925	39	1 1 2	-2 0 3+
2.227	19	2.2320	23	-1 3 1	-4 2 2+
2.030	10	2.0376	11	-1 1 3	4 2 0+
1.915	24	1.9197	29	-3 3 2	-6 0 1+
1.761	18	1.7626	20	$-6\ 2\ 2$	040+
1.683	9	1.6877	10	-5 1 4	1 3 2+
		1.6647	4	1 1 3	3 3 1+
		1.5780	1	-2 4 2	-5 3 3+
		1.5223	5	530	-7 1 4+
1.500	10	1.5058	18	$-2\ 2\ 4$	4 0 2+
		1.4402	3	440	-8 0 4+
1.392	7	1.3977	9	-2 4 3	-5 3 4+

1. 'Ferrazite' from Diamantina, Minas Gerais, Brazil. Cu- $K\alpha$ radiation.

2. Gorceixite from the Big Fish River, Rapid Creek area, Yukon Territory, Canada (Blanchard, 1989).

TABLE 2. Electron microprobe chemical data for 'ferrazite' and gorceixite

	1	2	Range	Probe standard
BaO	30.00	23.52	(22.46-24.99)	BaF ₂
PbO		0.53	(0.00 - 1.65)	galena
SrO		1.81	(1.29 - 2.25)	celestine
CaO		0.76	(0.66 - 0.84)	wollastonite
Na ₂ O		0.06	(0.00 - 0.19)	andesine
K ₂ Ō		0.10	(0.06 - 0.12)	microcline
Al ₂ O ₃	29.91	31.25	(29.54 - 32.42)	corundum
Fe ₂ O ₃		3.76	(1.11 - 8.40)	hematite
P_2O_5	27.76	26.19	(25.13 - 27.28)	InP
SiO ₂		0.95	(0.65 - 1.18)	wollastonite
H ₂ Õ	12.33	(11.07)	. ,	
Total	100.00	100.00		

1. Gorceixite, ideal composition BaAl₃(PO₄)(PO₃OH) (OH)6.

2. 'Ferrazite' from Diamantina, Minas Gerais, Brazil (Average of 10 analyses: H₂O by difference)..

Ba by gravimetry with precipitation of PbSO₄ and BaSO₄, thus confusing Ba with Pb.

In conclusion, ferrazite is identical to gorceixite. The name gorceixite (Hussak, 1906) was published before ferrazite and therefore has historical priority.

KEYWORDS: ferrazite, gorceixite, Minas Gerais, Brazil.

This nomenclature proposal (number 95-F) was approved by CNMMN - IMA.

References

- Blanchard, F.N. (1989) New X-ray powder data for gorceixite, BaAl₃(PO₄)₂(OH)₅·H₂O, an evaluation of d-spacings and intensities, pseudosymmetry and its influence on the figure of merit. Powder Diffraction, 4. 227-30.
- Ferraz, L.C. (1928) Compendio dos Minerales do Brasil em fórma de diccionario. p. 145.
- Hussak, E. (1906) Über die sogenannten "Phosphat-Favas" der diamantführenden Sande Brasiliens. Tscherm. Mineral. Petrog. Mitt., 25, 335-44.
- Lee, T.H. and Moraes, L.F. (1919) On ferrazite? a new associate of the diamond. Amer. J. Sci., ser. 4, 48, 353
- Lee, T.H. and Moraes-Rego, L.F. (1920) Ferrazita, um novo satellite do diamante. Annaes da Escola de Minas. 16. 59-60.
- Palache, C., Berman, H. and Frondel, C. (1951) The System of Mineralogy of J.M. Dana & E.S. Dana. 7th. Edition, v. II, 832-3.

[Manuscript received 14 March 1996: accepted 16 April 1996]

© Copyright the Mineralogical Society

MINERALOGICAL MAGAZINE, OCTOBER 1996, VOL. 60, PP 842-845

Comment on 'Morimotoite, Ca₃TiFe²⁺Si₃O₁₂, a new titanian garnet from Fuka, Okayama Prefecture, Japan' by Henmi et al. (1995)

K. T. FEHR

G. AMTHAUER

Institut für Mineralogie und Petrographie, Theresienstr. 41, D-80333 München, Germany

> Institut für Mineralogie. Hellbrunnerstr. 34, A-5020 Salzburg, Germany

end-member whose composition can be derived from

HENMI et al. (1995) described a new titanian garnet andradite by the substitution $Ti + Fe^{2+} = 2 Fe^{3+}$ on octahedral sites, leading to the formula