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Auszug

Als Raumgruppe eines einheitlichen Hessitkristalls (Ag,Te-I1T) von Bétes,
Transsylvanien, wurde P2;/c gefunden; die Gitterkonstanten wurden zu
a = 8,09, b = 4,48, ¢ = 8,96 A, f = 123°20’ bestimmt. Die Elementarzelle
enthilt 4 Ag,Te. Alle Atome befinden sich in allgemeinen Lagen ; ihre Parameter
sind :

@ = 0,018, y = 0,152, z = 0,371 fir Ag(I),
@ = 0,332, y = 0,837, z = 0,995 fiir Ag(II),
v = 0,272, y = 0,159, z = 0,243 fiur Te.

Symmetrie und Dimensionen der Zelle stimmen nicht mit den Literatur-
angaben iiberein. Es wird angenommen, daB die fritheren Untersuchungen an
verzwillingten Kristallen durchgefithrt wurden.

' Abstract

The space group of a single crystal of naturally occurring hessite (Ag,Te-11T)
from Bétes, Transylvania, was found to be monoclinic P2,/c; the cell constants
were determined as follows: a = 8.09, b = 4.48, ¢ = 8.96 A, B = 123°20".
There are 4 (Ag,Te) per cell, and all atoms lie on the following fourfold general
positions: Ag(I) at x = 0.018, v = 0.152, z = 0.371; Ag¢(Il) at x = 0.332,
y = 0.837, z = 0.995; and Te at # = 0.272, y = 0.159, z = 0.243.

This cell and the symmetry differ from those previously reported for hessite
in the literature. It is believed that the other recent determinations have been
based upon misleading data from twinned crystals.

* Present address: McGill University, Montreal, Canada.
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Introduetion

The mineral hessite, Ag,Te, and its polymorphs have been the
subject of several crystallographic investigations. Results have been
conflicting and confusing. Part of the confusion arises out of the
notation used to identify the different polymorphs. In this paper the
notation used by Kracek and Ksaxpal, utilizing Roman numerals,
will be followed. The polymorph whose stability range lies between
690° to 802°C and the melting point will be referred to as Ag,Te-I.
The polymorph stable between 105° to 145° and 690° to 802°C,
listed as a-hessite or «-Ag,Te in many texts, will be called Ag,Te-II.
The polymorph stable from room temperature up to 105° to 145°C,
called f-Ag,Te in earlier literature, will be labeled Ag,Te-IIT. These
labels should not be confused with the notation used by Rowraxp and
Berry?, where Ag,Te “type I and “type 1T’ refer to morphological
examples.

A conflict exists in that the symmetry and unit-cell dimensions
reported by three different investigators for Ag,Te-I1I do not agree;
nor does the lattice type arrived at by two workers for Ag,Te-II.
There has been no crystallographic study of Ag,Te-I reported in the
literature.

AgsTe-II1: hessite

The most recent crystallographic investigation of the room-
temperature polymorph, Ag,Te-I11, is that of RowrLanp and BERRY?2.
From material synthesized from aqueous sodium-sulfide solution in a
graphite-lined steel bomb at several different temperatures from 350°
to 490°C, crystals were obtained from which morphological data and
some single-crystal x-ray data could be taken. It is to be noted that
the temperatures utilized were at least 200 °C above the stability range
of Ag,Te-IIT at normal pressures. Unless the effect of the pressure that
existed within the steel bomb was to increase the stability range of
Ag,Te-II1 by more than 200°, it seems unlikely that the morphology
of the crystals grown under these conditions represents the mor-
phology of the Ag,Te-III phase. However, as the powder diffraction
record of the products of these runs was identical with that of natural

1F.C. Kracexk and C.J. KsanpA, A paper on the Ag — Te system; in
preparation.

2 J.F. Rowraxp and L. G. Berry, The structural lattice of hessite. Amer.
Mineral. 36 (1951) 471—479.
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hessite, there is little doubt that the internal structure at room
temperature was that of Ag,Te-IIT. .

From one of these crystals exhibiting orthorhombic morphology,
Rowraxp and Brrry obtained Weillenberg and rotation films that
lead to the following unit-cell and space group: orthorhombic Immm ;
a = 16.28, b = 26.68, ¢ = 7.55 A. But here again it must be pointed
out that since the crystals were grown at temperatures above the
stability field of Ag,Te-III, there is a possibility that, during the
transformation, twinning took place that resulted in additional
symmetry and an apparent cell larger than that which would be ex-
hibited by a true single crystal.

Rowraxp and BERrY’s cell does not agree with that described by
Toxkopy?:4. Toxopy found Ag,Te-II1 to be monoclinic with a cell
size of @ = 6.57, b = 6.14, ¢ = 6.10 A, f = 61° 15". From the cell
content of 3 (Ag,T'e) he concluded that the space group must be Pm,
P2, or P2/m. However, this cell was determined principally from the
powder diffraction record, and to index all the reflections it was
necessary to consider that some reflections were due to f radiation.
Powder photographs taken on natural samples during the present
investigation indicate that the lines considered by Toxopy to be due
to f radiation were clearly due to CuKe. ThoMPsoN® also reports that
the powder pattern of hessite could not be indexed on the monoclinic
elements of TokoDY.

Structure determination

Small crystals of hessite from Bétes, Transylvania, obtained both
from the U. S. National Museum (U.S.N.M.No.R9556) and from the
Harvard University Museum (No.99348), were found to contain small
inclusions of petziteS. By fracturing these small crystals at liquid
nitrogen temperatures, it was possible to obtain fragments of hessite
free from any petzite. The diffraction record of these fragments showed
them to be single, undeformed crystals. The x-ray powder diagram

3 L. Toxopy, Uber Hessit. Z. Kristallogr. 82 (1932) 154—157. ~

¢ L. Toxopy, Berichtigung zu meiner Mitteilung L, Uber Hessit*. Z. Kristal-
logr. 89 (1934) 416.

5 R. M. THompsoN, The telluride minerals and their occurrence in Canada.
Amer. Mineral. 34 (1949) 342—382.

6 A. J. Fruen, The crystallography of petzite, Ag;AuTe,. Amer. Mineral.
44 (1959), in press. /
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Table 1
Ji d [ Fi | d 1 | d | 7 | d
2 3.16 2 2.14 2 1.445 1 1.127
5 2.98 2 2.116 8 1.393 1 1.115
5 2.87 1 2.022 6 1.302 3 1.104
10 2.30 1 1.930 1 1.280 1 1:077
8 2.21 1 1.773 1 1.245 1 1.050
2 2.18 1 1.693 2 1.192 7 1.001

prepared from some of these fragments, using FeKa = 1.937 A, is
tabulated in Table 1. It can be seen that this patternisin close agreement
with the hessite pattern reported by Rowraxp and Berry2.

A

Fig. 1. Patterson projections of hessite on (010) and on plane
perpendicular to [100]

The space group symmetry was determined as monoclinic P2,/e,
The cell constants measured from Buerger precession photographs,
using MoK« radiation, were as follows: @ = 8.09, b = 4.48, ¢ — 8.96 A.
p = 123°20". By using the specific gravity of 8.21 as determined by
TrompsoN®, and the cell volume of 271.4 A% as computed from the
above dimensions, it is ascertained that the cell contains 4 (Ag,Te).

Intensity data for the b axis zero, first, second, third and fourth
levels were gathered by an equi-inclination Geiger-counter spectro-
meter, using MoKa radiation. The data were corrected for Lorentz
and polarization factors by the accepted method?.

M. J. BuerGERr and G. Krrin, Correction of x-ray diffraction intensities
for Lorentz and polarization factors. J. Appl. Physics 16 (1945) 406—418.



48 ArrreED J. FRUEH, JR.

The positions of all the atoms were located (Fig.1) from Patter-
son projections on (010) and on the plane perpendicular to [100], with
the aid of a Harker-Patterson section P(w, },z). From these posi-
tions signs were calculated and combined with observed intensities to
make electron-density projections on (010) and on the plane per-
pendioular to [100] (Fig.2). These projections confirmed the validity
of the initial positions, and further refinement was accomplished by

least-squares utilizing the Service Bureau Corporation’s (IBM)
NY-XR2 program.

Fig. 2. Electron-density projections of hessite on (010) and on plane
perpendicular to [100]

All atoms are located on the fourfold general positions: z, ¥y, z;

%y % 5t + Yy y—2 23—y, 3+ 2 The final refined parameters
are listed in Table 2. In Table 3 the intensities from all reflections as

Table 2
@ y %
Ag, 0.018 0.152 0.371
Ag, 0.332 0.837 0.995
Te 0.272 0.159 0.243

calculated from these parameters are compared with those observed.
The final standard discrepancy factor R for the three-dimensional
data is 0.157; and the final isotropic temperature factors are:

Byg = 2.02, By, = 2.75, and By, = 1.07.
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The structure of hessite is illustrated in Figs.3a and 3b. There are
two structurally different types of silver atoms. One (Agy) is surrounded
by four tellurium atoms at 2.87, 2.91, 3.04 and 2.99 A, making a
somewhat distorted tetrahedron. The average Ag—Te distance of this
tetrahedron is 2.95 A. The other type of silver atom (Agy;) has five
close tellurium neighbors at 3.04, 3.01, 2.95, 2.90 and 2.85 A, again
giving an average Ag—Te distance of 2.95 A. Each Te atom has nine

Fig. 3. The structure of hessite, Ag,Te-III. () Orthographic projection. (b) Clino-
graphic projection

fairly evenly spaced silver atoms around it. Although little significance
can be attached to the average bond length, it is interesting to note
that in the gold-silver telluride, sylvanite (AuAgTe,), the silver atom
has six tellurium neighbors, two at 2.69, two at 2.96, and two at
3.20 A, again averaging 2.95 A8, In petzite (AgAuTe,) the silver is
tetrahedrally coordinated to two tellurium atoms at 2.90 A and two
at 2.95 AS,

It should also be pointed out that in the other gold and gold-silver
tellurides every tellurium atom has one close tellurium neighbor, but
n hessite there are no tellurium — tellurium distances closer than 4.26 A.

8 G. Tun~eEL and L. PavniNeg, The atomic arrangement and bonds of the
gold-silver ditellurides. Acta Crystallogr. 5 (1952) 375—381.
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Attempts to find the relations between this structure and the
orthorhombic cell of RowrLAND and BERRY were unsuccessful. Although
their orthorhombic cell is the cell best fitting the Weissenberg and
rotation record of their crystal (hessite, type I), there still remain
quite a number of reflections that do not fall on the reciprocal lattice
points based on this cell. In so far as the powder diffraction records of
the two crystals are identical, it is 1elt that their single crystal diffrac-
tion record was produced by a composite of several crystals of mono-
clinic Ag,Te-III of different orientations. An investigation is presently
under way on Ag,Te-IT and Ag,Te-I, including a study of the trans;
formation twinning and domain orientation resulting from cooling
Ag,Te-1I to Ag,Te-I11. This may throw some light on the above re-
lations.
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