Zeitschrift für Kristallographie, Bd. 124, S. 460 (1967)

Space group of diglycine barium chloride monohydrate

By P. NARAYANAN and SHANTA VENKATARAMAN

Department of Physics, University of Mysore, India

(Received July 5, 1967)

Diglycine barium chloride monohydrate crystallizes in the orthorhombic system with a tetra-molecular unit cell, the dimensions of which, determined from rotation and equi-inclination Weissenberg photographs, are

$$a = 8.302 \pm 0.015$$
 Å, $b = 14.801 \pm 0.025$ Å, $c = 9.324 \pm 0.015$ Å;
 $Z = 4$.

The density was measured by the flotation method using α bromoform and carbon tetrachloride. ρ measured = 2.2 g/cm³, ρ calculated = = 2.182 g/cm³.

The extinctions are:

hk0 v	with $h+$	k =	2n+1	h00	with	h=2n+1
0kl v	with	k =	2n+1	001	with	l=2n+1
h0l v	with	l =	2n + 1.			

Hence the space group could be uniquely fixed to be the centrosymmetric space group *Pbcn* (V_{h}^{14}) .

The principal refractive indices of the crystals were measured for $\lambda = 589 \text{ m}\mu$ at 32 °C with immersion media of nitrobenzene and α bromonaphthalene. The crystals are biaxial and optically negative with $n_{\alpha} = 1.53990$, $n_{\beta} = 1.59554$, $n_{\gamma} = 1.60225$, $2V = 47^{\circ}$.

Note added in proof. The crystal structure has now been solved by the heavy-atom method. Refinement of the coordinates from three-dimensional data is under progress.

.