The crystal structure and refinement of ferrimagnetic barium ferrite, BaFe₁₂O₁₉* By W. D. Townes, J. H. FANG ** and A. J. PERROTTA Institute for Exploratory Research, U. S. Army Electronics Command Fort Monmouth, New Jersey Dedicated to Prof. Dr. G. Menzer on the occasion of his 70th birthday (Received March 15, 1967) ## Auszug Die Kristallstruktur von BaFe₁₂O₁₉ wurde bestimmt und dreidimensional verfeinert. Die Raumgruppe ist $P6_3/mmc$; die Elementarzelle, mit a=5.893 Å, $c=23{,}194 \,\mathrm{\AA}$, enthält zwei Formeleinheiten. Die Struktur ist aufgebaut aus kubischen und hexagonalen dichtesten Kugelpackungsschichten mit der Folge BAB'ABCAC'AC in Richtung der c-Achse. (Die gestrichenen Buchstaben deuten Schichten im Verhältnis von einem Ba-Atom zu drei O-Atomen an.) Die Verfeinerung beruht auf 900 beobachteten Interferenzen; sie wurde bis $R=0{,}059$ getrieben. Das Ergebnis führte zur Bestätigung der Isotypie mit Magnetoplumbit PbFe₁₂O₁₉. Das Anionengerüst zeigt beträchtliche Störung der dichtesten Packung. Die Struktur ist ungewöhnlich in zweierlei Hinsicht. Erstens: Eisenatome, die ihrer Anzahl nach auf den horizontalen Spiegelungsebenen liegen sollten, sind daraus um 0,156 Å, statistisch in beiden c-Richtungen, herausgerückt. Zweitens: Einige Oktaeder um Fe-Atome kommen in Paaren mit gemeinsamer Fläche vor; sie bilden Koordinationsgruppen Fe₂O₃, in denen der Fe-Fe-Abstand um 0,45 Å vergrößert, der O-O-Abstand um 0,35 Å verkleinert ist. Eine beachtenswerte Ausnahme von einigen Pauling-Regeln. #### Abstract The crystal structure of barium ferrite, ${\rm BaFe_{12}O_{19}}$, has been determined and refined with the use of three-dimensional counter data. The symmetry is $P6_3/mmc$; the unit cell whose dimensions are a=5.893 Å and c=23.194 Å, contains two formula units. The structure is built up of ten close-packed (both cubic and hexagonal) layers of barium and oxygen atoms. The sequence of the layering in ^{*} Presented at the Austin, Texas, meeting of the American Crystallographic Association, March 1966. ^{**} Permanent address: Department of Geology, Southern Illinois University, Carbondale, Illinois. the c axial direction is BAB'ABCAC'AC. The primed letters denote layers consisting of one barium to three oxygen atoms. The refinement was based on 900 observed reflections and was taken to a final R value of $5.9^{\circ}/_{0}$. The result confirmed the isotypic relationship with magnetoplumbite, $PbFe_{12}O_{19}$. The anion framework was found to be significantly distorted from close-packed geometry. The structure is unusual in two respects: (1) one set of iron atoms, which are on the horizontal mirror planes, is in trigonal-bipyramidal coordination. This iron atom is split into two half atoms 0.156 Å away from the mirror plane, and (2) some iron octahedra occur in pairs which share a common face to form Fe_2O_9 coordination groups. The distortion that occurs in these groups increases the Fe—Fe distance by 0.45 Å, while the decrease in the O—O distance in the shared face is 0.35 Å. The compound is a notable exception to some of Pauling's rules. ## Introduction Barium ferrite (BaFe₁₂O₁₉) has a mixed hexagonal and cubic close-packed structure, with a barium atom substituting for an oxygen position, and iron atoms occupying interstices. It is one of the so-called hexagonal ferrites (ferroxdure) which have been extensively studied in recent years because of their high coercive force as compared with the well-known cubic ferrites (ferroxcube). Kohn and Eckart (1964 a, b; 1965) of this laboratory have discovered a number of hexagonal ferrite mixed-layer structures, most of which are based on the M phase (BaFe₁₂O₁₉) and Y phase (Ba₂Me₂²⁺ Fe₁₂O₂₂). Braun (1957) has refined the structure of the Y phase; however, no refinement of the M phase has been carried out. Therefore, it was decided to undertake the refinement of the crystal structure of the M phase in order to establish a basis for further analysis in the mixed-layer structures and also to aid in the magnetic study of the M phase where iron is partially substituted by other transition elements. A least-squares refinement using counter data was thought desirable, permitting the determination of more accurate atomic positions. ## Unit cell and space group Precise lattice parameters for the hexagonal unit cell were determined with the General Electric single-crystal orienter using Mo $K\alpha$ radiation, a 0.02 degree detector slit and a 1.0 degree take-off angle. The wavelength of Mo $K\alpha_1$ was taken to be 0.70926 Å. Values from four $h0\cdot 0$ reflections in the range 33° $<\theta<57$ ° were extrapolated against the Nelson-Riley (1945) function to obtain a=5.893 Å, and a similar extrapolation based on six $00\cdot l$ reflections in the range 44° $<\theta<72$ ° yielded a value of c=23.194 Å. Laue and Weissenberg photographs were consistent with the space groups $P\overline{6}_3mc$, P62c, and $P6_3/mmc$. The subsequent refinement of the structure has justified the choice of the centrosymmetric space group $P6_3/mmc$. ## Collection and corrections of intensity data Two sets of intensity data were collected. Both sets were counter data measured with a G. E. XRD-6 diffractometer equipped with a Tl-activated NaI scintillation counter and pulse-height analyzer. Mo $K\alpha$ radiation was used to record reflections within $(\sin \theta)/\lambda = 1.186$. The first set of data was two dimensional, namely $h0 \cdot l$ and $hk \cdot 0$, and a total of 578 reflections were measured by the stationary-crystal, stational-counter technique employing balanced filters. A constant counting rate of 40 seconds was employed. The $\alpha_1\alpha_2$ resolution was corrected by using a curve similar to that of Tulinsky et al. (1959). A standard reflection, 30 · 0, was measured at the beginning of each day throughout the experiment. The day-to-day fluctuations in this reflection were found to be less than $4^{\circ}/_{0}$. Also a few equivalent reflections were measured, and their differences did not exceed $10^{\circ}/_{\circ}$. A second set of intensity data, which was three-dimensional, was measured by the moving-crystal, moving-counter technique, and a total of 900 reflections were collected. The crystal used in this study was a sphere with a radius of 0.26 mm. The linear absorption coefficient is 155.9 cm⁻¹. The data were corrected for absorption and the usual Lorentz-polarization effect in order to obtain a set of structure factors. #### Structure determination and refinement Barium ferrite is isotypic with magnetoplumbite (PbFe₁₂O₁₉), whose structure has been determined by ADELSKÖLD (1938) from powder data. The positional parameters reported by him were used as a starting point for the subsequent refinement. The scattering curve for Fe⁺³ was taken from the *International tables for x-ray crystallography* (1962) and for Ba²⁺ from Thomas and Umeda (1957); both were corrected for the real part of dispersion. The form factor for O²⁻ was obtained from Suzuki (1960). The unusually large number of unobserved reflections (about 1/3 of all the reciprocal-lattice points within $2\theta = 115^{\circ}$) can be attributed to the fact that the majority of the atoms are located at or near special positions of the type (x, 2x, z) with $x = \frac{1}{3}$ and $\frac{1}{6}$. There was little or no contribution to reflections of the type h-k = 3n, l = 2n + l. Table 1. Final atomic coordinates and isotropic temperature factors Left columns are from three-dimensional data and right from two-dimensional data | Ato | m | Equi | point | x | | g | / | z | | В | | | |---|------------------|------------|------------|-----------|---------------|---------------|---------------|---------------|---------------|----------------------|-----------------------|--| | Ba | Ba | 2c | 2c | 1/3 | $\frac{1}{3}$ | 2/3 | <u>2</u>
3 | $\frac{1}{4}$ | 1/4 | $.31(1) { m \AA}^2$ | .46(5) Å ² | | | Fe(1) | Fe(1) | 2a | 2a | 0 | 0 | 0 | 0 | 0 | 0 | .20(3) | .36(10) | | | $\frac{1}{2} \mathrm{Fe}\left(2\right)$ | ${ m Fe}(2)$ | 4 e | 2 b | 0 | 0 | 0 | 0 | .2567(1) | $\frac{1}{4}$ | .36(5) | 1.30(11) | | | Fe(3) | $\mathbf{Fe}(3)$ | 4 <i>f</i> | 4 <i>f</i> | 2
3 | $\frac{2}{3}$ | $\frac{1}{3}$ | $\frac{1}{3}$ | .0272(1) | .0272(2) | .21(2) | .44(7) | | | Fe (4) | Fe(4) | 4 <i>f</i> | 4 <i>f</i> | 2/3 | $\frac{2}{3}$ | $\frac{1}{3}$ | $\frac{1}{3}$ | .1902(1) | .1901(2) | .22(2) | .35(7) | | | Fe(5) | Fe(5) | 12k | 12k | .1687(1) | .1691(5) | 2x | 2x | .1083(1) | .1082(1) | .23(1) | .41(3) | | | O(1) | O(1) | 4e | 4 e | 0 | 0 | 0 | 0 | .1501(4) | .1499(14) | .29(10) | .07(38) | | | O(2) | O(2) | 4 <i>f</i> | 4 <i>f</i> | 1/3 | $\frac{1}{3}$ | 2/3 | 2/3 | .0546(4) | .0528(12) | .46(11) | .75(35) | | | O(3) | O(3) | 6h | 6h | .8159(10) | .8166(34) | 2x | 2x | $\frac{1}{4}$ | 1 | .44(9) | .52 (23) | | | O(4) | O(4) | 12k | 12k | .8447(7) | .8480(21) | 2x | 2x | .0522(2) | .0521(5) | .31(6) | .78(16) | | | O(5) | O(5) | 12k | 12k | .4967(8) | .4980(24) | 2x | 2x | .1495(2) | .1495(6) | .41 (5) | .63(16) | | Table 2. Interatomic distances in $BaFe_{12}{\rm O}_{19}$ | (a) Fe—O distances: | | | |-----------------------------------|---|-----------------------------------| | Fe(1) octahedron | Fe-O(4) | $1.995\pm0.006{ m \AA}$ | | Fe(4) octahedron | Fe-O(3) | $2.060 \stackrel{-}{\pm} 0.007$ | | | -0(5) | 1.975 ± 0.008 | | Fe(5) octahedron | Fe-O(1) | 1.977 ± 0.005 | | | —O(2) | 2.091 ± 0.006 | | | -0(4) | 2.106 ± 0.004 | | | -0(5) | 1.928 ± 0.005 | | Weighted-mean Fe—O | octahedral distance: | 2.012 | | Fe(3) tetrahedra | $\mathrm{Fe-O}\left(2 ight)$ | 1.897 ± 0.011 | | | -O(4) | 1.936 ± 0.009 | | Fe(2) trigonal bipyramids | Fe' -O(1)* | 2.170 ± 0.011 | | | Fe''-O(1) | 2.472 ± 0.011 | | | $\mathrm{Fe'}$ $-\mathrm{O}(3)$ | 1.886 ± 0.010 | | | $\mathrm{Fe^{\prime\prime}}\mathrm{-O}\left(3 ight)$ | 1.886 ± 0.010 | | (b) Ba—O distances: | | | | | Ba-O(3) | 2.952 ± 0.001 | | | -O(5) | 2.865 ± 0.006 | | (c) O—O distances: | | | | | O(1) - O(3) | 2.982 ± 0.010 | | | $-\mathrm{O}\left(4\right)$ | 2.769 ± 0.010 | | | -0(5) | 2.947 ± 0.001 | | | O(2)— $O(4)$ | 2.949 ± 0.001 | | | -O(4) | 3.049 ± 0.001 | | | -0(5)** | 2.762 ± 0.011 | | | O(3)-O(3) | 3.255 ± 0.017 | | | -0(3) | 2.625 ± 0.017 | | | -0(5) | 2.849 ± 0.006 | | | O(4)-O(4)** | 2.746 ± 0.012 | | | -O (4) | 3.147 ± 0.012 | | • | -O(5) | 2.896 ± 0.009 | | | —O (5) | 2.872 ± 0.007 | | | O(5)—O(5) | 2.888 ± 0.014 | | | —O (5) | 3.005 ± 0.014 | | (d) Fe—Fe distances (within 3.5 Å | | | | | Fe(1)— $Fe(3)$ | 3.460 ± 0.001 | | | -Fe (5) | 3.045 ± 0.001 | | | $\mathrm{Fe}\left(3\right)$ — $\mathrm{Fe}\left(5\right)$ | 3.495 ± 0.001 | | | $\mathrm{Fe}\left(4\right)$ — $\mathrm{Fe}\left(4\right)$ | 2.778 ± 0.001 | | | Fe(5)— $Fe(5)$ | 2.910 ± 0.003 | | | -Fe (5) | 2.983 ± 0.003 | | * If Fo(2) is on the misses a | alama at a 1 th an T | 1- O/4) 0.040 Å | ^{*} If Fe(2) is on the mirror plane at $z=\frac{1}{4}$, then Fe-O(1) = 2.316 Å and Fe-O(3) = 1.893 Å. See the text for details. ^{**} Denotes shared edges. Table 3. Observed and calculated structure factors | h
2 | | 0 | F ₀
1419 | F _c
1548 | h
2 | k
1 | 4 | F ₀ | F _c | h | k | 8 | F _o | Fc | h | k I | F. | Fc | h
2 | k 1 | F. | Fc | |----------|---|---|--------------------------|--------------------------|----------|----------------|---|----------------|----------------|----------|---|----------|----------------|-------------|-------------|--------------|--------------|--------------|---------|--------------|--------------|--------------| | 3 | | v | 2131 | 2327 | 3 | 1 | • | 284 | 335
286 | 3
5 | 2 | | 443
321 | 395
274 | 7
1 | 5 11
0 12 | 379
341 | 419
428 | 3 | 0 16 | 375
1282 | 354
1217 | | 6 | | | 1133 | 1146 | 4 | | | 2040
270 | 2165
271 | 7 | | | 583
897 | 546
863 | 2 | | 1062
1126 | 1127
1075 | 4
6 | | 282
726 | 240
680 | | 8 | | | 605 | 578 | 5
7 | | | 1336 | 1369 | 3 | 3 | 8 | 353 | 330 | 4 | | 895 | 793 | 9 | | 550 | 542 | | 10 | | | 925
415 | 860
426 | 8
10 | | | 203
893 | 218
925 | 4 | | | 660
398 | 637
348 | 5
6 | | 393 | 348
228 | 1 | 1 16 | 1471 | 1398
1024 | | 12 | | | 1512 | 1624 | . 3 | 2 | 4 | 205 | 211 | 6 | | | 229 | 216 | 8 | | 463 | 410 | 7 | | 738 | 728 | | 1 | 1 | 0 | 2822
1825 | 2864
1801 | 5 | | | 296
1535 | 247
1611 | 7 | 4 | 8 | 365
1170 | 345
1175 | 9
10 | | 468
399 | 468
376 | 2 | 2 16 | 1044
231 | 993
193 | | 7
10 | | | 1146 | 1185 | 6 | | | 245 | 197 | 5 | 5 | 8 | 208 | 200 | 11 | | 204 | 184 | 5 | | 778 | 794 | | 4 | 2 | 0 | 788
923 | 809
907 | 7 | 3 | 4 | 213
1863 | 225
1973 | 6
7 | | | 456
277 | 450
248 | 1 2 | 1 12 | 1301
547 | 1240
471 | 8 | 3 16 | 401
980 | 405
976 | | 5 | | | 1339
665 | 1310
644 | 6 | | | 255
1258 | 268
1267 | .6 | 6 | 8 | 708
517 | 739
576 | 3 | | 341
894 | 286 | 6 | | 620 | 658 | | 8 | | | 2291 | 2355 | 7 | 4 | 4 | 965 | 996 | 1 2 | 0 | 9 | 1426 | 1446 | 4
5
7 | | 286 | 875
244 | 4
7 | 4 16 | 598
491 | 588
507 | | 10
11 | | | 332
563 | 376
576 | 5 | 5 | 5 | 1136
2071 | 1194
2209 | 4 | | | 1097
453 | 1014
398 | 7 8 | | 609
238 | 581
187 | 5 | 5 16
0 17 | 600
598 | 658
591 | | 3 | 3 | 0 | 1634 | 1679 | 4 | Ü | , | 1375 | 1342 | 7 | | | 267 | 282 | 2 | 2 12 | 347 | 313 | 2 | 0 17 | 1291 | 1214 | | 6 | | | 1061
742 | 1060
834 | 5
10 | | | 217
458 | 206
434 | 10 | | | 510
364 | 503
376 | 4
5 | | 683
744 | 617
686 | 4 | | 1012
408 | 977
368 | | 4 | 4 | 0 | 3055 | 3266 | 2 | 1 | 5 | 249 | 241 | 2 | 1 | 9 | 583 | 531 | 6 | | 527 | 482 | ś | | 593
232 | 559 | | 6
7 | | | 517
785 | 517
804 | 3
5 | | | 221
221 | 236
253 | 5 | | | 501
397 | 492
407 | 7 | 3 12 | 282
833 | 240
809 | 9
10 | | 232
463 | 218
452 | | 8 | 5 | 0 | 370
980 | 397
1065 | 6 | 2 | 5 | 1016
714 | 1016 | 6 | | | 327
243 | 342
262 | 4 | , | 315
222 | 280 | 2 | 1 17 | 432 | 371 | | 5
8 | | | 598 | 684 | 5 | 3 | 5 | 210 | 711
229 | 9 | | | 218 | 247 | 6 | | 529 | 155
543 | 5 | | 457
259 | 404
226 | | 6
7 | 6 | 0 | 1728
605 | 2009
742 | 6
8 | 4 | 5 | 537 | 542
389 | 3 | 2 | 9 | 397 | 417
801 | 7 | 4 12 | 200 | 152
390 | 6 | | 358
266 | 312 | | 1 | ó | 1 | 526 | 447 | ő | 0 | 6 | 345
1637 | 1709 | 6 | | | 835
583 | 586 | 7 | - | 435
425 | 429 | 3 | 2 17 | 494 | 232
445 | | 2 | | | 864
211 | 859
23 | 1 2 | | | 768
1788 | 285
1855 | 7 | 3 | 9 | 278
372 | 242
354 | 5 | 5 12 | 490
234 | 501
193 | 4
5 | | 858
206 | 821
218 | | 4 | | | 773 | 724 | 3 | | | 612 | 545 | 5 | _ | _ | 310 | 351 | 2 | 0 13 | 1218 | 1192 | 6 | | 634 | 639 | | 6 | | | 237
214 | 239
7 | 4
5 | | | 1204
287 | 1126
235 | 7 | 4 | 9 | 223 | 276
262 | 4
5 | | 900
365 | 832
368 | 5
8 | 3 17 | 265
271 | 234
271 | | 7 8 | | | 273
443 | 271
399 | 6 | | | 793
547 | 716 | 6 | | - | 429
298 | 451 | 8 | | 521 | 476 | 5 | 4 17 | 344 | 334 | | 10 | | | 366. | 343 | 9 | | | 201 | 558
213 | 8
6 | 5 | 9 | 207 | 338
201 | 10
2 | 1 13 | 412
413 | 372
416 | 6
1 | 0 18 | 521
1561 | 514
1358 | | 2 | 1 | t | 355
404 | 356
390 | 10
12 | | | 380
251 | 396
227 | 0 | ő | 10 | 262
356 | 364
496 | 3 | , | 318
301 | 323
301 | 3 | | 2049
892 | 2010
841 | | 5 | | | 291 | 300 | 12 | 1 | 6 | 777 | 663 | 2 | | | 1038 | 1048 | 5
6 | | 205 | 207 | 5
7 | | 795 | 758 | | 6 | | | 293
209 | 304
218 | 2 | | | 370
215 | 325
148 | 3 | | | 828
814 | 790
722 | 8 | 2 13 | 223
270 | 204
252 | 9
11 | | 998
415 | 988 | | 3 | 2 | 1 | 367 | 365 | 4 2 | | | 402 | 328 | 5 | | | 505 | 466 | 4 | 2 1) | 721 | 662 | 1 | 1 18 | 2326 | 453
2260 | | 4
6 | | | 590
435 | 567
418 | 2
4 | 2 | 6 | 1183
890. | 1139
863 | 6
8 | | | 235
448 | 224
393 | 6 | 3 13 | 549
279 | 498
312 | 2 | | 1281
1168 | 1136 | | 4 | 3 | 1 | 210 | 224 | 5 | | | 249 | 258 | 9 | | | 343 | 309 | 5 | | 212 | 221 | 4 | | 1732 | 1663 | | 5 | 4 | 1 | 278
223 | 289
252 | 6 | | | 605
214 | 612
155 | 10
11 | | | 376
248 | 338
289 | 6 | 4 13 | 434
559 | 437
587 | 5
6 | | 895
787 | 820
768 | | 6 | | | 223
376 | 377 | 8 | ~ | 6 | 470
325 | 397
244 | 1 | 1 | 10 | 972 | 938 | 2 | | 2369 | 2505 | 7 | | 1198 | 1154 | | 1 | 0 | 2 | 319
736 | 336
623 | 3 | 3 | 0 | 220 | 164 | 3 | | | 627
434 | 550
407 | 3 | | 797
1947 | 730
1860 | 8 | | 581
525 | 580
531 | | 2 | | | 488
762 | 403
782 | 6
4 | t _k | 6 | 203
651 | 185
603 | 4
5 | | | 699
398 | 679 | 6 | | 2016 | 1936
431 | 3 | 2 18 | 1069 | 1019 | | 4 | | | 217 | 158 | 6 | 4 | | 485 | 496 | 6 | | | 209 | 397
216 | 7
8 | | 448
1091 | 1064 | 5
7 | | 1 351
552 | 1356
583 | | 5 | 1 | 2 | 206
900 | 158
926 | 8
6 | 6 | 6 | 319
334 | 367
314 | 7 | | | 512
313 | 494
321 | 9
10 | | 360
813 | 312
811 | 3 | 3 18 | 1565
816 | 1547
744 | | 2 | • | - | 278 | 281 | 1 | ű | 7 | 2867 | 3050 | 10 | | | 339 | 317 | 1 | 1 14 | 929 | 834 | 5 | | 727 | 707 | | 3 | | | 413
652 | 418
630 | 2 | | | 401
217 | 323
147 | 2 | 2 | 0 1 | 252
273 | 214
265 | 2 | | 440
498 | 377
480 | 6 | | 1085
567 | 1106
565 | | 5 | | | 220 | 242 | 5 | | | 1776 | 1766 | 4 | | | 629 | 564 | 4 | | 678 | 628 | 8 | | 495 | 520 | | 6 | | | 311
439 | 324
405 | 11 | | | 1255
730 | 1233
781 | 5
6 | | | 511
486 | 495
435 | 5
6 | | 329
400 | 306
405 | 5
7 | 4 18 | 681
907 | 681
918 | | 10 | 2 | 2 | 248
472 | 240
480 | 2 | 1 | 7 | 2465
2126 | 2604
2187 | 7
3 | 3 | | 351
656 | 352
667 | 7 | | 476
254 | 451
295 | 5 | 5 18 | 964 | 1010 | | 3
5 | - | - | 396 | 486 | 5 | | | 1606 | 1585 | 4 | , | 10 | 411 | 414 | 2 | 2 14 | 2751 | 2810 | 2 | 0 19 | 487
960 | 523
853 | | 9 | 3 | 2 | 207
584 | 252
583 | 6
8 | | | 1330
1029 | 1339 | 5
6 | | | 245
414 | 283
416 | 3 | | 529
1978 | 528
1524 | 4
8 | | 731
378 | 686
380 | | 5 | - | _ | 239 | 254 | 9 | | _ | 872 | 904 | 7 | | | 242 | 279 | 5 | | 503 | 479 | 10 | | 276 | 289 | | 5 | 4 | 2 | 370
290 | 375
315 | 7 | 2 | 7 | 1843
1102 | 1882
1099 | 6 | 4 | 10 | 211
407 | 214
370 | 8 | | 1202
1232 | 1158
1258 | 6 | 2 19 | 621
433 | 575
439 | | 7 | 5 | 2 | 272
327 | 282
338 | 9 | 3 | 7 | 781
1438 | 843
1475 | 7
5 | e | 10 | 298
434 | 289
457 | 9 | 3 14 | 299
634 | 327
607 | 6 | 4 19
0 20 | 358 | 342
2799 | | 5
2 | 0 | 3 | 2259 | 2605 | 5 | , | - | 1268 | 1261 | 6 | | | 293 | 311 | 3
5 | 3 14 | 315 | 337 | 1 | 0 20 | 2917
496 | 2799
486 | | 3 | | | 360
1886 | 328
1932 | 7 8 | | | 934
815 | 984
872 | 6 | | 10
11 | 222
1126 | 256
1140 | 8 | 4 14 | 261
1692 | 309
1693 | 3 | | 418
375 | 396
350 | | 5 | | | 327 | 315 | 5 | 4 | 7 | 1070 | 1112 | 4 | ٥ | | 2922 | 2947 | 5 | 4 14 | 373 | 390 | 6 | | 1641 | 1549 | | 8 | | | 1048
289 | 987
265 | 6 | 5 | 7 | 857
801 | 914
812 | 5
7 | | | 815
522 | 750
487 | 6
7 | | 937
328 | 967
290 | 7
11 | | 257
228 | 251
212 | | 1 Ó | | _ | 802 | 788 | ó | 0 | 8 | 2726 | 2922 | 8 | | | 1606 | 1570 | 5 | 5 14 | 382 | 409 | 1 | 1 20 | 510 | 448 | | 4 | 1 | 3 | 212
322 | 204
212 | 1 2 | | | 877
382 | 973
316 | 10
11 | | | 1244
341 | 1226
335 | 1
5 | 0 15 | 994
618 | 915
571 | 2 | | 440
367 | 437
358 | | 4 | 2 | 3 | 224
1480 | 181
1529 | 3 | | | 348
263 | 381
141 | 2 | 1 | 11 | 1113 | 1025 | 7 | | 494 | 477 | 4 | | 408 | 372 | | 5 | 2 |) | 269 | 283 | 4
5 | | | 853 | 793 | 5 | | | 952
746 | 724 | 11
2 | 1 15 | 217
853 | 215
801 | 5
6 | | 282
243 | 278
241 | | 6 | | | 1110
257 | 1127
249 | 6
7 | | | 1420
211 | 1361
152 | 6 | | | 582
520 | 586
498 | 3 | - | 785
623 | 763
603 | 7
8 | | 302
229 | 309
211 | | 4 | 3 | 3 | 255 | 272 | 9 | | | 201 | 177 | 9 | | | 405 | 432 | 6 | | 558 | 546 | 2 | 2 20 | 2239 | 2151 | | 6 | 4 | 3 | 213
866 | 199
902 | 11
12 | | | 441
586 | 438
603 | 3 | 2 | 11 | 764
2337 | 749
2361 | 8 | | 427
402 | 400 | 3 | | 331
269 | 329
271 | | 7 | - | , | 268 | 232 | 1 | 1 | 8 | 532 | 421 | 6 | | | 1777 | 1765 | 3 | 2 15 | 708 | 677 | 5
7 | | 263 | 258 | | 8 | 0 | 4 | 639
442 | 728
353 | 2 | | | 1129
713 | 1067
665 | 7
9 | | | 483
294 | 484
307 | 7 | | 313
319 | 349
322 | 8 | 3 20 | 1015
371 | 1011 | | 3 | | - | 2692 | 2846 | 4 | | | 371 | 343 | 4 | 3 | 11 | 666 | 659 | í, | 3 15 | 513 | 512 | 4 | , | 371
315 | 293 | | 5 | | | 331
318 | 301
291 | 5
6 | | | 620
320 | 566
276 | 7 | | | 577
440 | 604
499 | 5
7 | | 532
426 | 541
430 | 5
6 | | 208
238 | 218
245 | | 8 | | | 213
1071 | 166 | 7
8 | | | 256
475 | 239
433 | 5 | 4 | 11 | 345 | 372
449 | 8 | 4 15 | 345
461 | 368 | 7 | 4 20 | 211 | 182 | | 10 | | | 214 | 1079
176 | 9 | | | 251 | 211 | 6 | | | 458
1377 | 1432 | 5
6 | 5 15 | 299 | 442
305 | 5 | | 1348
238 | 1365
231 | | 1 | 1 | 4 | 2860 | 3454 | 2 | 2 | 8 | 2090 | 2079 | 6 | 5 | 11 | 426 | 417 | 0 | 0 16 | 1348 | 1315 | 5 | 5 20 | 250 | 304 | Table 3. (Continued) | h | k 1 | Fo | Fc | h | k 1 | Fo | Fe | h | k 1 | F. | F _c | h | k 1 | F. | F _c | h | k l | F. | Fc | |-----|------|-------------|-------------|---------|------|--------------|--------------|----------------|--------------|-------------|----------------|--------|--------------|--------------|----------------|--------|--------------|------------|--------------------| | 6 | 5 20 | 233 | 219 | 3 | 2 24 | 224 | 211 | 4 | 2 28 | 229 | 235 | 4 | 0 33 | 489 | 465 | 3 | 2 39 | 214 | 178 | | 1 | 0 21 | 1448 | 1271 | 4 | | 495 | 489 | 6 | 2 20 | 210 | 179 | 8 | 0)) | 316 | -317 | , | 2)9 | 1040 | 1077 | | 2 | | 224 | 234 | 5 | | 351 | 368 | 7 | | 382 | 403 | 4 | 2 33 | 415 | 417 | 4 | 3 39 | 241 | 230 | | 4 | | 220 | 200 | 6 | | 410 | 431 | 4 | 3 28 | 382 | 389 | 6 | | 312 | 358 | 2 | 0 40 | 265 | 238 | | 5 | | 842
799 | 815 | 8 | ~ ~ | 615 | 618 | 4 | 4 28 | 1121 | 1164 | 0 | 0 34 | 602 | 566 | 3 | | 581 | 571 | | 6 | 1 21 | 1214 | 771
1102 | 3
6 | 3 24 | 451
289 | 443
305 | 1
5 | 0 29 | 1149
844 | 1046
791 | 1 2 | | 349
884 | 306
800 | 6 | | 218 | 232
366 | | 3 | 1 21 | 1146 | 1068 | 4 | 4 24 | 753 | 725 | 7 | | 709 | 707 | 4 | | 803 | 714 | 1 | 1 40 | 394
648 | 606 | | 5 | | 884 | 838 | 5 | | 220 | 175 | 2 | 1 29 | 1066 | 964 | 6 | | 400 | 391 | i, | 1 40 | 550 | 542 | | 6 | | 815 | 814 | 6 | | 364 | 382 | 3 | | 1007 | 925 | 7 | | 295 | 281 | 2 | 2 40 | 523 | 474 | | 8 | | 570 | 568
608 | 5 | 5 24 | 283 | 303 | 5 | | 849 | 783 | 8 | | 513 | 519 | 4 | | 201 | 225 | | 3 | 2 21 | 594
1050 | 1010 | 1
2 | 0 25 | 953
2875 | 827
2699 | 6
8 | | 763 | 741 | 2 | 1 34 | 257 | 234
280 | 5 | 7 10 | 448 | 465 | | á | | 220 | 187 | 4 | | 2349 | 2295 | 3 | 2 29 | 574
910 | 577
879 | 5 | | 298
211 | 207 | 3 | 3 40
0 41 | 549
499 | 545
45 3 | | 7 | | 524 | 525 | 5 | | 749 | 681 | 7 | , | 562 | 573 | 6 | | 283 | 263 | 2 | | 317 | 293 | | 4 | 3 21 | 756 | 731 | 7 | | 477 | 435 | l _k | 3 29 | 712 | 723 | 2 | 2 34 | 513 | 493 | 4 | | 276 | 250 | | 5 | | 748
594 | 766
603 | 8
10 | | 1517
1164 | 1489
1197 | 5 | 4 29 | 714
665 | 710
663 | 3 | | 331
664 | 309 | 5 | | 352 | 338 | | 5 | 4 21 | 717 | 715 | 20 | 1 25 | 916 | 811 | 0 | 0 30 | 979 | 927 | 6 | | 532 | 653
544 | 7
2 | 1 41 | 349
426 | 347
416 | | 6 | 7 ~1 | 211 | 188 | 3 | 1 2) | 795 | 737 | 1 | 0 ,0 | 389 | 333 | 5 | 3 34 | 229 | 226 | - 3 | 1 41 | 431 | 426 | | 6 | 5 21 | 437 | 457 | 5 | | 694 | 667 | 2 | | 288 | 236 | í, | 4 34 | 326 | 355 | ś | | 375 | 372 | | 0 | 0 22 | 2109 | 2012 | 6 | | 574 | 537 | 3 | | 216 | 230 | 1 | 0 35 | 282 | 278 | 3 | 2 41 | 449 | 413 | | 1 2 | | 452
1087 | 388 | 8 | 2 25 | 490 | 517
624 | 4 | | 237 | 200 | 2 | | 482 | 542 | 4 | | 254 | 214 | | 3 | | 358 | 947
328 | 3 | 2 25 | 700
2073 | 2008 | 5
6 | | 287
632 | 278
597 | 4
8 | | 525
457 | 519
468 | 0 | 0 42 | 588
491 | 585
460 | | 4 | | 869 | 790 | 6 | | 1582 | 1632 | 1 | 1 30 | 247 | 258 | 3 | 1 35 | 243 | 261 | 3 | | 503 | 509 | | 6 | | 1312 | 1237 | 7 | | 499 | 499 | 2 | | 342 | 323 | 5 | | 210 | 222 | 4 | | 402 | 421 | | 7 | | 388 | 379 | 4 | 3 25 | 626 | 625 | 3 | | 264 | 303 | 6 | | 200 | 222 | 6 | | 381 | 435 | | 10 | | 541 | 528 | 5 | | 538 | 577 | 5 | | 294 | 278 | 3 | 2 35 | 208 | 244 | 1 | 1 42 | 539 | 519 | | 1 | 1 22 | 407
422 | 395
357 | 7
5 | 4 25 | 481
429 | 514
413 | 2 | 2 30 | 216
863 | 226
790 | 6 | | 481
446 | 500
475 | 4 2 | 2 42 | 482
516 | 481
527 | | 2 | | 237 | 223 | 6 | 12) | 1377 | 1382 | 3 | ەر چ | 265 | 263 | 5 | 3 35 | 222 | 223 | 3 | 3 42 | 447 | 460 | | 3 | | 323 | 332 | 0 | 0 26 | 496 | 305 | Ź | | 224 | 215 | Ó | 0 36 | 2119 | 1979 | í | 0 43 | 906 | 878 | | 4 | | 301 | 292 | 1 | | 416 | 340 | 3 | 3 30 | 214 | 239 | 1 | | 208 | 173 | 5 | | 770 | 799 | | 6 | | 338
207 | 321
213 | 2 | | 385
240 | 406
250 | 4
5 | | 269
234 | 262
243 | 2 | | 1065
859 | 961 | 7 2 | | 578 | 646 | | 2 | 2 22 | 1735 | 1640 | 4 | | 401 | 339 | 4 | 4 30 | 522 | 524 | 4 | | 959 | 753
866 | 3 | 1 43 | 879
808 | 867
817 | | 3 | | 425 | 413 | 5 | | 304 | 290 | î | 0 31 | 321 | 330 | 6 | | 1504 | 1490 | ź | 2 43 | 811 | 771 | | 4 | | 768 | 691 | 6 | | 309 | 261 | 2 | | 1029 | 942 | 8 | | 615 | 621 | ó | 0 44 | 242 | 215 | | 5 | | 266 | 234 | 7 | | 218 | 173 | 4 | | 894 | 822 | 9 | | 466 | 461 | 3 | | 231 | 241 | | 8 | | 562
836 | 548
856 | 1 2 | 1 26 | 285
345 | 282
336 | 5 | | 274
289 | 269
276 | 1 | 1 36 | 898
775 | 802
705 | 1 | 1 44 | 273 | 255 | | 3 | 3 22 | 297 | 287 | 3 | | 349 | 307 | á | | 534 | 524 | 2 | 2 36 | 1837 | 1779 | 2 | 2 44 | 216
215 | 225
192 | | 5 | | 229 | 237 | á | | 200 | 236 | 10 | | 359 | 403 | 4 | - ,- | 797 | 789 | 2 | 0 45 | 741 | 747 | | - 6 | | 205 | 189 | 5 | | 290 | 286 | 2 | 1 31 | 302 | 294 | 5 | | 652 | 603 | 4 | | 678 | 679 | | 4 | 4 22 | 1094
331 | 1108
340 | 6
8 | | 248
215 | 220
235 | 3
5 | | 305
278 | 276
228 | 6
3 | 3 36 | 646
705 | 662
699 | 0 | 0 46 | 466
427 | 529
428 | | 6 | | 494 | 482 | 2 | 2 26 | 357 | 281 | 6 | | 239 | 235 | 4 | 3 36
4 36 | 1338 | 1379 | 1 2 | | 200 | 179 | | 1 | 0 23 | 476 | 447 | 3 | | 302 | 259 | 3 | 2 31 | 299 | 293 | 1 | 0 37 | 283 | 269 | 3 | | 320 | 324 | | 4 | | 356 | 357 | 7 | | 220 | 229 | 4 | | 743 | 724 | 2 | | 203 | 243 | 5 | | 399 | 440 | | 5 | | 443 | 444 | 3 | 3 26 | 233 | 246 | 6 | | 559 | 584 | 5 | | 281 | 260 | 6 | | 399 | 490 | | á | | 208
230 | 190
209 | 5 | | 257
252 | 272
244 | 7 | 3 31 | 226
247 | 237
242 | 2 | 1 37 | 283
248 | 282
246 | 1 2 | 1 46 | 360
471 | 346
452 | | 2 | 1 23 | 496 | 486 | 7 | | 201 | 226 | 5 | , ,, | 232 | 197 | 5 | | 239 | 235 | 3 | | 407 | 404 | | 3 | | 390 | 389 | 4 | 4 26 | 261 | 262 | 5 | 4 31 | 271 | 255 | 3 | 2 37 | 206 | 204 | ž | 2 46 | 464 | 517 | | 5 | | 364 | 369 | 1 | 0 27 | 589 | 544 | 0 | 0 32 | 329 | 261 | 4 | 3 37 | 260 | 237 | 1 | 0 47 | 288 | 268 | | 8 | | 262
272 | 246
277 | 5
7 | | 503
314 | 461
307 | 1 2 | | 511
369 | 467
292 | 0 | 0 38 | 938
341 | 871
308 | 2 | | 713 | 730 | | 3 | 2 23 | 302 | 304 | 2 | 1 27 | 585 | 535 | 3 | | 1632 | 1501 | 2 | | 335 | 310 | 5 | | 635
265 | 678
274 | | 4 | _ | 299 | 307 | 3 | , | 520 | 478 | 4 | | 219 | 270 | 4 | | 291 | 291 | ź. | 1 47 | 327 | 286 | | 6 | | 239 | 250 | 5 | | 438 | 422 | 5 | | 388 | 364 | 5 | | 227 | 196 | 0 | 0 48 | 629 | 634 | | 7 | 3 23 | 284 | 333 | 6
8 | | 340 | 347 | 7 | | 347 | 315 | 6 | | 725 | 724 | 3 | | 320 | 328 | | 5 | , 2) | 379
257 | 391
272 | 3 | 2 27 | 291
443 | 307
421 | 9 | 1 32 | 916
1729 | 938
1587 | 7 | | 239
211 | 260
214 | 6
1 | 1 48 | 440
357 | 517
340 | | ź | | 230 | 237 | ź | 2 21 | 315 | 332 | 2 | 1)2 | 476 | 431 | 2 | 1 38 | 275 | 255 | 2 | 0 49 | 634 | 713 | | 0 | 0 24 | 1297 | 1171 | 4 | 3 27 | 417 | 411 | 3 | | 457 | 418 | 3 | - ,- | 289 | 278 | 4 | ٠., | 606 | 679 | | 1 2 | | 279 | 269 | 5 | | 328 | 352 | 4 | | 1454 | 1357 | 5 | | 233 | 218 | 0 | 0 50 | 1195 | 1364 | | 3 | | 609
508 | 640
516 | 7
5 | 4 27 | 277
292 | 289
285 | 5 | | 390
327 | 360 | 6 | 0.70 | 246 | 241 | 1 2 | | 339 | 369 | | 4 | | 530 | 559 | ó | 0 28 | 1978 | 1832 | 7 | | 1049 | 327
1078 | 3 | 2 38 | 859
322 | 811
298 | 3 | | 638
250 | 689
221 | | 6 | | 856 | 777 | 2 | | 331 | 300 | 2 | 2 32 | 233 | 226 | 4 | | 252 | 268 | 4 | | 570 | 637 | | 7 | | 229 | 184 | 4 | | 283 | 257 | 3 | | 411 | 400 | 4 | 3 38 | 209 | 187 | 5 | | 255 | 281 | | 8 | | 375 | 391 | 5
6 | | 437 | 432 | 5 | | 1184 | 1190 | 1 | 0 39 | 257 | 241 | 2 | 0 51 | 213 | 237 | | 10 | | 230
340 | 253
371 | 8 | | 1270
208 | 1271 | 6 | 3 32 | 213
1305 | 232
1304 | 2 | | 1364
1196 | 1275
1167 | 4 3 | 0 52 | 205
420 | 206
421 | | 1 | 1 24 | 610 | 565 | 1 | 1 28 | 231 | 207 | 4 | J)2 | 327 | 340 | 5 | | 271 | 248 | 2 | 0 53 | 420 | 503 | | 3 | | 231 | 213 | 2 | | 417 | 385 | 5 | | 373 | 318 | 8 | | 835 | 863 | 1 | 0 54 | 374 | 444 | | 7 | | 474 | 457 | 5 | | 320 | 299 | 6 | | 955 | 1034 | 2 | 1 39 | 233 | 262 | 2 | - | 277 | 317 | | 2 | 2 24 | 344
1073 | 339
973 | 2 | 2 28 | 292
1687 | 306
1582 | 5 | 4 32
0 33 | 308
557 | 285
521 | 3
5 | | 200
216 | 226
228 | | | | | | - | • | ~, | ,,, | - | 0 | 1001 | 1,02 | - | ~ ,, | 221 | 122 | , | | 410 | 220 | | | | | The two-dimensional data were used initially in the refinement. Using the full-matrix least-squares program of Busing et al. (1962), as translated to extended ALGOL by Gallaher and Kay (1964), convergence was achieved in 6 cycles using unit weight. The number of observed reflections per variable is about 15. In the last cycle, individual isotropic temperature factors were varied. The value of R was $11.7^{\circ}/_{\circ}$ for 395 observed reflections. The final parameters are given in the right columns of Table 1. As seen in the table, the temperature factors of all iron atoms are within a narrow range of 0.36 to 0.44, and that of oxygen from 0.52 to 0.75. Two exceptions are noted, however. They are: $B \, [\text{Fe}(2)] = 1.30$ and $B \, [\text{O}(1)] = 0.07$. This iron atom is in five-fold coordination, and O(1) atoms are equatorially bonded to Fe(2). When this paper was presented at the Austin meeting of the American Crystallographic Assocation on March 1966, Dr. David Harker pointed out that the Fe(2) atom might be disordered. At about the same time, two of us (A.J.P. and W.D.T.) had calculated the two-dimensional Fourier map and found that the Fe(2) peak was elongated along the c axis, supporting Dr. Harker's suggestion. When the three-dimensional scan data became available, the refinement was initiated with the coordinates obtained from the two-dimensional refinement. Also the Fe(2) atom was moved 0.2 Å away from the horizontal mirror plane (from equipoint 2b to 4e, Fig. 1. Packing model of oxygen (and barium) atoms thus making them half atoms), the R factor dropped immediately, and the temperature factors of Fe(2) and O(1) also became very reasonable. The final R value for the 900 observed reflections was $5.9^{\circ}/_{\circ}$. The parameters from the last cycle are given in the right columns of Table 1. The corresponding bond lengths, calculated from the three-dimensional refinement, are listed in Table 2. The observed and calculated structure factors are in Table 3. ## Description of the structure The structure of barium ferrite can be derived from that of magnetite. It might be visualized as composed of four double layers of oxygens, plus two single layers, in which \(\frac{1}{4} \) of the oxygens are replaced by barium atoms. The latter two layers are interleaved between the first and the second, and the third and fourth double layers, delineating the magnetite block (the second and the third). These two layers are located at the horizontal mirror planes at $\frac{1}{4}c$ and $\frac{3}{4}c$. Figure 1 shows a packing model of oxygen (and barium) atoms. The iron atoms are in the octahedral and tetrahedral holes as in magnetite*, except for one set of iron atoms which are coordinated to five oxygens. Thus the unit cell contains eighteen octahedral, two trigonal bipyramidal, and four tetrahedral iron atoms. They are illustrated in Fig. 2. The Fig. 2a. Bottom: C layer (belonging to the unit cell below). Top: B layer. Smaller solid circles are octahedral Fe atoms, and the larger tetrahedral iron Fig. 2b. Bottom: B layer (the same B as in Fig. 2a). Top: A layer Fig. 2c. Bottom: A layer (the same A as in Fig. 2b). Top: B' layer. The small solid circles at the unit-cell corners are 5-fold Fe atoms Fig. 2. A portion of layer stacking in BaFe₁₂O₁₉ showing 6-, 5-, and 4-fold coordinations of iron atoms in projection along the c axis packing of the oxygen atoms in the middle two double layers are cubic, and in the plates above and below the magnetite block, starting from the barium-containing layers, it is hexagonal close packing. Thus the notation, BAB'ABCAC'AC, can be used to denote the layer sequence along the c axis, where the primed letters indicate Ba-substituted layers. ^{*} No distinction is made here to distinguish between normal and inverse spinel, for no divalent iron is involved. Thus "magnetite" structure, as used here, refers to the degree of filling of octahedral and tetrahedral interstices only. There are two remarkable structural features in barium ferrite; namely the five-fold coordination of Fe(2) and the sharing of Fe(4) octahedral faces. These unusual coordinations can be seen clearly in the polyhedral model of Fig. 3. For the sake of clarity, however, four octahedra, at 0.00, 0.00, 0.00, 0.00, and Fig. 3. Polyhedral model of ${\rm BaFe_{12}O_{19}}$ the mirror planes at $\frac{1}{4}c$ and $\frac{3}{4}c$. In the Fe₂O₉ coordination group, there are two Fe(4) atoms, three O(3) atoms in the shared face, and six O(5) atoms in layers of three, above and below the Fe(4) atoms. The theoretical and observed distances between the octahedral centers are shown in Table 4. The per cent shortening of 0.71 and 0.58 are given by Pauling (1960, p. 560). The last column shows the percentage distortion due to cation-cation repulsion from the | Shared
element | Theoretical distance | Observed
distance | Distortion | |-----------------------|-------------------------------------|-----------------------------------|--------------| | Corner* | $4.00 imes 1.00 = 4.00 ext{\AA}$ | $4.00 imes 1.00 = 4.00 ext{Å}$ | 00/0 | | Edge | $4.00 \times 0.71 = 2.84$ | $4.00 \times 0.74 = 2.97$ | $4^{0}/_{0}$ | | \mathbf{Face} | 4.00 imes 0.58 = 2.32 | 4.00 imes 0.69 = 2.77 | 190/0 | Table 4. Fe-Fe distances for octahedra sharing various elements undistorted polyhedra. Since no octahedra share corners in barium ferrite, the theoretical Fe-Fe distance is obtained by using Pauling's octahedral radii or $r(\text{Fe}^{3+}) = 0.60 \text{ Å}$ and $r(\text{O}^{2-}) = 1.40 \text{ Å}$. The compensating distortion increases almost five times as polyhedra goes from edge-sharing to face-sharing. This trend is also found to be the case in hexagonal barium titanate (Burbank and Evans, 1948). The O—O distances are all reasonable, except one short distance of 2.625 Å and one long distance of 3.225 Å. The shortest distance is exhibited by the O(3)-O(3) in the shared face, and the longest between the O(3) atoms not sharing the face. Looked at differently, the six oxygen atoms surrounding the central barium atom are not arranged as a regular hexagon, but rather as a truncated triangle, with short edges alternating with long edges, reminiscent of the Kekule's structure of benzene. On the average, the intralayer (same layer) O—O distances are slightly longer than the interlayer (between the layers above and below) distances, as exhibited in many closepacked structures. The charges surrounding the anions have been calculated and are listed in Table 5. It is noted that the charge surrounding the O(2) and O(4) are in excess of $10^{\circ}/_{\circ}$, respectively. These two oxygen atoms make up the layers sandwiching the plane at $c = \frac{1}{2}$. The disposition of Fe(2) atom can be described in two different ways. On the one hand, if the disorder of the iron atom is disregarded for the time being, the coordination is that of a trigonal bipyramid, with the Fe—O distance of 1.893 Å (equatorial) and 2.316 Å (apical). The trigonal bipyramidal coordination of Fe³⁺ is a unique feature of the M phase, not found in other hexagonal ferrites. Its bonding is usually designated as d^3sp with some dsp^3 hybrids. However, the lengthening of the apical Fe-O distances, indicating a localized ionic character, might considerably affect the nature of this hybrid bond. On the other hand, as pointed out in the structure-determination section, the Fe(2) atom is split into two half-atoms with the Fe-Fe ^{*} Not observed in BaFe₁₂O₁₉. Table 5. Electrostatic-valency table | Anion | Balancing cations | Charges of cation
Coordination number | Total charges surrounding anic | | | |-------|-----------------------------------|--|--------------------------------|--|--| | O(1) | ${ m Fe}(2)$ | 33.5 | 2.10 | | | | , , | Fe(5) | 3. | | | | | | Fe(5) | 3.6 | | | | | | Fe(5) | 3
3
6
3
6
3
6 | | | | | O(2) | $\mathbf{Fe}(3)$ | 3 4 | 2.25 | | | | | Fe(5) | 3.6 | | | | | | Fe(5) | 3 8 | | | | | | Fe(5) | 3
4
3
6
3
6
3
6 | | | | | O(3) | Ва | 2. | 1.93 | | | | | Ba | 2 | | | | | | $\mathbf{Fe}(2)$ | 3 5 | | | | | | Fe(4) | 3.6 | | | | | | $\operatorname{Fe}(4)$ | 2
1 2
1 2
3
5
6
3
6 | | | | | O(4) | $\mathbf{Fe}(1)$ | 3 6 | 2.25 | | | | | Fe(3) | 3. | | | | | | Fe(5) | 3 6 | | | | | | $\mathbf{Fe}(5)$ | 3
6
3
4
3
6
3
6 | | | | | O(5) | Ba | $\frac{2}{12}$ | 1.67 | | | | | $\operatorname{Fe}\left(4\right)$ | 3. 6 | | | | | | Fe(5) | 3; 6
3; 6
3; 6
3; 6 | | | | | | Fe(5) | 3 6 | | | | distance of 0.312 Å. Considered in this way, we have a case of two tetrahedra sharing a face, a clear violation of Pauling's third rule. Therefore the Fe(2) atom is either oscillating along the c axis or is statistically distributed on two sites displaced 0.156 Å from the central position on the mirror plane. Since the magnetic properties of barium ferrite are of some interest, a speculation on its plausible magnetic structure is therefore in order. A theoretical value of $20\mu_B$ per formula unit can be obtained, for instance if Fe(1), Fe(2), and Fe(4) are coupled ferromagnetically, giving $+4\mu_B$, and between Fe(3) and Fe(5), giving $-20\mu_B$. But this spin arrangement would make the linear Fe(1)—O—Fe(2) coupling ferromagnetic, in violation of the superexchange interaction. Thus, a possibility arises that $\frac{1}{2}$ of Fe(3) and Fe(4), and $\frac{1}{6}$ of Fe(5) might couple ferromagnetically with Fe(2), still giving the net moment of $20\mu_B$, though the magnetic cell would then be doubled in this spin configuration. ## Acknowledgments The authors are grateful to Dr. J. A. Kohn for suggesting the problem, and for his advice and encouragement throughout this investigation, to Mr. R. O. Savage for growing the crystal, to Mr. D. W. Eckart for grinding the sphere and his assistance in some of the data processing, to Mr. A. Tauber for Laue and Weissenberg photographs of barium ferrite, to Mr. Eskander Nahouray of Southern Illinois University for the illustrations, and to Dr. H. A. Levy of Oak Ridge Laboratory for his instructions in coding the PATCH subroutine. #### References - V. ADELSKÖLD (1938), X-ray studies on magneto-plumbite, PbO · 6 Fe₂O₃, and other substances resembling "beta-alumina," Na₂O · 11 Al₂O₃. Ark. Kem Mineralog. Geol. Ser. A 12, No. 29, 1—9. - P. B. Braun (1957), The crystal structures of a new group of ferromagnetic compounds. Philips Res. Rep. 12, 491—548. - R. D. Burbank and H. T. Evans, Jr. (1948), The crystal structure of hexagonal barium titanate. Acta Crystallogr. 6, 330—336. - W. R. Busing, K. O. Martin and H. A. Levy (1962), OR FLS, a FORTRAN crystallographic least-squares program. Oak Ridge National Laboratory. ORNL-TM-305. - L. J. Gallaher and M. I. Kay (1964), Technical Report No. 1, Project B-270, Georgia Institute of Technology. - J. A. Kohn and D. W. Eckart (1964a), Stacking relations in the hexagonal ferrites and a new series of mixed-layer structures. Z. Kristallogr. 119, 454— 467 - J. A. Kohn and D. W. Eckart (1964b), New hexagonal ferrite, establishing a second structural series. J. Appl. Physics 35, 968-969. - J. A. Kohn and D. W. Eckart (1965), Mixed-layer polytypes related to magnetoplumbite. Amer. Mineralogist 50, 1371—1380. - J. B. Nelson and D. P. Riley (1945), An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals. Proc. Physic. Soc. [London] 57, 160—177. - L. Pauling (1960), The nature of the chemical bond. 3rd Ed. Cornell University Press, Ithaca, N. Y. - J. Suzuki (1960), Atomic scattering factor for O²⁻. Acta Crystallogr. 13, 279. - L. H. THOMAS and K. UMEDA (1957), Atomic scattering factors calculated from the TFD atomic model. J. Chem. Physics 26, 293-303. - A. Tulinsky, C. R. Worthington and E. Pignataro (1959), Basic beryllium acetate: Part I. The collection of intensity data. Acta Crystallogr. 12, 623—266.