Zeitschrift für Kristallographie, Bd. 130, S. 139-147 (1969)

The crystal structure of manganese metagermanate, MnGeO $_3$ *

By J. H. FANG ** and W. D. TOWNES

Institute for Exploratory Research, US Army Electronics Command Fort Monmouth, New Jersey

and P. D. ROBINSON

Southern Illinois University, Carbondale, Illinois

(Received 20 November 1968)

Auszug

Die Kristallstruktur von MnGeO₃ wurde auf Grund von zwei unabhängigen Meßreihen der Intensitäten von hkl-Interferenzen bis zum Wert R = 0,08verfeinert. Die Gitterkonstanten sind a = 19,267 Å, b = 9,248 Å, c = 5,477 Å; Z = 16; Raumgruppe *Pbca*. Die Verbindung ist isotyp mit Enstatit, MgSiO₃. Die Ketten von GeO₄-Tetraedern werden durch Oktaeder um die Mn-Atome verbunden. Die mittleren Abstände sind: Ge-O = 1,75 Å und Mn-O = 2,21 Å.

Abstract

The crystal structure of manganese metagermanate, MnGeO₃, has been refined. Two independent sets of three-dimensional x-ray intensities were measured. The crystallographic data are: a = 19.267 Å, b = 9.248 Å, c = 5.477 Å; Z = 16 and space group *Pbca*. The compound is isotypic with enstatite, MgSiO₃. Using the positional parameters of enstatite as a starting point, the structure was refined to $R_F = 0.08$.

The essential feature of the structure is the linkage of GeO_4 tetrahedra to form single chains running parallel to the *c* axis. The chains are bound together by manganese octahedra. There are two crystallographically different chains, arranged with the vertices of alternate tetrahedra pointing in opposite directions. Average Ge-O and Mn-O distances are 1.75 Å and 2.21 Å, respectively.

Introduction

Crystal structures of pyroxene-group minerals are of great interest because they form an important group of rock-forming ferromagnesian silicates. Recent development of single-crystal counter diffractometers, coupled with high-speed electronic computers, rejuvenated interest in

^{*} Presented at the ACA Atlanta, Georgia Meeting, January 1967.

^{**} Permanent address: Department of Geology, Southern Illinois University, Carbondale, Illinois 62903.

System:	Orthorhombic
Space group:	Pbca
Cell parameters:	$egin{array}{rcl} a &= 19.267 \pm.006 \ { m \AA} \ b &= 9.248 \pm.003 \ c &= 5.477 \pm.002 \end{array}$
Number of formulae per unit cell:	Z=16
Calculated density:	4.777 g/cm ³
Linear absorption coefficient for $MoK\alpha$:	$181.6 \ { m cm^{-1}}$

these structures among mineralogists. A good review of the present status of refinement of these minerals has been given by PREWITT and PEACOR (1964).

During the phase studies of GeO_2 -MnGeO₃ by TAUBER, KOHN, WHINFREY and BABBAGE (1963), single crystals of MnGeO₃ were grown and determined to be isotypic with enstatite, MgSiO₃. Since no structural work had been reported on germanium analogues of the pyroxene structures, this investigation was undertaken to provide precise information for the crystal structure of MnGeO₃, in the hope that meaningful correlations and comparisons could be made between the isotypic germanates and silicates.

The crystallographic data of MnGeO₃ are shown in Table 1.

Intensity measurement

Two sets of intensities were measured independently. One set (data I) was taken with a General Electric XRD-6 diffractometer equipped with a Datex semi-automatic remote controller. The dimensions of the first crystal were $0.006 \times 0.012 \times 0.016$ cm. The stationary-crystal, stationary-counter technique was used with a pair of balanced filters. Reflections up to $2\theta = 60^{\circ}$ were measured employing MoK α radiation. Peak intensities were counted at a fixed time of 20 seconds. A standard reflection, 600, was measured each day throughout the experiment and the fluctuations in the intensities were found to be within 5%. Intensities were corrected for absorption, Lorentz and polarization effects, using the Los Alamos program (LARSON, CROMER and ROOF, JR., 1964).

The second set (data II) was measured with an automated Buerger diffractometer. A different crystal $(0.01 \times 0.021 \times 0.025 \text{ cm})$ was selected. Details of the data collection are described elsewhere (ROBIN-SON and FANG, 1969).

Refinement of the structure

Since the isotypism between MnGeO₃ and enstatite, MgSiO₃, had been established, the structure refinement was initiated using LINDE-MANN's (1961) coordinates for enstatite. The least-squares program used in the refinement was coded by BUSING, MARTIN and LEVY (1962). Form factors for O^{2-} were those of SUZUKI (1960) and those for Mn^{2+} and Ge⁴⁺ were taken from the International tables for x-ray crystallography (1962). Using data I, after six isotropic cycles, the R value for 694 observed reflections (of unit weight) dropped from $35^{0}/_{0}$ to $8.6^{\circ}/_{0}$. Using data II, the R value improved from $34^{\circ}/_{0}$ to $8.0^{\circ}/_{0}$. Anisotropic refinement was attempted, but the coefficients of all oxygen atoms failed the positive-definite test. Table 2 lists the atomic coordinates and the isotropic temperature factors obtained from data II. Data II gave an improved R value as well as smaller standard deviations. Observed and calculated structure factors (from data II) are given in Table 3. To aid in the comparison among different atomic designations used by various authors, the following tabulation is given :

Site nomenclatures

This study	BURNHAM (1967)	LINDEMANN (1961)	GHOSE (1965)
Mn(1)	M 1	Mg_1	$\mathbf{M}_{\mathbf{I}}$
Mn(2)	${ m M}2$	Mg_2	$\mathbf{M}_{\mathbf{II}}$
Ge(1)	SiB	Si_1	Si_1
Ge(2)	SiA	${ m Si}_2$	Si_2
O(1)	01-B	O_2	O_1
O(2)	O 2-B	O_3	O_5
O(3)	O 3-B	O_1	O3
O(4)	01-A	O_4	O_4
O(5)	O 2-A	O_5	O_2
O(6)	O 3-A	O_6	O_6

Discussion of the structure

The general feature of the structure is the linkage of GeO_4 tetrahedra through sharing of two out of four corners to form a single, continuous chain parallel to the *c* axis. Chains repeat at every third tetrahedron and are bound together by octahedrally coordinated Mn atoms. Thus another way of describing the structure is that it is composed of alternate layers of Ge tetrahedra and Mn octahedra.

J. H. FANG, W. D. TOWNES and P. D. ROBINSON

Atom x		y	z	В
Mn(1)	.1238(2)	.3465(4)	.3588(5)	.28(4) Å ²
Mn(2)	.3777(2)	.4819(4)	.3515(5)	.34(4)
Ge(1)	.4728(1)	.1631(3)	.2981(3)	.13(3)
Ge(2)	.2702(1)	.3438(3)	.0340(3)	.12(3)
O(1)	.0621(8)	.1575(21)	.1890(26)	.72(21)
O(2)	.0685(8)	.5161(18)	.1856(26)	.51(21)
O(3)	.4442(8)	.3098(17)	.1097(24)	.41(20)
O(4)	.1802(6)	.3356(19)	.0224(21)	.13(16)
O(5)	.1923(8)	.0083(18)	.0467(24)	.44(20)
O(6)	.3962(7)	.2787(16)	.3137(24)	.24(18)

Table 2. Final coordinates of MnGeO₃

Table 4 summarizes the bond lengths and angles, calculated by ORFFE (BUSING, MARTIN and LEVY, 1964). It is noted that the mean values for the two independent Ge(1)—O and Ge(2)—O distances are in close agreement. However, the mean value of the Ge-O (bridge) distances is 1.797 Å, appreciably longer than the mean Ge–O (unlinked) distance of 1.715 Å. This is consistent with the results reported for CoGeO₃ (PEACOR, 1968) where the difference is 0.06 Å, and for $NaFeGe_2O_6$ (SOLOV'EVA and BAKAKIN, 1968) where the difference is about 0.1 Å. Such a difference can be explained in terms of the d-p π bonding theory suggested by CRUICKSHANK (1961). Although his treatment is for the Si-O bond, the identical electronic configuration (of s and p suborbitals) of Si and Ge permits the same interpretation as far as their bonding characteristics are concerned. In pyroxenes (metasilicates), it is found that the Si-O (bridge) bonds tend to be about 0.05 Å longer than Si-O (unlinked) bonds, where the Si-O-Si angle is about 135°. If this angle were about 120° (oxygen atoms in ideal close packing), the calculated difference would be about 0.14 Å. Thus CRUICKSHANK interpreted the smaller actual difference to be partly due to the opening of Si-O-Si angles. A similar situation occurs in MnGeO₃, where the proximity to 120° (Ge–O–Ge is 126°) is reflected in the difference of 0.08 Å between the bridging and nonbridging Ge-O distances.

The O-O-O angles, which are indicative of the "straightness" of the chains, are listed in Table 4-VI. The values show different degrees of straightness of the two chains.

Table 5 shows the valency calculation in the usual way. Apparently, PAULING's classical electrostatic rule is satisfied on the average:

The crystal structure of manganese metagermanate

Table 3. Observed and calculated structure factors

h k l	F _o F _c	h k 1	F _o F _c	h k l	F _o F _c	hkl	F _o F _c	hkl	F _o F _c	h k 1	F _o F _c
600	70 - 71	20 12 0	138 -151	21 4 1	79 73	12 13 1	62 58	942	44 - 26	11 11 2	78 73
10	166 186 42 - 43	24 213 0	64 - 60 67 66	22 23	90 - 84 79 - 71	15	55 157 54 49	11	38 - 33 40 - 38	12 15	142 147 51 - 51
12 14	267 -320 115 -115	10 22	$110 125 \\ 65 + 66$	25 251	84 82 71 - 70	19 22	73 - 73 59 - 63	13	48 - 36 64 - 59	16 17	80 77 118 -125
16	95 91	10 15 0	75 74	3	42 47	2 14 1	101 - 98	15	41 - 28	18	64 - 69
20	61 - 28	0 16 0	166 -177	5	91 79	4	121 -111	17	40 - 28	25	84 - 92
24 26	95 - 85 90 102	8 6170	84 - 86 130 -139	6	89 87 66 - 62	5 8	93 91 80 77	18 19	111 108 46 36	29 2 12 2	77 87 144 -147
28 30	156 - 174 63 59	14 018 0	126 138 60 78	8	71 72	13 15	56 58 74 70	22	97 - 92 49 - 43	3	87 78 57 - 51
32	109 108	4	61 69 103 102	14	102 105	16	95 96 61 - 58	26	69 - 64	9	79 77
410	35 32	5	140 145	16	43 39	18	67 68	152	50 - 32	18	77 70
14	237 267	7	107 105	061	56 51	9	71 = 68 59 = 48	3	214 228	22	97 96 73 - 72
16 20	48 - 38 93 - 94	8 9	118 116 81 68	1 3	83 - 82 63 - 65	10	66 – 60 63 58	4 5	122 113 129 120	7 13 2 8	55 - 54 53 - 54
22 24	45 47 95 - 80	11 12	94 - 94 84 66	7	$\frac{38}{41} - \frac{32}{34}$	12 0 16 1	64 - 62 65 70	6	41 22	12 13	60 - 56 66 - 62
26 30	103 -105	13	81 74 95 - 86	171	59 51 62 52	102	109 97	8	223 246 180 -180	12 15 2	68 - 73 04 04
34	122 -124	15	101 86	3	57 - 47	3	226 246	10	52 - 45	3	75 - 73
4	214 -258	19	57 - 53	5	101 98	5	226 -250	12	220 230	3172	77 78
10	57 63	28	60 - 59	7	75 - 76	7	115 - 94	15	45 - 25 80 - 71	9	82 88 75 - 77
24	101 97	2	211 -247	8 9	102 99	9 11	222 243 287 334	16	119 118	213	68 - 63 141 - 136
430	37 27 72 67	3	211 -232 208 -235	10 11	66 58 107 -113	12	159 123 85 77	18 22	93 - 90 63 - 64	4 5	23 - 7 46 - 38
12	35 - 34 60 58	5	215 247 92 - 88	12	93 92 62 61	15 17	105 - 97 135 126	23 25	77 - 68 99 - 94	6 7	103 -100 86 - 77
040	151 - 169	7	63 52 120 117	15	83 - 80 57 - 56	18	164 162 56 33	26	70 - 65 86 - 81	9 10	109 107
8	111 -111	9	49 49	17	44 43	21	75 - 68	29	99 96	11	75 - 56
14	39 36	11	61 - 57	31	61 67	23	199 -200	062	39 - 90 39 - 14	14	64 60
20	135 135	13	57 - 46 86 - 83	2	80 85 148 -148	25	94 - 64 67 43	2	48 51 254 -299	17	114 112 54 - 37
24 250	88 88 154 156	14 15	76 69 107 98	3	191 -192 193 -193	26 31	93 84 118 -123	3	186 190 69 58	023	259 296 216 240
10 12	169 -175 43 44	16 17	169 171 118 -100	5	173 175 84 - 77	32 312	94 - 97 133 -131	5	128 ~119 99 ~ 99	3	85 - 78 102 95
14 16	314 - 363 45 44	18	142 129	7	48 36 140 144	4	64 - 63 133 - 131	7	54 ~ 41 177 170	5	81 - 70
18	55 46 63 - 67	21	92 - 86	11	$\frac{48}{58} = \frac{44}{57}$	6	55 - 51	11	195 206	7	220 -240
26	135 142	23	130 123	13	83 80	9	133 109	14	93 62	9	45 - 21
34	149 149	25	121 -117	15	100 99	11	129 -116	17	84 77	11	60 - 50
400	55 - 49	26 28	70 52 74 - 72	16	127 134 93 - 84	12	252 -268 103 55	18 19	118 118 46 41	12 13	87 - 78 146 -138
8 10	177 187 59 - 57	29 33	57 - 50 67 - 64	18 21	120 122 70 - 70	14 15	57 30 48 41	21 22	57 ~ 53 169 160	14 15	67 - 41 106 -101
12 14	184 - 192 80 - 86	36 131	72 - 77 202 - 238	22 23	78 73 113 116	16 17	133 -129 159 150	23 24	159 -155 68 - 54	16 19	54 - 37 142 140
20 24	265 -285 75 - 70	2	186 -204 50 - 51	24 25	112 107 112 -112	18 22	90 65 58 59	26 31	86 80 92 -101	20 21	144 ~136
26 28	59 66 115 -191	5	82 76 150 148	26	60 45 65 - 68	23	70 63 57 46	32	74 - 80	23	71 67
32	86 84	7	44 35	191	103 - 96	25	53 45	2	55 - 35	27	137 141
270	75 77	9	232 -255	4	60 - 40	28	72 69	4	78 - 70	133	278 334
6	120 126	11	276 318	9	135 -132	32	65 - 54 78 74	8	142 -139	3	71 - 57 38 - 20
10	191 206 114 111	12	230 -244 78 - 67	10	155 -161 152 154	122 2	45 39 93 85	12 13	143 -147 77 76	4 5	63 51 148 -139
18 30	51 51 71 - 78	14 15	55 43 93 92	12 13	$\frac{147}{47} = \frac{-152}{42}$	5	40 40 43 42	16	70 = 68 56 = 54	6 7	210 215 201 211
280	56 - 57 106 -103	16 17	54 - 42 148 -153	15 16	$61 - 62 \\ 46 - 44$	5 6	46 - 43 119 115	21 22	60 58 63 37	8 9	53 33 41 - 26
16 18	79 81 52 20	18 19	99 - 83 126 122	17	75 - 68 48 - 39	7 8	134 - 136 70 - 60	182	45 34 49 42	10 12	124 122 45 - 39
1090 14	98 99 75 81	21 22	82 70 168 176	19	76 77	9 10	57 47	4	46 47 58 - 55	13	257 -283
16	69 - 38	24	92 91	24	74 73	11	36 - 11	6	43 28	15	127 113
4	103 -107	30	112 108	31	65 - 64	13	75 - 66	13	53 - 51	19	104 ~ 95
10	89 43	32	94 - 85 98 - 88	1	101 - 93	14	63 - 53 69 - 63	892	51 - 58 63 - 63	20	67 - 49 198 - 203
12	71 50 62 69	35 041	66 - 63 57 53	2 6	78 70 51 53	16	41 - 32 44 - 33	12 13	78 - 69 53 - 48	22 26	64 25 77 - 79
20 24	145 158 64 59	1 2	151 -160 167 183	8 11	45 47 49 - 34	18 19	110 - 104 79 72	14 2 10 2	46 47 151 150	27 33	60 - 54 152 160
28 2 11 0	78 57 101 94	3 4	104 99 106 104	12 14	73 - 70 60 - 63	22 27	57 - 59 55 52	3 6	97 - 93 87 88	34 043	91 - 84 195 -202
6 8	234 -244 59 - 18	5 6	153 -156 83 70	18 20	57 - 63 60 - 63	332	33 - 28 45 - 43	9 11	52 = 46 63 = 63	1 2	123 -123
10 15	91 - 98 221 - 257	9	65 - 60	21	51 41	5	34 30 33 - 20	14	49 - 46	3	146 140
18	53 53	13	39 - 35	6 11 1	58 61	8	45 - 37	18	88 - 90	5	51 37
22	63 - 59	15	65 - 81 42 - 32	3	58 61	942	56 - 56	22 23	91 - 94 58 - 61	8	49 - 36
0 12 0	255 230	17	63 52	21)1	55 49 73 71	3	178 192 84 - 73	3 11 2 5	155 150 90 80	9 10	79 73 52 46
4	74 78 61 69	18 19	98 - 95 65 - 59	9 10	103 103 82 77	6 7	$121 121 \\ 98 = 90$	7 8	49 - 34 148 155	11 12	79 76 54 46
12	64 - 65	20	66 - 65	11	94 - 95	8	52 - <u>4</u> 2	9	131 -133	13	83 72

143

J. H. FANG, W. D. TOWNES and P. D. ROBINSON

Table 3. (Continued)

h k l	F _o F _c	h k 1	F _o F _c	h k l	F _o F _c	հել	F _o F _c	h k l	F _o F _c	h k l	Fo Fc
14 4 3	42 - 36	404	274 305	954	40 - 29	9 16 4	62 66	165	46 - 45	13 1 6	160 164
16	49 47	7	$\frac{97}{35} - 27$	11	110 102	5	70 - 78	175	72 67	15	45 - 41
19 20	67 - 54 96 88	8	121 -109 199 -202	12	38 - 32 88 - 81	3	54 49 59 57	2 3	43 - 39 57 49	17 19	77 80 51 43
21	50 38	10	60 - 24	15	155 157	4	42 45	4	46 49	21	95 97
24	66 58	12	154 139	17	58 46	6	88 - 84	6	53 - 50	326	78 - 81
27 253	93 - 92 69 - 59	13 16	82 - 65 180 - 188	18 19	119 -116 100 90	8	58 55 39 39	8 10	68 69 65 - 68	<u>4</u> .	60 - 58 68 - 68
3	124 -115	17	64 - 23 67 - 50	22	74 66 03 90	11	50 - 48 68 - 69	11	50 - 50 64 64	8	29 31
5	59 - 52	21	133 136	24	57 55	14	68 - 65	15	67 - 71	16	40 37
9	72 72	22	161 -161	30	95 99	17	46 - 41	19	50 - 52	23	49 57
10 15	60 - 56 60 61	25 27	119 108 60 - 54	35 164	78 - 90 150 -158	19	56 - 52 88 88	23 185	52 - 54 85 88	146	61 63 86 - 92
17 0.6.3	82 74 51 - 43	29 30	107 122 64 66	2	60 - 58 200 - 211	2	117 -112 179 175	2	91 - 91 168 173	4	43 - 45
2	41 40	31	69 62	5	91 - 88	5	83 83	5	71 69	11	61 - 61
4	40 - 35	114	149 143	9	169 -176	7	70 - 08 52 46	7	53 53	19	52 - 47 48 47
173	47 39 68 - 63	2	85 78 98 93	11	148	8 9	52 - 43 143 145	8 9	76 - 73 108 106	23 27	68 76 57 68
3	69 - 64 106 - 106	4	25 - 11 159 161	13 16	69 - 62 137 -136	10	54 - 36 122 117	11 12	105 106 102 103	156	137 145
7	100 - 96	7	82 - 77	19	62 - 58	12	102 93	13	67 66	3	67 67
10	90 - 85	9	63 52	22	58 50	14	43 27	21	72 - 77	6	81 - 78
11	59 ~ 57 119 121	10	186 190 124 -106	24 25	132 -129 92 85	15 16	60 55 102 - 95	22 24	76 79 116 -129	7	132 138 44 - 44
14 17	94 - 85 89 90	12 13	47 - 30 36 25	29 174	85 96 100 101	18 21	49 46 95 - 97	25 29	67 - 74 65 - 73	13	164 -170 103 -101
21 0.8.3	66 58 202 216	14 15	59 54 132 - 133	3	64 63 62 58	22	86 80	195	87 - 92 74 70	15 17	57 50 60 - 61
1	167 173	16	54 - 30	6	49 48	25	82 - 80	3	79 - 76	19	50 - 49
5	68 - 54	18	77 77	10	76 71	135	116 -118	6	45 - 40	33	112 125
8	93 86	20	43 - 33	14	95 - 90 76 74	3	148 143 132 -129	10	69 - 66 134 134	1	120 128 139 -147
11 12	43 - 36 74 - 67	22 23	55 - 45 90 - 90	15 19	89 - 91 66 - 70	4 5	41 - 34 108 -103	11 12	54 52 61 - 59	3	67 72 51 52
13	131 -130	24	51 - 45 49 - 37	21 584	54 - 47 60 55	6	115 -110 37 - 24	15 16	75 77	7	161 166
15	100 - 97	30	65 - 67	7	43 47	8	108 -107	17	54 58	12	59 - 55
20	129 -128	35	80 89	9	52 54 52	10	229 248	19	66 77	15	79 81
27	76 - 78 127 131	1 0 2 4	100 - 99 45 - 41	11 9 4	50 - 51 50 - 52	11	95 84 96 - 91	0 10 5	76 74 68 - 73	19 20	106 ~105 95 - 95
28 193	60 - 55 161 166	3	35 – 23 124 121	0104	61 - 58 76 - 70	13 15	45 - 31 126 127	2 7	50 44 49 - 55	21 23	63 56 55 - 60
6 7	127 120 106 102	7	75 69 79 - 77	4	103 - 98	16 17	106 - 100 79 72	9 11	49 - 46 61 - 58	27	126 -142
9	43 - 29	9	49 41	9	90 96	18	140 143	0 12 5	52 - 54	3	76 - 74
13	168 -177	13	48 47	15	48 49	21	70 66	3	58 - 53	9	58 58
14	66 61	20	71 62 75 74	16 21	54 58 70 - 78	22	87 - 80 94 82	4 14 5	80 - 89 108 113	10	45 49 80 83
19 21	69 - 71 105 -113	25 634	63 - 64 35 - 25	24 25	69 73 64 - 66	25 26	50 40 78 83	9 12	77 83 65 78	17 1396	63 74 47 50
0 10 3	87 - 78 97 - 94	9 11	39 29 39 - 35	1114	70 - 62 117 -110	30 35	85 - 90 68 - 71	16 106	72 - 77 181 -181	0 10 6	48 - 53
4	75 - 69	15	39 - 34 107 104	3	90 - 87	045	57 - 58	2	19 - 9	3	50 - 59
11	79 85	1	59 52	7	68 65	2	88 86	4	56 - 49	11	45 - 45
0 12 3	54 - 45	3	$\frac{36}{36} = 26$	11	61 59	5	79 - 74 71 - 74	7	215 226	15	62 70
3. 1 13 3	69 66 60 - 64	5	78 - 71 134 132	13	61 - 63 103 113	6 7	51 48 47 - 45	8 11	87 82 45 45	27 1 11 6	71 85 111 109
6	74 - 74 92 - 94	6 8	42 31 40 - 36	17 18	53 47 92 - 97	9 10	115 -117 35 13	12	87 82 132 125	2	63 62 72 - 72
10	59 - 57	9	109 107	19	72 69	11	98 - 89 30 - 25	14	41 - 23	7.	103 111
14	86 - 86	15	83 79	23	69 77	13	83 - 82	16	68 61	14	76 - 86
0 14 3	120 113	19	40 58	4	70 - 68 87 86	16	57 - 55 44 - 32	20	112 -112	0 12 6	59 57
7	117 113 122 -124	20 21	62 59 73 - 72	5 9	63 - 61 91 - 94	21 22	78 81 61 - 52	21 23	84 78 58 ~ 58	17	67 - 73 85 84
8 13	66 62 90 - 90	24 25	54 46 69 - 68	11 13	78 - 76 51 - 51	24 25	58 56 71 72	27 35	138 - 158 70 - 83	13 0 16 6	60 62 61 - 68
15	71 - 79	154	104 -103	16	54 - 54	255	45 45	116	138 - 138	1	62 65
20	92 - 97	3	137 -128	24	62 - 67	5	36 29	3	75 - 74	'	80 - 0 9
104	240 -255	6	43 28	1 13 4	55 54	14	58 - 52	7	105 -106		
2 3	96 - 89 38 25	7 8	89 88 50 45	14 4164	54 57 82 - 88	15 065	55 - 56 58 - 60	9 11	68 66 33 - 33		

however, both positive and negative deviations are noted. It should be pointed out, though, that the excess bond strength (Type I oxygen atoms) is well compensated by the lengthening of the bonds involved. The excess bond strength or valence sum of 2.33, possessed by the

144

I. Ge(1) tetrah	edron	II. Ge(2) tetrahedron		
Ge_0(1)	1 732(17) Å	Ge-O(4)	1 745(12) Å	
Ge = O(2)	1.695(15)	Ge - O(5)	1.687(14)	
Ge-O(3)	1.802(14)	Ge-O(6)	1.780(12)	
Ge-O(3')	1.804(14)	Ge-O(6')	1.801(12)	
Mean	1.758	Mean	1.753	
O(2) = O(1)	9 09(9) Å	O(5) = O(4)	2 94(2) Å	
O(2) = O(1) O(2) = O(2)	2.95(2) A 9.79(9)	O(5) = O(4)	$2.3 \pm (2)$ A 2.57(2)	
O(2) = O(3) O(2) = O(3')	2.10(2)	O(5) = O(6')	2.37(2) 2.96(2)	
O(2) = O(3) O(1) = O(3)	2.00(2)	O(4) - O(6)	2.95(2)	
O(1) = O(3)	2.30(2) 2.82(2)	O(4) - O(6')	2.89(2)	
O(3) = O(3')	2.02(2) 2.96(2)	O(6) - O(6')	2.80(2) 2.80(2)	
Mean	2.87	Mean	2.85	
	11 0 5(0) 0		110.0/0\9	
O(2) - Ge - O(1)	117.5(8)*	O(5)—Ge— $O(4)$	$118.0(8)^{-1}$	
O(2) - Ge - O(3)	105.2(8) 107.0(8)	O(5) - Ge - O(6)	90.0(8)	
$O(2) - Ge - O(3^{\circ})$	107.9(8)	O(3) - Ge - O(6)	110.0(8)	
O(1) - Ge - O(3)	110.2(8)	O(4) - Ge - O(6)	113.8(8)	
O(1) - Ge - O(3)	110.5(8)	O(4) - Ge - O(6')	109.2(8)	
0(s)Ge0(s)	110.5(8)	0(0)Ge0(0)	102.7(8)	
Mean	109.5	Mean	109.3	
III. Mn(1) octa	hedron	IV. Mn(2) octa	hedron	
$Mn \rightarrow O(1)$	2.298(17) Å	Mn - O(1)	2.182(17) Å	
Mn - O(1')	2.160(17)	$Mn \rightarrow O(2)$	2.104(15)	
Mn - O(2)	2.118(15)	Mn - O(3)	2.429(14)	
Mn - O(4)	2.139(11)	$Mn \rightarrow O(4)$	2.228(11)	
$Mn \rightarrow O(4')$	2.188(11)	$Mn \rightarrow O(5)$	2.160(14)	
$Mn \rightarrow O(5)$	2.146(14)	Mn-O(6)	2.329(13)	
Mean	2.175	Mean	2.239	
O(2) - O(4)	2.86(2) Å	O(2) - O(1)	3.16(2) Å	
O(2) - O(5')	3.11(2)	O(2) - O(4)	2.86(2)	
O(2) - O(1')	3.19(2)	O(2) - O(6)	3.68(2)	
$O(2) \rightarrow O(1)$	3.31(2)	O(2) - O(3)	3.55(2)	
O(4) - O(5')	3.23(2)	O(5) - O(1)	2.96(2)	
O(4) - O(4')	3.16(2)	$O(5) \rightarrow O(4)$	2.99(2)	
O(4) - O(1)	2.94(2)	O(5)-O(6)	2.57(2)	
O(5') = O(1')			9 99/91	
0(3) - 0(1)	2.96(2)	O(5)-O(3)	3.22(2)	
O(5') - O(1') O(5') - O(4')	2.96(2) 3.04(2)	${ m O(5)-O(3)} \ { m O(1)-O(4)}$	3.22(2) 2.90(2)	
O(5) = O(1') O(5') = O(4') O(1') = O(4')	2.96(2) 3.04(2) 2.94(2)	O(5)-O(3) O(1)-O(4) O(1)-O(3)	3.22(2) 2.90(2) 3.24(2)	
$\begin{array}{l} O(3) = O(1') \\ O(5') = O(4') \\ O(1') = O(4') \\ O(1') = O(1) \end{array}$	2.96(2) 3.04(2) 2.94(2) 3.22(2)	O(5)-O(3) O(1)-O(4) O(1)-O(3) O(4)-O(6)	$\begin{array}{c} 3.22(2) \\ 2.90(2) \\ 3.24(2) \\ 3.74(2) \end{array}$	
$\begin{array}{l} 0(5) \longrightarrow 0(1) \\ 0(5') \longrightarrow 0(4') \\ 0(1') \longrightarrow 0(4') \\ 0(1') \longrightarrow 0(1) \\ 0(4') \longrightarrow 0(1) \end{array}$	$\begin{array}{c} 2.96(2) \\ 3.04(2) \\ 2.94(2) \\ 3.22(2) \\ 2.90(2) \end{array}$	$\begin{array}{c} O(5) - O(3) \\ O(1) - O(4) \\ O(1) - O(3) \\ O(4) - O(6) \\ O(6) - O(3) \end{array}$	$\begin{array}{c} 3.22(2) \\ 2.90(2) \\ 3.24(2) \\ 3.74(2) \\ 2.91(2) \end{array}$	

Table 4. Interatomic distances and angles

Z. Kristallogr. Bd. 130, 1-3

III. Mn(1) oct	ahedron	IV. Mn(2) octahedron			
O(2)-Mn- $O(4)$	$84.5(8)^{\circ}$	O(2) - Mn - O(1)	94.9(8)°		
O(2) - Mn - O(5')	93.6(8)	O(2) - Mn - O(4)	82.6(8)		
O(2)—Mn— $O(1')$	96.6(8)	O(2)-Mn- $O(6)$	112.2(8)		
O(2)—Mn— $O(1)$	96.9(8)	O(2)-Mn- $O(3)$	102.8(8)		
O(4)—Mn—O(5')	97.6(8)	O(5)-Mn- $O(1)$	86.0(8)		
O(4)-Mn-O(4')	93.8(8)	O(5)-Mn- $O(4)$	85.8(8)		
O(4)—Mn—O(1)	82.8(8)	O(5)-Mn-O(6)	69.6(8)		
O(5')MnO(1')	86.9(8)	O(5)–Mn– $O(3)$	89.0(8)		
O(5')-Mn-O(4')	88.9(8)	O(1)-Mn-O(4)	82.3(8)		
O(1')MnO(4')	85.0(8)	O(1)-Mn- $O(3)$	89.1(8)		
O(1')MnO(1)	92.6(8)	O(4)-Mn-O(6)	110.4(8)		
O(4') - Mn - O(1)	80.6(8)	O(6)-Mn- $O(3)$	75.3(8)		
Mean	90.0	Mean	90.0		
V. GeOGe	angles	VI. 0-0-0) angles		
Ge(1) - O(3) - Ge(1)	123.4(7)	O(3) - O(3) - O(3)	135.0(9)		
Ge(2)— $O(6)$ — $Ge(2)$	129.7(7)	O(6)O(6)O(6)	156.8(9)		

Table 4. (Continued)

Oxygen atoms	Balancing cations	Valencies charge coordination number	Total charges	Type
0(1)	Ge(1)	1	2.00	II
-(-)	$2 \operatorname{Mn}(1)$	2/3		
	Mn(2)	1/3		
O(2)	Ge(1)	1	1.67	III
. ,	2 Mn(1)	2/3	[[
O(3)	2 Ge(1)	2	2.33	I
. ,	Mn(2)	1/3		
O(4)	Ge(2)	1	2.00	II
	2 Mn(1)	2/3		
	Mn(2)	1/3		
O(5)	Ge(2)	1	1.67	III
	Mn(1)	1/3		
	Mn(2)	1/3		
O(6)	2 Ge(2)	2	2.33	I
	Mn(2)	1/3		

Table 5. The valency sums of oxygen atoms

tetrahedral linking (Type I) oxygen atom O(3) and O(6), is compensated by Mn(2)—O(3) and Mn(2)—O(6), the two longest bonds in the Mn(2) octahedra, and the two longest bonds in the Ge(1) and Ge(2) tetrahedra Ge(1)—O(3) and Ge(2)—O(6). Thus, if the lengthening of the bonds is taken into account, PAULING's rule is well satisfied.

Acknowledgments

The authors are obliged to A. TAUBER for supplying us single crystals of $MnGeO_3$ and to Dr. J. A. KOHN for his support and enthusiasm. We also thank Professor D. R. PEACOR for reviewing the manuscript.

References

- C. W. BURNHAM (1967), Ferrosilite. Geophysical Laboratory Annual Report, 1965-1966, Carnegie Institution. 286.
- W. R. BUSING, K. O. MARTIN and H. A. LEVY (1962), ORFLS, a FORTRAN crystallographic least-squares program. Oak Ridge National Laboratory, ORNL-TM-305.
- W. R. BUSING, K. O. MARTIN and H. A. LEVY (1964), ORFFE, a FORTRAN crystallographic function and error program. Oak Ridge National Laboratory, ORNL-TM-306.
- D. W. J. CRUICKSHANK (1961), The role of 3d-orbitals in π -bonds between (a) silicon, phosphorous, sulphur, or chlorine and (b) oxygen or nitrogen. Jour. Chem. Soc. [London], 5486-5504.
- S. GHOSE (1965), Mg^{2+} —Fe²⁺ order in an orthopyroxene, $Mg_{0.93}Fe_{1.07}Si_2O_6$. Z. Kristallogr. 122, 81–99.
- A. C. LARSON, D. T. CROMER and R. B. ROOF, JR. (1964), An integrated series of crystallographic computer programs: II. Processing collected intensity data. Los Alamos Scientific Laboratory, LA-3043.
- W. LINDEMANN (1961), Beitrag zur Enstatitstruktur. N. Jahrb. Miner. 10, 226-233.
- D. R. PEACOR (1968), The crystal structure of CoGeO₃. Z. Kristallogr. 126, 299-306.
- C. T. PREWITT and D. R. PEACOR (1964), Crystal chemistry of the pyroxenes and pyroxenoids. Amer. Mineralogist 49, 1527-1542.
- P. D. ROBINSON and J. H. FANG (1969), The crystal structure of tamarugite. Amer. Mineralogist 54, 19-30.
- L. P. SOLOV'EVA and V. V. BAKAKIN (1968), X-ray study of the sodium-iron metagermanate NaFeGe₂O₆. Soviet Physics-Crystallography 12, 517-520.
- J. SUZUKI (1960), Atomic scattering factor for O²⁻. Acta Crystallogr. 13, 270. A. TAUBER, J. A. KOHN, C. G. WHINFREY and W. D. BABBAGE (1963), The
- occurrence of an enstatite phase in the subsystem GeO₂--MnGeO₃. Amer. Mineralogist 48, 555-564.

^{10*}