$\label{eq:rescaled} \begin{array}{l} R\"{o}ntgenographische Strukturuntersuchung des\\ Tetrabutylammoniumhexawolframates \ [(C_4H_9)_4N]_2W_6O_{19} \end{array}$

Von G. HENNING und A. HÜLLEN

Institut für Anorganische Chemie der Freien Universität Berlin

(Eingegangen am 2. Dezember 1968)

Abstract

Crystals of Tetrabutylammoniumhexatungstate $[(C_4H_9)_4N]_2W_6O_{19}$ have been investigated by x-ray methods to become acquainted with the structure of the isopolyanion $W_6O_{19}^{2-}$. The triclinic cell of symmetry PI with a = 11.91 Å, b = 12.71 Å, c = 19.72 Å, $\alpha = 77.6^{\circ}$, $\beta = 71.3^{\circ}$ and $\gamma = 61.8^{\circ}$ contains two formula units. The result of the structure investigation displays separate $W_6O_{19}^{2-}$ groups, which are octahedral with regard to tungsten and oxygen. Six WO₆ octahedra are linked together by four edges either. The centre of the $W_6O_{19}^{2-}$ group is occupied by an oxygen atom belonging to all six WO₆ octahedra.

Auszug

Kristalle des Tetrabutylammoniumhexawolframates $[(C_4H_9)_4N]_2W_6O_{19}$ wurden röntgenographisch mit dem Ziel untersucht, den Aufbau des Isopolyanions $W_6O_{19}^{2-}$ kennenzulernen. Die Verbindung kristallisiert triklin in der Raumgruppe *PI* mit den Gitterkonstanten a = 11,91 Å, b = 12,71 Å, c = 19,72 Å, $\alpha = 77,6^{\circ}$, $\beta = 71,3^{\circ}$, $\gamma = 61,8^{\circ}$ und zwei Formeleinheiten in der Elementarzelle. Die Strukturaufklärung ergab separate $W_6O_{19}^{2-}$ -Einheiten, die in bezug auf Wolfram und Sauerstoff oktaedrisch gebaut sind. Sechs WO₆-Oktaeder sind jeweils über vier gemeinsame Kanten miteinander verbunden. Im Zentrum der Baugruppe liegt ein Sauerstoffatom, das allen sechs WO₆-Oktaedern gemeinsam angehört.

Einleitung

Durch Verseifung von Wolfram(VI)-säure-tetramethylester in Gegenwart von Tetrabutylammoniumhydroxid ist es in letzter Zeit gelungen (JAHR, FUCHS und OBERHAUSER, 1968), ein Salz zu erhalten, das mit dem Baseoxid-Wolframoxid-Verhältnis von 1:6 ein sehr saures Kondensationsprodukt aus der Reihe der Isopolywolframate darstellt. Auf Grund analytischer Untersuchungen und des mit der Ultrazentrifuge in acetonischer Lösung bestimmten Molekulargewichtes (H. P. STOCK, private Mitteilung, 1965) ist dieser Verbindung die Formel Es war nicht möglich, an Hand der in den Fourier-Differenzsynthesen verbleibenden Maxima die einzelnen Atome der Tetrabutylammoniumionen zu lokalisieren. Es ist jedoch anzunehmen, daß der kationische Anteil sich an den Stellen befindet, an denen eine Häufung der Differenzmaxima auftritt. Diese befinden sich dort, wo auch aus rein geometrischen Gründen unter Berücksichtigung der Größe der Kationen genügend Raum für ihre Anordnung vorhanden ist.

Herrn Professor Dr. K. F. JAHR sei an dieser Stelle für die Förderung der Arbeit, Herrn Professor Dr. K. PLIETH sowie Herrn Dr. RUBAN für die Überlassung von Rechenprogrammen gedankt. Es soll nicht unerwähnt bleiben, daß einige verwendete Apparaturen aus Mitteln der Deutschen Forschungsgemeinschaft erstellt wurden.

Literatur

- J. FUCHS und K. F. JAHR (1968), Über neue Polywolframate und -molybdate. Z. Naturforsch. 23b, 1380.
- E. R. HOWELLS, D. C. PHILLIPS und D. ROGERS (1950), The probability distribution of x-ray intensities. II. Experimental investigation and x-ray detection of centres of symmetry. Acta Crystallogr. 3, 210-214.
- ALFRED HÜLLEN (1966), Struktur und thermischer Abbau des $7 \operatorname{Li}_2 WO_4 \cdot 4 H_2 O$. Ber. Bunsenges. physik. Chem. **70**, 598–606.
- International tables for x-ray crystallography (1959) 2, 302. Kynoch Press, Birmingham.
- International tables for x-ray crystallography (1962) **3**, 202. Kynoch Press, Birmingham.
- K. F. JAHR und J. FUCHS (1966), Neue Wege und Ergebnisse der Polysäureforschung. Angew. Chem. 78, 725–735. Dort weitere Literaturhinweise.
- KARL-FRIEDRICH JAHR, JOACHIM FUCHS und ROLF OBERHAUSER (1968), Die Verseifung des Wolfram(VI)-säure-tetramethylesters in Gegenwart von Tetraalkylammoniumbasen. Chem. Ber. 101, 477–481.
- INGVAR LINDQVIST (1953), The structure of the hexamolybdate ion in $7 \operatorname{Na_2O} \cdot 6 \operatorname{Nb_2O_5} \cdot 32 \operatorname{H_2O}$. Arkiv Kemi 5, 247–250.
- INGVAR LINDQVIST und BERTIL ARONSSON (1955), The structure of the hexatantalate ion in $4K_2O \cdot 3Ta_2O_5 \cdot 16H_2O$. Arkiv Kemi 7, 49–52.
- L. H. THOMAS und K. UMEDA (1957), Atomic scattering factors calculated from the TFD atomic model. J. Chem. Physics 26, 293-303.

 $[(C_4H_9)_4N]_2W_6O_{19}$ zuzuschreiben. Mit Hilfe der Röntgenstrukturanalyse sollte versucht werden, den Aufbau des neuen Polyanions zu klären. Die Strukturaufklärung von zum Teil erst in neuerer Zeit entdeckten Polyanionen (JAHR und FUCHS, 1966; sowie FUCHS und JAHR, 1968) wird fortgesetzt [vgl. auch HÜLLEN (1966)].

Experimentelles

Die Bestimmung der Gittergeometrie erfolgte an Hand von Drehkristall- und Weissenberg-Goniometer-Aufnahmen mit den drei Gittertranslationen der später gewählten Elementarzelle als Drehachsen. Der Versuch, die erhaltenen Werte durch Verwendung eines Standards zu verbessern, führte nicht zum Erfolg, da die in Betracht kommenden Rückstrahlinterferenzen nach der erforderlichen Justierarbeit bereits zu unscharf geworden sind. Es tritt also offensichtlich eine sich mit der Zeit verstärkende Störung der kristallinen Phase ein.

Für Intensitätsmessungen konnten die Kristalle zu Kugeln mit einem Radius von $r \approx 0,15$ mm geschliffen und die Absorption A aus einer Kurve $A = f(\mu r, \theta)$ (International tables, 1962) bestimmt werden, wobei der lineare Absorptionskoeffizient $\mu_{CuK\alpha} = 262 \text{ cm}^{-1}$ und θ der Glanzwinkel ist. Die aus integrierenden Weissenberg-Goniometer-Aufnahmen durch visuelle Schätzung erhaltenen relativen Intensitäten wurden in üblicher Weise mit dem Absorptions- und dem Lorentz-Polarisations-Faktor korrigiert.

Die Dichte von $\rho = 2,54$ g cm⁻³ folgte aus der pyknometrischen Bestimmung in Alkohol und der Schwebemethode in einem Bromoform-Alkohol-Gemisch.

Elementarzelle und Raumgruppe

An Hand der Weissenberg-Goniometer-Aufnahmen wurde die kleinste Elementarzelle ausgewählt. Zusammen mit den Drehkristallaufnahmen ergab sich ein triklines Gitter mit den Konstanten

$$a = 11,91 \text{ \AA}, \ b = 12,71 \text{ \AA}, \ c = 19,72 \text{ \AA}, \ \alpha = 77,6^{\circ}, \ \beta = 71,3^{\circ}, \ \gamma = 61,8^{\circ}.$$

Ihre Genauigkeit ist durch das beschriebene Verfahren begrenzt, so daß jeweils die letzte Stelle unsicher ist. Auf Grund der gefundenen Dichte und mit einem Volumen der Elementarzelle von V = 2484 Å³ enthält diese zwei Moleküle.

Die Unterscheidung zwischen den zur Diskussion stehenden Raumgruppen P1 und $P\overline{1}$ konnte mit Hilfe einer Intensitätsstatistik nach HOWELLS, PHILLIPS und ROGERS (1950) getroffen werden. Danach

G. HENNING und A. HÜLLEN

muß $P\overline{1}$ als die wahrscheinlichste Raumgruppe angesehen werden, Abweichungen von der Zentrosymmetrie könnten lediglich bei den Lagen der Leichtatome auftreten.

Durchführung der Strukturanalyse

Es lag nahe, die Strukturanalyse nach der Schweratommethode durchzuführen. Hierzu wurden Patterson-Projektionen in Richtung [100] und [010] mit Hilfe der vorliegenden 361 bzw. 327 gemessenen Intensitäten berechnet. Die daraus hergeleiteten W-Lagen sind in den Figuren 1 and 2 wiedergegeben. Hinweise auf die Leichtatome konnten nicht gefunden werden. Mit Hilfe von Fourier-Synthesen und Fourier-Differenzsynthesen ($g_{\text{beob}}-g_{\text{W}}$) gelang es, den anfänglich

Fig.1. Die aus der Patterson-Projektion in Richtung [100] hergeleiteten Lagen der Wolframatome. Jeweils sechs W-Atome bilden die Ecken eines Oktaeders. Die Numerierung bezieht sich auf Tab. 1 und Tab. 5

zwischen 0,5 und 0,6 liegenden Zuverlässigkeitswert R durch Verbesserung der W-Lagen auf $R_{[100]} = 0,19$ bzw. $R_{[010]} = 0,21$ zu verringern, wobei, wie auch im folgenden, nur die $F_{\text{beob}} \neq 0$ Berücksichtigung fanden. Danach traten in den Differenz-Synthesen keine Maxima mehr auf, die durch ungenaue Koordinaten des Wolframs gedeutet werden konnten. Das Strukturmodell bezüglich der W₆-Gruppen war somit ausreichend gesichert. Die beiden Fourier-Synthesen zeigen die Figuren 3 und 4. Die endgültigen Wolfram-Parameter sind der Tab. 1 zu entnehmen. Die Lage der Sauerstoffatome konnte durch die Fourier-Differenz-Synthesen ($\varrho_{\text{beob}} - \varrho_{\text{W}}$) (Fig. 5 und 6) ermittelt werden. Die dort auftretenden Maxima decken sich mit dem aus geometrischen Überlegungen (siehe unten) aufgestellten Strukturmodell. Die Parameter der Sauerstoffatome sind in Tab. 2

Fig.2. Die aus der Patterson-Projektion in Richtung [010] hergeleiteten Lagen der Wolframatome. Jeweils sechs W-Atome bilden die Ecken eines Oktaeders. Die Numerierung bezieht sich auf Tab. 1 und Tab. 5

Tabelle 1.	Koordinaten	des	Wolf	rams	
Numerierun	g entspreche	nd	Fig.1	und	2

Atom	x	y	z
W(1)	0,004	0,813	0,018
W(2)	0,878	0,037	0,117
W(3)	0,195	0,918	0,036
W(4)	0,441	0,510	0,396
W(5)	0,639	0,591	0,437
W(6)	0,674	0,314	0,475

Fig.3. Elektronendichteprojektion längs [100] auf die Ebene (100)

Fig.4. Elektronendichteprojektion längs [010] auf die Ebene (010)

zusammengefaßt. Der Zuverlässigkeitswert sinkt unter Berücksichtigung des Sauerstoffs für beide Projektionen auf $R_{[100]} = R_{[010]} = 0,16$ mit einem isotropen Temperaturfaktor von B = 4,39 Å² (die Beugungsmaxima 002, 101, 101, 011 nnd 011 sind wegen erheblicher Extinktion nicht berücksichtigt worden). Für die Berechnung der Strukturamplituden wurden die Atomformamplituden für W⁴⁺ (THOMAS und UMEDA, 1957) und O¹⁻ (International tables, 1959) verwendet. Die Kohlenstoff- und Stickstoffatome konnten nicht mit einbezogen werden, da die Struktur des kationischen Bestandteiles aus den vorliegenden zweidimensionalen Daten nicht zu ermitteln war. Eine Gegenüberstellung der F_{beob} mit den F_{ber} zeigt für die Projektion

Fig.5. Differenz-Fourierprojektion $(\varrho_{beob} - \varrho_W)$ längs [100]. Die Numerierung der Sauerstoffatome bezieht sich auf Tab. 2

in Richtung [100] Tab. 3, für die Projektion in Richtung [010] Tab. 4. Die Rechnungen erfolgten auf einem Siemens 2002-Elektronenrechner des Hahn-Meitner-Institutes.

Für die Fig.1-6 wurden die realen Flächen (100) und (010) als Projektionsflächen gewählt. Dies bietet den Vorteil, daß man die Maxima mit Hilfe der gemeinsamen c-Achse einander zuordnen kann. Der dabei auftretende Nachteil der Verzerrung der Maxima trat in unserem Falle nicht störend in Erscheinung, da die Abweichungen

Fig.6. Differenz-Fourier projektion $(\varrho_{\rm beob}-\varrho_{\rm W})$ längs [010]. Die Numerier ung der Sauerstoffatome bezieht sich auf Tab. 2

	Numerierung einsprechenu Tig.o und o							
	x	у						
O(1)	0,14	0,08	0,03					
(2)	0,33	0,86	0,07					
(3)	0,02	0,67	0,04					
(4)	0,17	0,78	0,06					
(5)	0,92	0,86	0,12					
(6)	0,06	0,95	0,13					
(7)	0,78	0,06	0,21					
(8)	0,72	0,10	0,06					
(9)	0,88	0,19	0,09					
(10)	0,41	0,54	0,32					
(11)	0,58	0,60	0,36					
(12)	0,74	0,65	0,39					
(13)	0,35	0,44	0,46					
(14)	0,80	0,18	0,45					
(15)	0,60	0,36	0,39					
(16)	0,78	0,42	$0,\!42$					
(17)	0,32	0,68	0,43					
(18)	0,48	0,74	0,46					
(19)	0,00	0,00	0,00					
(20)	0,50	0,50	0,50					
		1						

Tabelle 2. Koordinaten der SauerstoffatomeNumerierung entsprechend Fig.5 und 6

von der zur Projektionsachse senkrechten Fläche infolge der nicht allzuweit von 90° abweichenden Winkel der Elementarzelle nur gering sind.

0	k	1	Fo	F.c)	k 1	F	Fc	0	ł	4 1	Fo	Fc	0	k 1	Fo	F _c		0	k 1	Fo	Fc
0	0	3 5 6	33 163 33	48 139 - 49	I)	48 9 10	224 125 78	229 - 103 111	0	8	8 14 15 16	37 65 37	54 55 36	0 - 0 -	1 16 2 0 2	41 159 111	- 58 193 -168	1	0 -	6 13 14 16	67 96 40	55 - 74 - 39
		7	107	171			11	159	-146			18	40 31	27		4	420	-454		0 -	7 0	59 67	- 95
		9	89	88			15	74	52	0	9) Ö	78	- 79		7	85	-112			2	40	- 6
		10	41	- 66			21	96 65	- 92			2	106	- 35		10	104	- 195 84			ر ا	40	- 57
		12 13	122	-144 - 69)	50 1	48 89	- 39			35	80 81	- 81 - 97		11	219 198	-259 -206			5	48	- 49 -162
		14 19	133 37	-133			2	156 37	-168 17			7	76	- 79		14 15	61 69	- 40 - 87			78	40	36 -170
		20	37	- 37			4	48	- 67			9	67 108	- 51		16	40	28			9	117	119
		23	19	26			7	213	258			12	130	-110	0 -	3 0	33	- 10			11	67	- 54
U	1	4	107	189			10	91	-101			14	37	- 28		2	95	126			13	40	- 28
		5	59 330	- 56 333			11	52 40	- 16			15	31 19	- 15		3	363	-387 54			15	61 40	- 39 - 24
		7 8	76 313	64 345			13	40	- 20	0	10	0 0	100	96 - 86		57	324 152	-402 -182		0 -	8 0	141 40	-131
		9	152	108			15 16	52 107	- 51			2	76	68		8	56	- 50			2	45	- 52
		12	41	48			17	44	- 42			4	57	24		10	74	- 82			4	40	- 54
		14	74	- 199			20	61	- 40 - 48			8	44	- 46		12	79	- 84			7	40	- 60
		15 16	41	- 47 - 45	'		5 U 1	48	-117			9	100	- 88 - 91		16	51	36 65			10	52	56 64
		17 19	41 37	45 27			23	44 48	- 55 - 35			13 16	31 18	- 42 - 15		18 19	44 81	45 76			13	48	58 - 24
	1	20 23	37 19	- 42 - 19			45	61 156	- 59	0	1	18 1 0	26 48	- 20 - 54	0 -	4 1 2	67 85	91 - 103			17 18	37	- 28 40
0	2	Ó	159	193			67	100	88 142			1	109	100		3	109	116		0 -	90	78	- 79
		5	130	168			8	159	181			3	85	81		5	40	27			2	40	48
		8	104	104			13	131	124			5	40	30		8	80	-108			4	94	100
		9 10	193	195 16			15	198 89	177			9	78	~ 39		9 10	40 157	22 152			6	44	56 37
		12 13	131 41	-122 50	1)	70 1	59 159	- 95 -167			11 14	31 31	- 6 11		11 12	40 40	64 25			10	89 109	85 102
		14	61 78	- 78			23	59 211	- 79	0	1	2 0	33	43		13	56 56	85 - 59		0 -	14	44	41
		16	56	42			4	72	89			2	44	57		15	95	102		0 -	2	107	114
		19	67	- 69			6	167	166			4	31	38		18	59	58			4	98	78
	1	20	52	- 55			8	91	- 64			7	67	70 58	0 -	5 0	48	- 39			7	40	39
0	3	0 2	33 170	- 10 -166			9 10	40 48	- 39			8 9	48 26	- 43 16		1 2	89 94	116			9	44 81	43 75
		34	137 45	-152 - 65			11 12	65 44	60 26			10	26 26	- 29 17		5	41 83	- 71 - 61		0 -	13	59 48	52 - 54
		5	60 67	- 93			13 14	52 156	53 120	0	17	13	31 26	27		7	52 52	52 - 58			1	109	103
		7	96	88			15	48	34	0		4	18	24		9	183	195			4	65	74
		9	102	106			18	40	33			7	40	- 30		12	94	104		0 -	12 0	33	43
		10	61 32	- 53			19 21	26	22	0	14	5 O	37 26	- 29 - 18		14	102	- 40			3	31 40	32 50
		12 13	69 111	- 67 - 90)	80 1	141	-131 -115	0	- 1	134	117 59	- 29 - 35		15 16	89 74	- 65 80			7	44 61	- 30 - 50
		17 18	56 69	47			2	226 40	-213			5	204 61	-257	0 -	18	56 48	56 53		0 -	11	18	- 29 22
		19	45	41			4 5	219	-228			7	137	- 91	-	2	89	81 14			1	26	- 26
•		22	37	- 43			6	141	-145			9	37	76		5	122	-116			4	37	- 20
U	4	2	37	- 42			9	115	- 113			12	200	-210		8	139	-104			7	18	- 26
		3 5	135 107	-181 - 66			10 11	40 122	0 -117			13	117 150	-106 -144		9 10	94 161	-114 169		0 -	.14 C	1 31 1 26	- 41 - 18
		6	133	132			12	41	51			15	56	- 49		11	44	20			2	: 37	- 36

Strukturuntersuchung des Tetrabutylammoniumhexawolframates Tabelle 3. Beobachtete und berechnete Strukturamplituden der Okl-Interferenzen

Beschreibung der Struktur und Diskussion

Auf Grund der aus den Patterson-Synthesen gewonnenen Vorstellung über den oktaedrischen Aufbau der W₆-Gruppen (Fig. 1 und 2) und der bekannten Summenformel W₆O₁₉²⁻ des Anions ist die Lage des Sauerstoffs in bezug auf die Wolframatome festgelegt. Sechs WO₆-Oktaeder müssen in der Weise miteinander verknüpft sein, wie es die Fig. 7 zeigt, d.h. jedes Oktaeder besitzt mit vier anderen jeweils eine gemeinsame Kante. Es ergeben sich somit zwei W₆O₁₉²⁻-Einheiten in der Elementarzelle. Sie liegen mit ihren Schwerpunkten in den Symmetriezentren und sind gegeneinander verdreht im Raum ange-

169

G. HENNING und A. HÜLLEN Tabelle 4. Beobachtete und berechnete Strukturamplituden der h0l-Interferenzen

h	01	Fo	Fc	ь 0 1	F _o F _c	h	01	F	F _c	h	01	Fo	Fc	ь	01	Fo	Fe
0	0 3 5 7 8 9 10 11 12	34 183 38 124 107 95 48 51 126	48 139 - 49 171 87 88 30 - 66 -144	4 0 3 4 5 6 7 8 11 12 13	442 455 135 173 351 355 210 208 53 45 130 126 156 135 47 - 32 154 160	7 8	0 15 17 20 21 23 0 1 5	152 76 38 32 32 19 78 48 48	131 73 - 24 13 - 45 - 15 65 39 - 62	12 -1	0 14 0 0 3 4 5 6 7 8 9	19 27 432 76 448 105 349 149	21 4 29 351 - 53 477 126 361 132	-4 -5	0 12 14 16 18 20 0 0 1 3 5	90 48 42 37 103 244 410 261	95 36 - 35 - 15 30 111 226 419 265
1	15 14 19 20 22 23 0 0 3 4 5 6	74 137 30 42 44 27 299 112 57 164	- 69 -133 - 29 - 37 - 55 26 -146 -146 - 59 -174	16 17 18 19 20 23 5 0 0 1 2 3 4	67 - 89 67 - 81 42 - 70 38 - 37 36 - 33 103 - 111 50 - 6 191 - 220 120 - 73 288 - 298		6 7 8 9 11 12 13 14 15 16 17	63 48 48 141 67 48 57 51 97 38	76 61 60 148 65 - 40 68 - 59 93 - 33	-2	12 13 14 15 16 17 18 19 20 21 0 2	53 48 48 48 48 41 41 38 38 175	- 60 - 63 22 - 48 39 - 38 - 22 - 59 - 50 - 56 - 156	-6	8 9 11 15 16 17 0 2 4 6	48 53 48 34 34 38 162 381 330 61	- 64 - 53 - 14 33 - 55 - 18 - 55 165 405 340 73
2	8 9 10 13 15 17 19 23 0 2 3	74 162 48 150 48 55 63 38 88 126	-108 138 - 31 -141 - 51 73 71 - 41 98 133	5 6 7 8 9 10 11 12 13 16	223 229 200 179 137 142 48 - 48 48 - 42 48 - 61 118 -113 48 20 48 - 60 32 - 44	9	18 19 20 21 22 0 0 1 2 3 4	38 32 25 19 149 47 53 48 53	44 - 30 - 18 - 37 - 23 143 97 71 50		34567891011121	158 198 381 59 377 170 103 126 47 88	168 -145 404 67 401 150 121 108 - 47 92	-7	7 9 11 14 15 16 0 0 1 2 3	53 135 34 38 47 141 48 185 8	67 134 94 - 29 - 27 - 46 34 157 37 175
	5 7 8 9 10 11 13 14 16 17	120 223 156 70 160 112 69 48 48 48	-140 -231 149 - 95 182 104 91 - 46 48 - 49	17 18 19 20 21 22 6 0 0 1 3 4	40 - 90 42 - 29 69 - 69 38 - 33 42 - 50 42 - 37 162 - 165 47 - 35 48 - 1 48 - 53		5 6 7 8 10 11 12 14 16 18	55 48 48 141 131 48 41 30 33 32	13 30 120 141 - 18 30 - 45 - 45 - 45 - 30	-3	15 17 18 19 20 21 0 0 1 3	48 72 48 38 32 27 99 191 121	93 30 - 43 - 44 - 28 - 39 106 -199 -105	-8) 6 7 8 10 12 14 0 1 4 6	48 48 173 141 38 57 90 48 48	78 - 48 171 149 46 - 19 93 - 53 - 50
3	18 19 20 0 0 1 2 4 5 7	112 38 70 99 181 362 350 44 129	115 - 36 - 75 106 -190 373 311 59 119	5 6 8 9 10 11 12 13 14	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	10	20 0 1 2 3 4 9 10 11 12	25 110 53 57 57 82 42 42 38	- 48 111 84 57 79 67 - 24 50 - 32		4678910111 11213	131 185 60 48 48 78 109 53 95	142 191 40 1 44 -119 125 - 46 123	-9	7 8 9 13 14 0 0 1 2 3	57 42 90 26 19 149 48 53 48	85 - 16 98 - 19 30 143 - 40 71 - 60
	8 9 10 11 12 14 15 16 17 18	109 215 50 109 250 109 48 48 48 51	- 108 170 90 111 244 106 - 24 - 53 20 - 68	19 20 21 22 23 7 0 0 2 4 5 6		11	13 14 15 16 0 0 1 2 5 6 7	52 48 32 44 38 38 38 38 38 38 38	- 14 - 65 - 25 - 64 34 35 37 - 31 - 29	-4	14 15 16 17 19 20 21 0 0 1 2	48 48 48 37 41 32 78 51 107	59 36 67 - 20 1 - 28 29 -102 45 93	-10	5 8 12 0 1 3 4 6 8 9 0	42 37 24 84 42 38 61 33 25 32	- 11 17 - 32 85 35 36 74 47 - 22 34
4	19 20 22 24 0 0 1	48 48 32 19 78 236 49	46 - 45 - 47 - 47 - 102 252 - 65	7 8 10 11 12 13	100 80 48 39 48 18 48 - 45 48 - 43 48 - 5 48 - 65	12	8 9 15 17 0 10 11 12	38 38 26 25 25 35	- 27 - 34 - 51 - 53 18 - 29 48		4 6 7 8 9 10	175 53 53 48 166 48 97	190 79 - 90 - 22 -156 42 -102		2 3 5 7	33 33 70 104	29 32 80 68

ordnet. Jede Baugruppe ist nicht nur in bezug auf die Wolfram-, sondern auch auf die Sauerstoffatome oktaedrisch gebaut. Das kleine Wolframoktaeder mit der mittleren Kantenlänge 3,28 Å ist von einem größeren Sauerstoffoktaeder umgeben, das aus 18 Atomen gebildet wird. Sechs Sauerstoffatome besetzen seine Ecken, die restlichen sind auf den Kantenmitten angeordnet. Ein Sauerstoffatom belegt jeweils das Zentrum der ineinandergestellten Oktaeder in $[0\ 0\ 0]$ bzw. $[\frac{1}{2}\ \frac{1}{2}\ \frac{1}{2}]$. Die Wolfram-Wolfram-Abstände innerhalb der einzelnen Baugruppen sind der Tab. 5 zu entnehmen. Auf die Angabe von Abständen zwischen Sauerstoffatomen wurde verzichtet, da ihre Anordnung in der Elementarzelle nur generell bewiesen werden konnte, eine genügend genaue Ermittlung ihrer Parameter aber nicht möglich war. Die

170

zugehörigen Maxima in den Fourier- und Fourier-Differenzsynthesen sind in ihrer Ausdehnung zu groß und zeigen zum Teil starke Überlappungen. Es kann lediglich gesagt werden, daß die Kantenlängen der WO₆-Oktaeder im Bereich von 2,7 Å bis 3,3 Å liegt. Die gleichen Einschränkungen gelten selbstverständlich auch für die Wolfram---Sauerstoff-Abstände mit einer Ausnahme: Die Sauerstoffatome in den Symmetriezentren sind kristallographisch eindeutig festgelegt. Die

Fig.7. Das W₆O₁₉²⁻-Anion

entsprechenden W—O-Abstände ergeben sich somit aus der Halbierung der Raumdiagonalen der W₆-Oktaeder. Daraus folgt ein mittlerer Betrag von 2,33 Å.

Die Existenz von Anionen gleichen Aufbaues wurde bereits in den Verbindungen Na₇H(Nb₆O₁₉) \cdot 15H₂O (LINDQVIST, 1953) und K₈(Ta₆O₁₉) \cdot 16H₂O (LINDQVIST und ARONSSON, 1955) röntgenographisch nachgewiesen.

N	Numerierung entsprechend Fig.1 und 2								
W(1) - W(1')	4,61 Å	$\mathrm{W}(4){-}\mathrm{W}(4')$	4,73 Å						
(2) - (2')	4,62	(5) - (5')	4,69						
(3) - (3')	4,66	(6) - (6')	4,62						
(1)-(2)	3,26	(4) - (5)	3,34						
(1) - (3)	3,27	(4) - (6)	3,30						
(1) - (2')	3,22	(4) - (5')	3,28						
(1) - (3')	3,26	(4) = (6')	3,27						
(2) - (3)	3,30	(5) - (6)	3,29						
(2) - (3')	3,26	(5) - (6')	3,30						

Tabelle 5. *Wolfram–Wolfram-Abstände* Numerierung entsprechend Fig.1 und 2

Es war nicht möglich, an Hand der in den Fourier-Differenzsynthesen verbleibenden Maxima die einzelnen Atome der Tetrabutylammoniumionen zu lokalisieren. Es ist jedoch anzunehmen, daß der kationische Anteil sich an den Stellen befindet, an denen eine Häufung der Differenzmaxima auftritt. Diese befinden sich dort, wo auch aus rein geometrischen Gründen unter Berücksichtigung der Größe der Kationen genügend Raum für ihre Anordnung vorhanden ist.

Herrn Professor Dr. K. F. JAHR sei an dieser Stelle für die Förderung der Arbeit, Herrn Professor Dr. K. PLIETH sowie Herrn Dr. RUBAN für die Überlassung von Rechenprogrammen gedankt. Es soll nicht unerwähnt bleiben, daß einige verwendete Apparaturen aus Mitteln der Deutschen Forschungsgemeinschaft erstellt wurden.

Literatur

- J. FUCHS und K. F. JAHR (1968), Über neue Polywolframate und -molybdate. Z. Naturforsch. 23b, 1380.
- E. R. HOWELLS, D. C. PHILLIPS und D. ROGERS (1950), The probability distribution of x-ray intensities. II. Experimental investigation and x-ray detection of centres of symmetry. Acta Crystallogr. 3, 210-214.
- ALFRED HÜLLEN (1966), Struktur und thermischer Abbau des $7 \operatorname{Li}_2 WO_4 \cdot 4 H_2 O$. Ber. Bunsenges. physik. Chem. **70**, 598–606.
- International tables for x-ray crystallography (1959) 2, 302. Kynoch Press, Birmingham.
- International tables for x-ray crystallography (1962) **3**, 202. Kynoch Press, Birmingham.
- K. F. JAHR und J. FUCHS (1966), Neue Wege und Ergebnisse der Polysäureforschung. Angew. Chem. 78, 725–735. Dort weitere Literaturhinweise.
- KARL-FRIEDRICH JAHR, JOACHIM FUCHS und ROLF OBERHAUSER (1968), Die Verseifung des Wolfram(VI)-säure-tetramethylesters in Gegenwart von Tetraalkylammoniumbasen. Chem. Ber. 101, 477–481.
- INGVAR LINDQVIST (1953), The structure of the hexamolybdate ion in $7 \operatorname{Na_2O} \cdot 6 \operatorname{Nb_2O_5} \cdot 32 \operatorname{H_2O}$. Arkiv Kemi 5, 247–250.
- INGVAR LINDQVIST und BERTIL ARONSSON (1955), The structure of the hexatantalate ion in $4K_2O \cdot 3Ta_2O_5 \cdot 16H_2O$. Arkiv Kemi 7, 49–52.
- L. H. THOMAS und K. UMEDA (1957), Atomic scattering factors calculated from the TFD atomic model. J. Chem. Physics 26, 293-303.