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Refinement of the crystal structure of hardystonite,

Ca2ZnSi207
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Auszug

Die Kristallstruktur von Hardystonit, Ca2ZnSi207, wurde auf Grund von
hkl-Interferenzen bis zum Wert R = 5,3 % verfeinert. Die Bindungen Zn-O
und Si-O sind vorwiegend kovalent. Benachbarte [ZnSi207 ]4- -Schichten
werden durch Ca2+-Ionen zusammengehalten; hierbei herrscht Ionenbindung
vor.

Abstract

The structure of hardystonite, Ca2ZnSi207, was refined to R = 5.30/0 from
three-dimensional diffractometer data. The Zn-O and Si-O bonds are predom-
inantly covalent, and the adjacent covalent sheets of [ZnSi207 ]4- are linked
by Ca2+ ions, with the interlayer bonding being predominantly ionic in character.

1. Introduction

The crystal structure of hardystonite, Ca2ZnSi207, was determined
first by WARREN and TRAUTZ (1930). The reinvestigation was under-
taken as part of a systematic structural study of various members
of the melilite mineral group. Order-disorder of Mg,Al,Si among
tetrahedral sites, and diadochy of Ca,Na, etc. in 8-coordination sites,
are of principal interest in this group of minerals, as explained by
SMITH (1953) when he reexamined the structure of a melilite. Reexami-
nation of hardystonite structure was specifically chosen since each
cation site is occupied by only one atomic species, and since an ac-
curate determination of structural parameters of this crystal would
assist in discussing problems concerning other chemically more com-
plicated melilites.



Table 1. H ardystonite analyses

X-ray-emission microanalysis, Wet chemical analyses quoted
Oxides S. J. LOUISNATHAN, analyst by PALACHE (1935)

1 2
I

3
I

4

Si02 36.80 Dfo 38.10% 37.78% 36.59 Dfo
Ab03 0.94 0.91 0.77
Fe203 0.20* 0.57 0.43
FeO 0.42
ZnO 25.56 24.30 25.38 22.47
MnO 0.76 1.50 1.26 1.23
CaO 34.61

**
33.85 34.22 35.16

MgO 0.39 1.62 0.26 1.47
K20 0.78
Na20 0.29 1.10
PbO 0.56 1.99
Ignition 0.52 0.34

Total 100.11 100.46 102.46 100.00
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2. Experiments

The specimen chosen for this study is from Franklin, N. J. Three
chemical analyses of hardystonite from this locality are reported by
PALACHE (1935). A mean of these three analyses yields the following
formula when calculated on the basis of 7 oxygen atoms,

The ionic species within the parentheses tend to occur in the 8-coor-
dination site, while those in square brackets tend to occur in the
tetrahedral sites.

After collecting the intensity data for the crystal-structure ana-
lysis, the single crystal of hardystonite from which intensities were
measured was chemically analyzed by the x-ray-emission micro-
analysis technique. Measurements were made at 15 kV and 0.5 {lA.
Standards used were Zn metal and ZnCOa for Zn, galena for Pb, and
H39 clinopyroxene (SMITH, 1966) for other elements. The results of
this analysis, corrected according to the procedure of SMITH (1965),
are compared with those reported by P ALACHEin Table 1. The micro-
probe analysis shows slightly more CaO and slightly less MnO and

* The microprobe analysis does not distinguish ferrous from ferric iron.

**
About 1.50/0 random variation within the grain was observed, average

value is given above.



Rotation photograph
Mo radiation 7.83A 4.99 A WARREN and TRAUTZ (1930)

Diffractometer data
CuKex radiation 7.823 5.013 L.G. BERRY (PDF Card No. 12-453)

Powder photograph
synthetic sample 7.75 (5) 5.01 SEGNIT (1954)

Powder photograph 7.8287 5.0140
FeKex radiation ::1:::0.0016 ::1:::0.0004 This work

Diffractometer data 7.8279 5.0138
CuKex radiation ::1:::0.0010 ::1:::0.0006 This work
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MgO. The formula of hardystonite according to the x-ray-emission
analysis is,

(Ca1.97Mno.03N ao.02Pbo.007) [Znl.OoAlo.03Mgo.03Feo.00sSh.96] 07 .

This analysis also showed that the single crystal was chemically
homogeneous within 10/0, The atomic factors of the cation sites were
assumed to be those for pure Ca, Si and Zn because of the trivial
effects of the substitution by other ions.

Table 2. Lattice parameters of hardystonite

Method a c Reference

The lattice parameters of hardystonite as measured by different
workers are given in Table 2. In the present study they were obtained
from powder patterns using a diffractometer and a 114.6 mm Buerger-
type camera, with a spectroscopically pure silicon as internal standard.
Ni-filtered CuKtX radiation was used for the diffractometer pattern,
and Mn-filtered FeKtX radiation for the powder pattern. Measured 20
values were corrected using the known positions of the silicon lines.
Of the 50 or so of the lines measured, 32 lines were used in the de-
termination of cell parameters by least-squares techniques [SMITH
(1956) and BURNHAM(1962)J.

PALACHE (1935) reports a density range of 3.39 to 3.44 g/cm3 for
hardystonites, which is consistent with density (3.42 g/cm3) calculated
using x-ray-emission microanalysis data and the refined cell-dimension
data. There are two formula units of hardystonite in the unit cell.
The space group is P421m or P421 as the only systematic extinctions
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are hOO with h odd. WARREN and TRAUTZ (1930) discarded P421 as
it was not possible to build a reasonable structure in this space group.

A grain of hardystonite free from zoning, twinning or inclusions
was chosen and ground into a sphere of diameter 0.18 mm by the
method of BOND (1951). Weissenberg and precession photographs
were taken and the space-group extinction conditions were checked.
Intensities were collected on a manual scintillation-counter diffracto-
meter of Weissenberg geometry, using Zr-filtered MoKiX radiation.
For the layers hkO through hk4, the symmetry-related reflections
khl and hkl were measured in addition to hkl. (It should be mentioned
here, that for the space group P421m, F(hkl) is not identical to F(hkl)
when anomalous scattering is taken into consideration). For layers
hk5 through hk8, only one set of intensities, namely hkl, was measured.
Corrections for Lorentz and polarization factors were applied to the
intensities using a program written by STEPHENSON and KNOWLES
(private communication). No corrections for absorption were applied.

3. Refinement

The structure was refined with the SORFLS least-squares program
written by R. B. K. DEWAR (private communication). This program
is a local modified version of the ORFLS program of BUSING, MARTIN
and LEVY (1962) which includes provision for anomalous dispersion
and a correction for secondary extinction using ZACHARIASEN'S(1963,
1967) formula for a sphere.

The atomic coordinates of WARREN and TRAUTZ (1930) yielded
R = 22%. Six refinement cycles with unit weights for all reflections
and isotropic temperature factors, brought R to 150/0, Introduction
of individual scale factors to the different llayers during three cycles
of refinement reduced R to 130/0, Tests made to choose a proper
weighting scheme showed that the errors in Fobs were neither depen-
dent on sin ()nor on the magnitudes of FObS'

There were 151 reflections (or nearly half this number when only
one set of symmetry-related reflections are taken into account) which
showed rather significant differences in IFobs-Fcalcl. Of these, eigh-
teen were very bad and were not used in subsequent refinements.
A careful check of the rest revealed a difference of over 10% in the
background counts on opposite sides of the peak. For such reflections,
intensities were measured again, tracing the peak on a recorder
during the second counting. Most of these peaks were weak, yielding
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Table 3. Observed and calculated structure amplitudes in hardy.tonite
p. p. h . P. P. h . P. P. P. P. h k P. P., 1060 122'" 6 2
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Ca 0.3322 (01) t-x 0.5061 (03) 0.0055 (01) {3n
Zn 0 0 0 0.0025 (01' {3n
Si 0.1393 (02\ t-x 0.9394 (03\ 0.0020 (01 \ (3n
0(1) 1. 0 0.1771 (15) 0.0098 (10) (3n2
0(2) 0.1400 (05) t-x 0.2551 (11) 0.0055 (05) (3n
0(3) 0.0818 (07) 0.1885 (05) 0.7847 (09) 0.0145 (09) 0.0017 (05)
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2}

.
5
6
7
8
9

'01 1 5
2}

.
5
6
7
8
9

'02 2 5}
,
5
6
7
8
9

'0} }
5,

5
6
7
8
9

10
. , 5
5
6
7

Fo F~

363Jt 3695
597 531

3681t 3665
965 1050
%66 2%9
970 613

1380
'''57173 litO

22.\0 2196
3359 3'-26
1525 1500
518 487

1146 1202
254. 2537
:rn 350

1822 1837
823 7"'8832 558

1107
10'"1782 2002

927 902

'5"3 166"
1031 1039
3237 3155
1707 175"
1491 1432

764 702
855 1007

""'5'
4371

688 601
12"5 1257

381 370

"'2
351t

9"5 831
2305 2251.1

189 276

151".9 ,/t06

12'l9 1299
2nS 2"88
1~16 1316

8
9
5
6
7
8
9
6
7
7
1
2}
,
5
6
7
8
9

10
1 1 6
2}
,
5
6
7
8
9

10

Fo Pe

1252 1352

"'08
310

1685 15.1t8
963 683

,,.46 1113%

397 .lt84

9'8 999
726 696

7J 73

'''52
1553

1263 1l.t29

125" 1232

95'"
1081

2238 2238
1071 715
2401}

2"17
1175 1180

161t 1J9
428 133

1173 1167
1701 1682
2777 2738

'935 1593
1572 1716

658 7/13
1085 1178
1511 161,.0
1

"'25
1392

1218 lItlt'"

"55 "'21
2596 2519

859 849
18lt7 '920
2298

2"'23
1231 1128
710 870

'685 1759
922 716
706 698

1087 1118
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Table 3. (Continued)

}
6

2"'95
2468

1058 1062
656 652
931 512

73 180
970 932

1723 1570
1301 1271
1067 1141
2271 2187

318 "52
1141 1016

582 586
1179 1209
2556 23"7
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"'2969 It 200

1671 161"
288 677

2389 2566
566 273
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73 228

888 659
1026 698
1265 1381

73 381
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*2'
41J

442 321
1290 1}16

1669 1712
859 80lt

2003 '977
1141 727

915 667
2010 1888
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902 766
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, 7

Fo Fe

1597 1704
10J5 788
1037 12lt8

J09 645
3808 3545

79'"
683

897 706
855 688

73 29"
618 Salt

197'-
1751,.

SBIt 472
1073 863
2023 2151
1213 1079

841 996
1928 1952
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1087 1161

73 228
638 610
It71 350

1270 1355
252 217
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534 60}

859 1018
557 667

1554 1621
620 J01
403 210
645 307

1042
'''451543 1629

1664 1628
1082 1128

620 668
647 ",6

1392 1218
9JIt 878

2}

.
5
6
7
8} }

8,
5
6
7
8, . 8
5
6
7
8
5
6
7
6 6
5 5
7 7
2 1
2 -1

12 _1, -}
6 -}
9 8

10 0
11 0
11 2
8 -}, -,
9 0
8 8
9 ,
7 -7
7 5

Fo Fe

1069 1248
701 339

1028 11}6
lJJJ 1-'1%2

254 IroJ6
1035 795
1191 1023

466 375
489 400

1775 1870
694 235
769 958
315 239
811t 604

1206 1029
521 641
934 70.

15J..7 1397
1186 1019

51J.. 1.119
719 "08

1626 1It92
1773 605

868 26"

6''''
M40

6763 6"22
1222 692

780 335
51t2

83'
73 435

195 222
1751 896

73 Slt8
73 714

2558 3740
792 26

1312 l'}4J..
73 "45

1799 1074
73 372

2 6

}
6

, 6

1 7

2 7

1 8

The table contains 715reflections. The overall scale factor is 0.916 x 10-'. Determination of absolute
configuration requires that the signs on all hkl's be reversed. The 18 reflections listed at the end of the
table were not used in the least-sql1ares refinements.

very jagged and irregular traces. All these 129 reflections were then
uniformly weighted at half the weight assigned to the remaining
811 reflections. Such a weighting scheme appeared to be justifiable,
smce the quantity g = {[W(IFObs-KiFcalcl)2]/(NO-NV)}1/2, (where
NO is the number of observations, NV is the number of parameters
varied, and Ki is the scale factor of the ith llayer), was always close
to unity (HAMILTON, 1964). Continuing the refinement under these
conditions gave an R value of 9.90/0 and R' value of 9.50/0 after six

Table 4. Ooordinates and thermal vibration

(Numbers in parentheses are the estimated standard deviations

x y z (3n

*
Since different scale factors were used for the different l layers, {333of Zn

tropic temperature factors.



{l33 {l12 {l13 {l23

0.0076 (04) 0.0025 (01) 0.0005 (02) -{l13
0.0073* 0 0 0
0.0042 (06) -0.0001 (02) 0.0003 (03) -{l13
0.0044 (20) -0.0050 (14) 0 0
0.0069 (16) 0.0028 (07) -0.0004 (06) - {l13
0.0124 (15) -0.0016 (06) 0.0033 (08) - 0.0014 (07)
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cycles of refinement, where R = .EIIFobsl - IKiFcalcll/.EIFobsl, and
R' = [.Ew (FObs-KtFcalc)2]1/2/[.Ew Fobs2]1/2. Introduction of anom-
alous-dispersion corrections, with t~n = 0.30, t::'n = 1.50, t~a = 0.20,

t~a = 0.35, t~i = 0.10, and t~ = 0.10 (all values given are for
() = 00, and were assumed to be constant for all values of e) in four

cycles of refinement gave R = 8.7% and R' = 7.50/0.Anisotropic tem-
perature factors were introduced, and two parallel sets of refinements,
one on hkl and hkl data and other on hkl and likl data were done.
After four cycles of refinement the set with hkl and hkl gave R = 8.1 %
and R' = 6.00/0, while the set with 7tTeland likl gave R = 6.7% and
R' = 5.4%. Of the symmetry-related reflections, hkl and khl, the
set that gave a better R value was retained and the other set removed,
and this left 697 independent reflections for further refinements. In
another four cycles, the refinement on positive 1 configuration con-
verged to R = 7.80/0, and R' = 5.80/0, and that on negative 1 con-
figuration converged to R = 6.7% and R' = 5.3%. The quantity gat
this final stage was 1.25. The differences in the z coordinates of the
oxygen atoms relative to the Zn atom were of the order of 0.005 to
0.01 A between the two configurations. These differences in R' and

z coordinates are significant even at a confidence level of 0.1 % (see
HAMILTON'S, 1964, significance tests on R values). The final list of
FObs and F calc are shown in Table 3. The final atomic coordinates
and the thermal parameters of the atoms in hardystonite are given
in Table 4.

Interatomic distances and bond angles together with their esti-
mated standard deviations, taking into account both the errors in
cell dimensions and in structural parameters, were calculated using
the SORFFE program, a local modified version of the ORFFE written

parameters of atoms in hardystonite

in the last two decimal places of the preceding quantity)

was not varied after converting the isotropic temperature factors into aniso.

Z. Kristallogr. Ed. 130, 4-6 28
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Table 5. Bond lengths and angles in hardystonite
The estimated standard deviations given in parentheses are X 104 for

bond lengths and X 10 for bond angles

Bond lengths Bond angles

The Zn04 tetrahedron at point symmetry 4

Zn-0(3) [4 x] 1.937 (4) A 0(3)-Zn-0(3') [2 x]
0(3)-0(3') [2 X] 3.217 (8) 0(3)-Zn-0(3") [4 X]
0(3)-0(3") [4 X] 3.136 (8)

The Si207 group at point symmetry mm2

Si-O(l) 1.649 (3) A Si-O(l)-Si'
Si-0(2) 1.583 (1) 0(1)-Si-0(2)
Si-0(3) [2 X] 1.619 (4) 0(1)-Si-0(3) [2 x]
0(1)-0(2) 2.664 (4) 0(3)-Si-0(3"')
0(1)-0(3) [2 X] 2.529 (4) 0(3)-Si-0(2) [2 X]

0(3)-0(3"') 2.543 (9)
0(3)-0(2) [4 x] 2.752 (4)

The CaOs polyhedron at point symmetry m

Ca-0(3) [2 X] 2.412 (5) 0(2)-Ca-0(3) [2 X]
Ca-0(2) 2.472 (2) o (3)-Ca-0 (3')
Ca-O(l) 2.485 (4) 0(2)-Ca-0(2')

Ca-0(3"") [2 X] 2.685 (5) 0(2)-Ca-0(3') [2 X]
Ca-0(2') [2 x] 2.700 (1) 0(2")-Ca-0(3"') [2 x]
0(1)-0(2") 4.004 (1) 0(1)-Ca-0(3"') [2 X]

0(3"")-0(3") 5.043 (8) 0(1)-Ca-0(2")
0(3"')-Ca-0(3"")

112.3 (3) °
108.1 (1)

138.5 (3) °
111.0 (2)
101.4 (4)
103.5 (4)
118.5 (2)

66.8 (1)0
63.6 (2)
58.8 (2)
89.7 (1)
84.7 (2)
58.4 (1)

107.8 (2)
139.8 (2)

by BUSING, MARTIN and LEVY (1964). The bond distances and bond
angles in hardystonite (Table 5) do not include corrections for thermal
movements.

4. Discussion

This study confirms the structure of hardystonite as obtained by
WARREN and TRAUTZ (1930). The zinc tetrahedra are located at the
corners and base-center of the primitive tetragonal lattice. All four
tetrahedral oxygen atoms are shared by adjacent silicon tetrahedra,
and the silicon tetrahedra are joined in pairs forming Si207 groups.
The linkage of zinc and silicon tetrahedra results in an heterocyclic
five-membered tetrahedral ring. The rings link together to form
a corrugated sheet parallel to c (001), and the adjacent sheets are
held together byCa-O bonds.

The Zn-O bonding appears to have considerable covalent charac-
ter. The mean Zn-O distance in zincite is 1.95 A, and it varies from
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2.08 to 1.96 A for different zinc spinels (SLATER,1965). The sum of
tetrahedral covalent radii of oxygen and zinc is 1.97 A (PAULING,

1960). In comparison, the distance of 1.937 A in hardystonite is
definitely shorter by a significant amount, and this distance compares
well with the covalent Zn-O distance of 1.936 A as obtained from
the arithmetic mean of the shortest Zn-Zn distance (2.665 A)
in zinc metal and the 0-0 distance (1.207 A) in the O2 diatomic
molecule. Using PAULING'S (1960) arguments, this is a strong in-
dication for the presence of covalent-bond character between zinc
and oxygen. The bond angles (108° 5', four times; 112° 17',
twice) within the Zn04 tetrahedron are almost regular, suggest-
ing that zinc, using its Sp3 hybrid orbitals, forms strong (Jbonds
with the oxygen atoms.

CRUICKSHANK(1961) has proposed the existence of n bonding in
addition to (Jbonding between Si and 0 atoms in silicates. For isolated
Si207 groups he predicts distances of 1.656 A to the bridging oxygen
and 1.621 A to the terminal oxygen atoms. In hardystonite the bridge-
bond distance is 1.649 A and there are two terminal-bond distances
of 1.619 A, which compare very well with predicted distances. The
third terminal-bond distance of 1.583 A is significantly shorter than
the predicted distance.

Every oxygen atom in the structure has four nearest-neighbor
cations in a distorted tetrahedral configuration, suggesting that every
oxygen atom is in a state of partial nonequivalent-sp3 hybridization.
This would increase the strength of (Jbonds between oxygen and zinc,
and of both (Jand n bonds between oxygen and silicon. The terminal
oxygen atom, 0(3), is (J bonded both to silicon and zinc, indicating
that the Si207 group in hardystonite pannot be considered as an
isolated pyrosilicate ion. The effect of 0(3) sharing its bonds between
Si and Zn is to nearly equalize the Si-0(3) terminal bond and the
Si-O(l) bridge bond, as for example, is found in hemimorphite,
Zn2Si207(OHh' H20 (McDoNALD and CRUICKSHANK,1967). This is not
observed in hardystonite possibly because, the nonequivalent-sp3 hybrid-
ization of 0(3) enhances the overlap between oxygen electrons and the
d electrons of silicon, while the d electrons of zinc, buried in the ion
core, do not take part in bonding. The apical oxygen atom, 0(2),
does not share its electrons in bonding with any other tetrahedral
cations in the structure. SMITH and BAILEY (1963) observe that, for
most corrugated Si205 sheets (which are comparable with the ZnSi207
sheet in hardystonite), the bond length to the unshared oxygen is

28*
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shorter than those to basal oxygen atoms. The short Si-0(2) distance
in hardystonite is a result of double- to triple-bond character.

The CaOs polyhedron in hardystonite is a highly distorted square
antiprism. The Ca-O distance for Ca in 8-coordination varies from
2.34 to 2.60 A in different minerals. The bond distances and bond
angles in the Ca polyhedron of hardystonite are given in Table 5.
There is no evidence in these bond lengths for the presence of any
significant covalent bonding. However, from the evidence that all
oxygen atoms have some hybrid characteristics one may expect
a certain amount of covalency in Ca-O bonds, especially in the
Ca-0(3) and Ca-0(2) bonds. Using the argument of electrostatic-
valence bond counts, SMITH (1953) has correlated the short Ca-O
distances in melilite with the covalent character in these bonds.
The distortion of the Ca polyhedron is more a consequence of bonding
characteristics within the sheet than of any covalent bonding within
the polyhedron. The mean of half of the bond angles (mean 8) at
calcium is 57°21'. At such an angle, calculations of KEPERT (1965)
show that the ligand-ligand repulsion energies tend to be minimal,
thus enhancing the stability of the central ion in the polyhedron.

A consequence of such a description of bonding within the Si207
group in melilite-type structures is that, with different cation sub-
stitutions in the Zn or Ca sites, the dimensions of the Si207 group
also vary. Specifically, with the increase in the covalency of bonding
between oxygen atoms and cations other than Si, due to substitutions
of different atomic species, there will be an increasing degree of equal-
ization of bond lengths between the bridge bonds and terminal bonds
of the pyrosilicate group.

Thus the structure of hardystonite can be summarized as con-
sisting of [ZnSi207]-4 sheets within which the nature of bonding is
dominantly covalent, the adjacent sheets being held together by Ca2+
ions with the interlayer bonding predominantly ionic in character.

Thus ZOLTAI'S (1960) classification of melilites as "two-dimension-
ally non-terminated, single-sheet, structure of tetrahedra" is more
appropriate than the older description in terms of Si207 isolated soro-
silicate groups.
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