The crystal structure of vrbaite Hg₃Tl₄As₈Sb₂S₂₀* ## By MASAAKI OHMASA** and WERNER NOWACKI Department of Crystallography and Structural Sciences, University of Bern (Received 19 December 1970) #### Auszug Die Kristallstruktur von Vrbait wurde bestimmt. Vier Formeleinheiten $Hg_3Tl_4As_8Sb_2S_{20}$ sind in der rhombischen Zelle, $a=13,399,\ b=23,389,\ c=11,287$ Å, Raumgruppe $C2ca-C_{2v}^{17}$, enthalten. Die Struktur wurde mittels einer Art Superpositionsmethode auf Grund einer dreidimensionalen Pattersonfunktion gefunden; $R=4,8^{\circ}/_{\circ}$. Die Vrbaitstruktur ist durch unendliche As_2SbS_5 -Ketten parallel c und durch $Hg_3As_4S_{10}$ -Schichten normal zu b charakterisiert. Die ersteren umgeben ("sandwich") die Tl-Atome und bilden Schichtbereiche ("slabs") normal zur b-Axe. Diese Schichtbereiche und die $Hg_3As_4S_{10}$ -Schichten, welche die anderen Tl-Atome umgeben, wechseln in der b-Richtung ab. Die gefundene Struktur erklärt gut die gute Spaltbarkeit parallel (010). Vrbait ist unseres Wissens die erste Struktur mit gemischten (As,Sb)-Ketten. #### Abstract The crystal structure of vrbaite has been determined. Four chemical units of $\mathrm{Hg_3Tl_4As_8Sb_2S_{20}}$ are contained in the orthorhombic unit cell: a=13.399, b=23.389, c=11.287 Å, symmetry $C2ca-C_{2v}^{17}$. The structure was solved through a kind of superposition method using the three-dimensional Patterson function. The final discrepancy index R is $4.8^{\circ}/_{\circ}$. The structure of vrbaite is characterized by infinite As_2SbS_5 chains parallel to c and by $Hg_3As_4S_{10}$ sheets perpendicular to b. The former sandwich the Tl atoms and make slabs perpendicular to the b axis. These slabs and the $Hg_3As_4S_{10}$ sheets, sandwiching the other Tl atoms, are arranged alternately along the b direction. The good cleavage parallel to (010) can be well explained by the structure. Vrbaite is the first structure with mixed (As,Sb) chains. #### Introduction Vrbaite is a very rare sulfosalt, found by Ježek (1912) in a specimen from Allchar, Macedonia. Ježek made morphological studies and ^{*} Communication no. 208a.-Part 58 on sulfides and sulfosalts. Part of this work was presented at the 7th IMA meeting (31st August 1970, Kyoto, Japan) and atthe Annual Meeting of the Swiss Society for Crystallography, 17th October 1970, Basel. ^{**} Present address: Institut für Mineralogie und Kristallographie der Universität, D-34 Göttingen, V. M. Goldschmidtstr. 1 described its point symmetry as 2/m 2/m 2/m. Křehlík (1912) made a chemical analysis of this material and showed its formula to be TlAs₂SbS₅. The cell dimensions of vrbaite were determined by Frondel (1941). He proposed *Cmca* as the probable space group, taking account of x-ray and morphological data. Recently Caye, Picot, Pierrot and Permingeat (1967) reexamined the chemical composition of vrbaite with the aid of electron-probe microanalysis, and obtained a new formula, Hg₃Tl₄As₈Sb₂S₂₀. This formula was confirmed by Nowacki (1968). The present investigation was undertaken to elucidate the coordinations of the sulfur atoms around the thallium atoms which show a quite irregular feature in the structures of sulfosalts, and to examine whether the antimony atoms and the arsenic atoms are in an ordered state or not. ## **Experimental** A specimen from Allchar, Macedonia (Naturhistorisches Museum, Wien), half of which was being used for chemical analysis (Nowacki, 1968), was used for the present studies. A spherical crystal with radius 0.106 mm was prepared by Bond's (1951) method for the determination of the cell dimensions and intensities. The lattice constants were obtained from back-reflection Weissenberg photographs calibrated by powder patterns of silicon. A least-squares best fit of the lattice parameters was calculated with the aid of an IBM-1620 program written by N. D. Jones (unpublished). The results agree well with the values obtained by Frondel (1941). | Present determination | Frondel ¹ | |--------------------------------|-----------------------| | $a = 13.399 \pm 0.001{ m \AA}$ | $13.38+0.05~{ m \AA}$ | | $b=23.389 \pm 0.001$ | $23.37\ \pm\ 0.05$ | | c = 11.287 + 0.001 | 11.25 + 0.05 | The number of formula units, four, was calculated from the cell dimensions obtained and the measured specific gravity, 5.30 (Palache, Berman and Frondel, 1944). The diffraction symbol for vrbaite is mmC_*ca , which permits Cmca and C2ca as possible space groups. Since a piezoelectric test showed an acentric feature, $C2ca-C_{2v}^{17}$ was selected as the correct space group. ¹ Frondel's values are converted to Ångstrom from kX units. Three-dimensional intensity data (1772 independent reflections) were collected by an automated Weissenberg counter-diffractometer (Supper-Pace) using $\mathrm{Cu}K\alpha$ radiation. One hundred and twenty-four of these reflections [with $I<2.33~\sigma(I)$] were assigned to unobserved reflections. Fig. 1. (a) Patterson section P(0,v,w). Rotation peaks should not exist in the shaded area. Contours are equal but in arbitrary intervals. (b) The vector set for equipoints 8b. The underlined values indicate weights of points #### Determination of the structure and refinement The Patterson function P(u,v,w), evaluated with the three-dimensional data, showed that all peaks are distributed on the sections u := n/8 (n = 0, 1 and 2). All heavy peaks which correspond to the vectors between heavy atoms² are on the sections u = 0 and 1/4. These features of the diagram suggest that all atoms are arranged nearly on planes at intervals of 1/8 along the a direction, and all heavy atoms on every other plane. The only equipoints of the space group C2ca are 4a (on twofold axes) and 8b (points in the general position)³. Since there are twelve mercury atoms in the cell and since this number is not divisible by eight, at least four mercury atoms should occupy the special positions. A possibility of statistical distribution of mercury atoms was omitted, because no anomaly of background intensities was observed on the films. As the space group C2ca has no symmetry element to fix the x coordinate of points, the origin of the cell can be set at one mercury atom of 4a and the positions of at least three heavy atoms (one Hg and two Tl atoms) must be found. The vector set of equipoint 8b is illustrated in Fig. 1b. These relations of equipoints and the heights of peaks which are expected for the vectors between heavy atoms, limit the probable positions of rotation peaks in the Patterson diagram P(0,v,w), Fig. 1a. It was, however, impossible to find uniquely the rotation peaks of heavy atoms and another attempt was made to obtain the heavy-atom positions, because almost all peaks of the Patterson maps have broadened shapes and overlap each other. If one component atom of a structure occupies the origin of the cell, the Patterson diagram contains the image of the true structure and the origin of the diagram coincides with that of the cell. If this crystal has axial symmetry, the image of the structure, being concentrated in one section, will also be obtained from the Harker section (the implication diagram). Therefore when we superpose the implication diagram on each section of the Patterson diagram in such a way that the origin of the former coincides with one of the symmetry axes in the cell, and when we note the peaks common in both diagrams, the image of the true structure should be found in the resultant map. In the present case, the Patterson section P(0,v,w), which was drawn on a scale of one ² The word "heavy atoms" will be used for mercury and thallium atoms hereafter, because the difference of their atomic scattering factors is quite small. to two, was superposed on P(0,v,w) and $P(\frac{1}{4},v,w)$. The result, however, showed still too many candidates for the heavy atom positions. In order to eliminate some of the candidates, the relations of the cross vectors between the origin and the points in the general positions were derived. The end points of vectors show special relations as indicated in Fig.2: these points are related to each other by three twofold axes. One of them designated as I is a component of the symmetry elements in the Patterson space group Cmmm, while the others, II and III, being equivalent, are additional ones. When two sets of Patterson diagrams are superposed according to the additional operations, the cross vector peaks between the atom of the origin and the atoms of the general positions can be obtained. This result also includes the image of the actual structure. The above procedure eliminated most of the peaks in the Patterson section. The implication diagram was also superposed on the resultant maps, and five peaks common in both diagrams were adopted as candidates (Figs. 3a and 3b). In order to eliminate the number of candidates and to obtain the relative positions of each of the heavy atoms, five sets of minimum functions were evaluated using the origin atom, each of the candidates and their symmetrically equivalent positions. Four minimum-function diagrams drawn with four points I, II, III and IV (Figs. 3a and 3b) were compatible with each other, and these peaks were considered to correspond to one mercury, two thallium and one antimony atoms. Position I was regarded as the antimony atom, because the peak height in the minimum-function diagram is lower. The relative positions of these peaks, having been impossible to derive by the operation in Fig. 2, are found from minimum-function diagrams. The structure factors were calculated with the coordinates obtained for the reflections which are in the range of $\sin \theta \leq 0.7$. The discrepancy index R was about $43^{\circ}/_{\circ}$. The atomic scattering factor of mercury was used for both mercury and thallium atoms at this stage. The remaining atoms were found by successive three-dimensional Fourier and difference Fourier syntheses. In the course of this procedure, the antimony atom and one of
three heavy atoms (denoted II in Fig. 3a) revealed an anomaly in the difference map; that is, a deep depression was found at the position of the latter and an elevation at the position of the former. Besides, the coordination of sulfur atoms around them was quite strange: atom I, which was regarded as Sb, has two nearest sulfur atoms and the coordination of atom II was a flat trigonal pyramid. Therefore the Sb atom (I) and atom II were Fig.2. The relations of cross vectors between the origin and the points in the general positions. The underlined values indicate weights of points. I, II and III are directions of the three twofold axes Fig. 3. Candidates for heavy atoms. The same diagram as in Fig. 1a was used as the implication diagram. All candidates should be in the area within the rectangular sections. (a) x=0. (b) $x=0.24\approx \frac{1}{4}$. Independent candidates in this section are only III and IV interchanged in position. Four arsenic and ten sulfur atoms were found in the further process. The R index was about $22^{0}/_{0}$ at this stage and no anomaly was found in the three-dimensional difference synthesis. The mercury atom was distinguished from thallium atoms by the difference in the coordinations around them. Table 1. Comparison of observed and calculated structure factors for vrbaite | h k l | Fo | Fc | b k l | F 0 | P _c | h k 1 | Po | F c | h k l | Po | P _e | h k 1 | Po Pe | |-------------|-------------------|-----------------|----------------|-------------|-------------------|-------------|-----------------|------------|-------------|-------------------------|----------------|------------|---| | 0 2 0 | 28* | 79 | 0 8 7 | 123 | 120 | 1 21 3 | 210 | 216 | 1 5 12 | 179 | 178
150 | 2 12 6 | 307 317
67* 57 | | 6 | 338
259 | 289
267 | 10
12 | 118
80 | 134
88 | 23
25 | 275
32* | 275
44 | 7 | 150
104 | 105 | 14
16 | 67* 57
88 7 4 | | 8 | 163 | 164 | 14 | 225 | 226 | 27 | 214 | 220 | 11 | 81 | 73 | 18 | 315 312 | | 10 | 160 | 155 | 16 | 416 | 441 | 1, 1, 4 | 865 | 943 | 13 | 78 | 78 | 20
22 | 103 99 | | 12
14 | 259
271 | 243
283 | 18
20 | 75
122 | 73
129 | 3 | 404
283 | 418
294 | 1 1 13 | 86
62 | 89
56 | 22
24 | 298 307
39 25
586 623 | | 16 | 244 | 269 | 22 | 18* | 4 | 7 | 656 | 711 | ś | 22* | 12 | 2 2 7 | 39 25
586 623 | | 18 | 1152 | 1229 | 24 | 314 | 330 | 9 | 295 | 310 | 7 | 193
147 | 186 | 6 | 166 160
335 346 | | 20
22 | 663
93
115 | 669
54
97 | 0 0 8 | 297
268 | 324
285 | 11
13 | 538
278 | 557
281 | 200 | 402 | 143
170 | 8 | 335 346
194 210 | | 24 | 115 | 97 | 4 | 194 | 214 | 15 | 99 | 81 | 2 | 248 | 210 | 10 | 261 266 | | 26 | 355
441 | 352 | 6 | 347 | 371 | 17 | 407 | 400 | 4 | 245 | 228 | 12 | 147 148 | | 28
0 2 1 | 116 | 459
32 | 8
10 | 112.
264 | 118
297 | 19
21 | 387
305 | 387
300 | 6
8 | 1110
762 | 1219
795 | 14
16 | 343 342
63 61 | | 4 | 378 | 376 | 12 | 52* | 43 | 23 | 72 | 62 | 10 | 95* | 76 | 18 | 146 142 | | 6 | 450
831
587 | 489 | 14 | 55* | 25
12 | 25 | 255
205 | 262 | 12 | 536 | 539 | 20
22 | 121 112 | | 8
10 | 831
597 | 918
637 | 16
18 | 31*
290 | 12
298 | 27
1 1 5 | 205
723 | 219
764 | 14
16 | 797
117 | 822
129 | 24 | 83 69
22* 26 | | 12 | 705 | 762 | 20 | 194 | 198 | 3 | 241 | 244 | 18 | 384 | 386 | 2 0 8 | 263 262 | | 14 | 174 | 191 | 22 | 45 | 41 | 5
7 | 247 | 258 | 20
22 | 605
216 | 614
216 | 2 | 421 417
286 276 | | 16
18 | 285
171 | 298
168 | 0 2 9 | 49*
361 | 25
389 | 7
9 | 299
457 | 300
483 | 22
24 | 308 | 300 | 6 | 69 49 | | 20 | 32* | 8 | 6 | 264 | 287 | 11 | 123 | 121 | 26 | 198 | 202 | 8 | 529 558 | | 22
24 | 32*
131
105 | 139
110 | 8
10 | 292
180 | 318
191 | 13
15 | 235
109 | 248
101 | 28
2 2 1 | 78
573 | 71
551 | 10
12 | 474 508
58* 35 | | 26 | 257 | 256 | 12 | 426 | 451 | 17 | 450 | 467 | 2 2 ' | 64* | 82 | 14 | 165 157 | | 28 | 257
14* | 10 | 14 | 67 | 66 | 19 | 373 | 378 | 6 | 464 | 483 | 16 | 97 91
61 20 | | 0 0 2 | 344 | 389 | 16
18 | 33* | 37
123 | 21
23 | 260
200 | 266
200 | 8
10 | 49*
136 | 53
100 | 18
20 | 61 20
166 169 | | 4 | 196
928 | 193
1046 | 20 | 123
53 | 54 | 25 | 180 | 185 | 12 | 132 | 100 | 22 | 150 152 | | 6 | 234 | 271 | 0 0 10 | 53
667 | 699 | 1 1 6 | 241 | 255 | 14 | 464 | 476 | 2 2 9 | 352 349 | | 8
10 | 717
114* | 781
82 | 2 | 249
43* | 254
27 | 3 | 454
351 | 476
373 | 16
18 | 551
11 3 | 556
81 | 6 | 126 139 .
239 241 | | 12 | 152 | 171 | 6 | 200 | 203 | 7 | 239 | 237 | 20 | 382 | 388 | 8 | 120 114 | | 14 | 453 | 475 | 8 | 186 | 193 | 9 | 56* | 55 | 22 | 89 | 80 | 10 | 184 194
201 197 | | 16
18 | 49* | 27
50 | 10
12 | 61
65 | 74
67 | 11
13 | 339
147 | 341
154 | 24
26 | 316
131 | 315
131 | 12
14 | 201 197
97 105 | | 20 | 93
175 | 181 | 14 | 56 | 52 | 15 | 445 | 451 | 28 | 182 | 193 | 16 | 240 248 | | 22 | 500 | 514 | 16 | 96 | 99 | 17 | 249 | 252 | 2 0 2 | 372 | 372 | 18 | 173 166 | | 24
26 | 69
255 | 9
255 | 18
0 2 11 | 194 | 201 | 19
21 | 82
193 | 76
206 | 2 | 841
273 | 884
267 | 20 2 0 10 | 187 189
267 255 | | 28 | 150 | 149 | 4 | 206 | 213 | 23 | 259 | 256 | 6 | 122* | 93 | 2 | 422 423 | | 0 2 3 | 366 | 378 | 6 | 58 | 54
334 | 25 | 97 | 107 | 8 | 196 | 194 | 4 | 314 317
282 295 | | 6 | 1360
178 | 1640 | 8
10 | 324
60 | 334 | 1 1 7 | 395
440 | 417
456 | 10
12 | 754
252 | 780
255 | 6
8 | 314 317
282 295
68 64 | | 8 | 621 | 172
678 | 12 | 336 | 53
352 | 5 | 499 | 528 | 14 | 237 | 206 | 10 | 288 287 | | 10 | 298 | 322 | 14 | 387 | 389 | 7 | 414 | 439 | 16 | 674 | 704 | 12 | 187 182 | | 12
14 | 87*
822 | 85
881 | 16
0 0 12 | 141 | 142
162 | 9
11 | 124
296 | 142
312 | 18
20 | 257
254 | 260
250 | 14
16 | 301 305
212 207
64 52
106 96 | | 16 | 489 | 495 | 2 | 243 | 239 | 13 | 425 | 442 | 22 | 236 | 234
110 | 18 | 64 52 | | 18 | 20* | 9 | 9 | 297 | 297 | 15 | 30 5 | 399 | 24 | 115 | 110 | 2 2 11 | 106 96 | | 20
22 | 235
253 | 238
251 | 6
8 | 61
36 | 52
9 | 17
19 | 320
179 | 320
167 | 26
28 | 88
223 | 89
228 | 6 | 163 164
703 714 | | 24 | 450 | 461 | 10 | 33 | 13 | 21 | 263 | 272 | 2 2 3 | 369 | 365 | 8 | 173 171 | | 26 | 68 | 69 | 12 | 41 | 15 | 23 | 120 | 119 | 4 | 305 | 303 | 10 | 36* 42 | | 28
0 0 4 | 27*
242 | 8
255 | 14
0 2 13 | 111 | 111
59 | 1 1 8 | 207
257 | 212
268 | 6
8 | 199 | 176 | 12
14 | 286 291
178 179
74 78 | | 2 | 24* | 59
766 | 4 | 203
63 | 216 | ś | 399 | 428 | 10 | 200 | 206 | 16 | 178 179
74 78 | | 4 | 687 | 766 | 6 | 63 | 65 | 5
7 | 190 | 195 | 12 | 663 | 684 | 2 0 12 | 243 228 | | 6
8 | 353
823 | 388
919 | 8
10 | 107
204 | 111
209 | 9
11 | 99
148 | 91
144 | 14
16 | 312
138 | 302
130 | 2 | 193 193
101 92 | | 10 | 327 | 356 | 1 1 1 | 98* | 136 | 13 | 151 | 164 | 18 | 541 | 548 | 6 | 105 109 | | 12 | 672 | 713 | 3 | 116* | 104 | 15
17 | 174 | 170 | 20
22 | 313
73
326 | 308 | 8
10 | 54 49
193 187
153 161 | | 14
16 | 37*
214 | 227 | 5
7 | 835 | 909 | 19 | 128
155 | 147
156 | 24 | 326 | 62
330 | 12 | 193 187
153 161 | | 18 | 173 | 166 | 9 | 701 | 738 | 21 | 185 | 187 | 26 | 248 | 257 | 2 2 13 | 436 427 | | 20
22 | 238
89 | 253
80 | 11 | 526
526 | 543
552 | 23
1 1 9 | 155
358 | 158
365 | 2 0 4 | 89
492 | 89
514 | 6 | 110 110
149 149 | | 24 | 86 | 92 | 13
15
17 | 253 | 257 | 3 9 | 241 | 242 | 4 | 250 | 231 | 8 | 47 51 | | 26 | 226 | 240 | | 139 | 121 | 5 | 154 | 166 | 6 | 412 | 422 | 3 1 1 | 171 157 | | 0 2 5 | 109
276 | 119
302 | 19
21 | 260
182 | 261
188 | 7
9 | 193
264 | 203
281 | 8
10 | 113
553 | 116
567 | 3
5 | 237 222
688 688 | | 6 | 32* | 68 | 23 | 260 | 254 | 11 | 301 | 312 | 12 | 520 | 534 | 7 | 649 649 | | 8 | 521 | 577 | 25 | 255 | 254 | 13 | 248 | 256 | 14 | 215 | 206 | 9 | 676 676 | | 10
12 | 540
96 | 583
88 | 27
1 1 2 | 141
155 | 143
127 | 15
17 | 302
172 | 302
164 | 16
18 | 62*
199 | 49
186 | 11
13 | 551 536
651 651 | | 14 | 306 | 330 | 3 | 519 | 546 | 19 | 324 | 322 | 20 | | 155 | 15
17 | 138 104 | | 16
18 | 86
170 | 98
170 | 5
7 | 600
166 | 638
185 | 21 | 324
76
96 | 79
98 | 22
24 | 385 | 385
102 | 17 | 308 303
39* 70 | | 18
20 | 170
390 | 170
398 | ý | 166
41* | 185
58 | 1 1 10 | 96
310 | 98
310 | 24
26 | 159
385
93
23* | 102
20 | 19
21 | 138 104
308 303
39* 70
100 74
213 213 | | 22 | 7* | 20 | 9 | 190 | 205 | 5 | 114 | 110 | 2 2 5 | | 369 | 23 | 213 213 | | 24
26 | 49
138 | 45
142 | 13 | 396
305 | 402 | 7 | 214 | 217
38 | 4
6 | 104
517 | 101
548 | 25
27 | 229 226 | | 0 0 6 | 594 | 633 | 15
17 | 122 | 297
131 | 11 | 45* | 306 | 8 | 232 | 548
245 | 3 1 2 | 213 219
267 275 | | 2 | 594
182 | 196 | 19
21 | 176 | 131
171
283 | 13 | .3* | 23 | 10 | 95
431 | 85 | 3 | 784 792 | | 6 | 25*
482 | 7
524 | 21
23 | 281
156 | 283
163 | 15
17 | 85
151 | 91
150 | 12
14 | 431
196 | 185 | 5
7 | 831 842
174 147 | | 8 | 682 | 780 | 25 | 190 | 196 | 19 | 127 | 120 | 16 | 348 | 357 | 9 | 181 192 | | 10 | 537 | 595 | 27 | 166 | 171 | 1 1 11 | 46* | 19 | 18 | 92 | 85 | 11 | 147 151 | | 12 | 814
61* | 899
80 | 1 1 3 | 494
460 | 511
499 | 3
5 | 181
145 | 177 | 20 | 197
127 | 193
131 | 13
15 | 424 430
319 310 | | 16 | 143
126 | 154 | 5 | 297 | 306 | 7 | 136 | 127 | 24 | 40* | 39 | 17 | 147 133
121 122 | | 18 | 126 | 118 | 5
7 |
297
145 | 160 | ģ | 229 | 232 | 26 | 45 | 43 | 19 | 147 133
121 122 | | 20
22 | 92
106 | 99
107 | 9
11 | 673
325 | 726
348 | 11
13 | 126
145 | 127
155 | 2 0 6 | 98
98 | 89
92 | 21
23 | 316 305
260 257 | | 24 | 213 | 222 | 13 | 157 | 169 | | 71 | 68 | 4 | 347 | 363 | 25 | 246 245 | | 0 2 7 | 84
663 | 70
743
76 | 15
17 | 187
272 | 200 | 17 | 57
157 | 46 | 6
8 | 103 | 43 | 27 | 203 208 | | 6 | 105 | 76 | 19 | 180 | 271
170 | 1 1 12 | 229 | 152 | 10 | 557
55* | 574
25 | 3 1 3
3 | 219 202
684 681 | | | - | - | - | | | - | -, | | | | | - | | Table 1. (Continued) | h k | 1 | Po | Pe | h k l | P. | Pe | h k l | Pol | F _c | hkl | Fo | Fc | h k l | P _o | F _c | |-----------|----|--------------------------|--------------------------------|--------------|------------|------------------|--------------|------------|------------------|--------------|------------|-------------------|------------|--|------------------------------------| | | | | | | | | | | | | | | | | | | 3 5 | 3 | 151 | 125 | 3 9 11
11 | 242 | 249 | 4 10 6 | 439 | 434
351 | 593 | 445 | 428 | 5 9 12 | 38* | 45 | | ź | - | 206 | 199 | 11 | 178 | 170 | 12 | 353 | 351 | 11 | 389 | 374
134
370 | 11 | 101 | 97 | | ģ | | 492 | 179 | 13 | 158 | 157 | 14 | 59* | 32 | 13 | 118 | 134 | 5 1 13 | 98 | 97
88 | | 11 | | 488 | 487 | 15 | 158 | 150 | 16 | 96 | 91 | 15 | 386 | 370 | * * * | ó5 | ŔŔ | | | | 400 | 40/ | - '2 | 150 | 150 | - 10 | 90 | 27 | 12 | 200 | 075 | 6 0 0 | 95
111* | 98 | | 13 | | 125 | 116 | 3 1 12 | 150 | 139 | 18 | 277 | 272 | 17 | 299 | 275
90 | 0 0 0 | | | | 15 | | 410 | 398 | 3 | 87 | 92 | 20 | 233 | 237
123 | 19 | 114 | 90 | 2 | 347 | 302 | | 17 | | 368 | 356
34 | 5
7 | 49 | 48 | 22 | 120 | 123 | 21 | 272 | 267 | 4 | 220 | 203 | | 19 | | 30. | 34 | ź | | 43 | 24 | 100 | 99 | 23 | 208 | 196 | 6 | Q-kn | 910 | | | | 39* | -27 | | 52
34 | 72 | | 210 | 221 | | 99 | 92 | 8 | 738
76* | 707 | | 21 | | 291
283 | 291 | 9 | 34 | 43
74
73 | | | 221 | 25
5 1 | | 92 | | 138 | 101 | | 23 | | 283 | 271
76 | 11 | 80 | 74 | 4 | 420 | 411 | 5 i | 521 | 512 | 10 | 76* | 63 | | 25 | | 82 | 76 | 13 | 80 | 73 | 6 | 155 | 144 | 3 | 340 | 341 | 12 | 346 | 318 | | 27 | | 162 | 159 | 13
3 1 13 | 61 | 63 | 8 | 156 | 148 | 5 | 278 | 255 | 14 | 346
734 | 699 | | | | 417 | 624 | , , | 89 | 0,7 | 10 | 164 | 171 | ź | 578 | 555 | 16 | 244 | 225 | | | 4 | 617 | 024 | 3 | 69 | 93 | | 104 | 171 | | 2/6 | 555
153 | 10 | 244 | 223 | | 3 | | 194 | 504 | 5 | 21* | 15 | 12 | 363 | 351 | 9 | 153 | 153 | 18 | 415 | 390
552
190
255
255 | | 5 | | 260 | 247 | 7 | 263 | 254 | 14 | 47* | 28 | 11 | 543 | 520 | 20 | 570
191
263
251
415
161 | 552 | | | | 591 | 583 | 4 0 0 | 2102 | 2420 | 16 | 701 | 706 | 13 | 180 | 160 | 22 | 191 | 190 | | á | | 160 | 101 | 2 0 | 118* | 107 | 18 | | 170 | 16 | 169 | 165 | 24 | 263 | 255 | | | | | 151 | | 110- | 103 | | 143 | 120 | 15 | | 105 | | 20, | 2)) | | 11 | | 592
210 | 586 | 4 | 72*
380 | 66 | 20 | 81 | 138
75
62 | 17 | 298 | 283 | 26 | 251 | 255 | | 13 | | 210 | 199 | 6 | 380 | 364 | 22 | 61 | 62 | 19
21 | 349
235 | 338 | 6 2 1 | 415 | 392 | | 15 | | 117 | 102 | 8 | 308 | 299 | 4 0 8 | 150 | 145
251 | 21 | 235 | 232 | 4 | 161 | 114 | | 17 | | 418 | 402 | 10 | 320 | 313 | 2 | 260 | 251 | 23 | 66 | 61 | 6 | 435 | 414 | | 19 | | 297 | 291 | 12 | 1065 | 1039 | ī | 287 | 283 | 25 | 270 | 274 | 8 | 133 | 121 | | | | 297 | 291 | 12 | 1005 | 1039 | 7 | 207 | 20) | - 27 | 270 | 2/4 | | ::: | 12. | | 21 | | 293 | 286 | 14 | 150 | 134 | 6 | 402 | 403 | 5 1 5 | 573 | 544 | 10 | 111 | 22 | | 23 | | 84 | 79 | 16 | 409 | 404 | 8 | 235 | 218 | 3 | 322 | 321 | 12 | 59* | 55
47 | | 25 | | 246 | 248 | 1.8 | 907 | 895 | 10 | 316 | 312 | 5
7 | 414 | 418 | 14 | 366 | 340 | | 27 | | 98 | 104 | 20 | 467 | 438 | 12 | 62 | 42 | 7 | 301 | 294
421 | 16 | 457 | 427
65
365
40 | | 3 1 | 5 | 739 | 730 | 22 | 233 | 230 | 14 | 152 | 147 | ģ | 427 | 421 | 18 | 82 | 65 | | | , | 281 | 284 | 24 | 233
106 | | 16 | | 097 | 11 | 105 | 120 | 20 | 127 | 765 | | 3 | | | | | | 99 | | 285 | 287 | | 125 | | | 373
28* | 202 | | 5 | | 486 | 484 | 26 | 147 | 145 | 18 | 141 | 133 | 13 | 235
316 | 225 | 22 | 28* | 40 | | 7 | | 346 | 350 | 4 2 1 | 154
535 | 149 | 20 | 208 | 205 | 15 | 316 | 299 | 24 | 256 | 241 | | 9 | | 654 | 659 | 4 | 535 | 540 | 22 | 155
133 | 155 | 17 | 342 | 335 | 26 | 163 | 167 | | 11 | | 162 | 159 | 6 | 308 | 288 | 4 2 9 | 133 | 130 | 19 | 298 | 298 | 602 | 303 | 309 | | 13 | | 312 | 310 | 8 | 1023 | 1009 | 7 7 | 251 | 250 | 21 | 184 | 182 | 2 2 | 743 | 718 | | 12 | | 312 | 200 | | 1023 | 1009 | 7 | 231 | 250 | 21 | 104 | 074 | - | 122 | /10 | | 15 | | 217 | 222 | 10 | 751 | 727 | 6 | 194 | 195 | 23 | 271 | 271 | | 137 | 133 | | 17 | | 381 | 384 | 12 | 428 | 416 | 8 | 579 | 584 | 25 | 188 | 186 | 6 | 157
233
715 | 152
215 | | 19 | | 365 | 368 | 14 | 51* | 29 | 10 | 341 | 328 | 5 1 6 | 208 | 216 | 8 | 233 | 215 | | 21 | | 205 | 300
255
178 | 16 | 0.* | 29 | 12 | 372 | 368 | . 3 | 581 | 567 | 10 | 715 | 681 | | 23 | | 051 | 955 | 18 | 288 | 279 | 14 | | | 5 | 398 | 394 | 12 | 260 | 247 | | | | 234 | 200 | | 200 | | | 53
6* | 37
13 | | 290 | 194 | | 200 | 446 | | 25 | | 179 | 178 | 20 | 196
54* | 189 | 16 | 6* | 13 | 7 | 203 | 188 | 14 | 185 | 156
672 | | 3 1 | 6 | 295
254
179
251 | 254 | 22 | 54* | 52 | 18 | 222 | 217 | 9 | 146 | 134 | 16 | 702 | 672 | | . 3 | | 601 | 600 | 24 | 267 | 263 | 20 | 185 | 180 | 11 | 303 | 295 | 18 | 251 | 231 | | É | | 482 | 489 | 26 | 197 | 197 | 4 0 10 | 492 | 469 | 13 | 169 | 156 | 20 | 227 | 219 | | | | 128 | 124 | 4 0 2 | 183 | 177 | 2 | 050 | 070 | 12 | 419 | 411 | 22 | 160 | 167 | | | | 128 | 124 | 4 0 2 | 10) | 177 | | 252 | 239 | 15 | 419 | 411 | 22 | 100 | 107 | | 9 | | 159 | 167 | 2 | 205 | 187 | 4 | 84 | 22 | 17 | 187 | 182 | 24 | 64 | 63 | | 11 | | 188 | 204 | 4 | 1626 | 1778 | 6 | 250 | 245 | 19 | 87 | 74
163 | 26 | 85 | 87 | | 13 | | 136 | 126 | 6 | 214 | 209 | 8 | 258 | 239 | 21 | 163 | 163 | 6 2 3 | 373 | 351 | | 15 | | 346 | 337 | Ř | 249 | 244 | 10 | 258
74 | 69 | 23 | 264 | 262 | , <u>,</u> | 373
260 | 351
258
172 | | | | 262 | | 10 | | | | 182 | | | | | 6 | 222 | 120 | | 17 | | | 262 | | 50* | 30 | 12 | | 174
59 | 5 1 7 | 324 | 325
473 | | | 1/2 | | 19 | | 40* | 17 | 12 | 104 | 99 | 14 | 48 | 59 | 3 | 483 | 473 | 8 | 197 | 190 | | 21 | | 300 | 300 | 14 | 603
513 | 593 | 16 | 150 | 145 | 5 | 378 | 358
377 | 10 | 246 | 235
611 | | 23 | | 326 | 327
23 | 16 | 513 | 489 | 18 | 184 | 190 | 5
7 | 393 | 177 | 12 | 651 | 611 | | 2, | | 35 | 767 | 10 | 191 | 182 | | | | , | 91 | 80 | 14 | 219 | 000 | | 25 | | >> | 25 | 18 | 191 | 182 | 4 2 11 | 134 | 120 | 9 | 91 | 60 | | 219 | 208 | | 3 1 | 7 | 419 | 402 | 20 | 164 | 162 | 4 | 70 | 61 | 11 | 188 | 194 | 16 | 153 | 141 | | 3 | | 468 | 476 | 22 | 606 | 596 | 6 | 79 | 71 | 13 | 350 | 345 | 18 | 537 | 517 | | 5 | | 359 | 348 | 24 | 128 | 121 | 8 | 139 | 137 | 15 | 489 | 488 | 20 | 316 | 296 | | ź | | 466 | 462 | | E 1 | 42 | 10 | 41 | 40 | 17 | 050 | 251 | 22 | 27* | 71 | | ά | | | | 26 | 51
273 | | | | | | 259 | 251 | 24 | | 31 | | | | 100 | 92 | 4 2 3 | | 261 | 12 | 291 | 292 | 19 | 254 | 253 | | 289 | 287 | | 11 | | 221 | 217 | 4 | 1506 | 1565 | 14 | 297 | 290 | 21 | 276 | 277 | 604 | 70* | 75 | | 13 | | 444 | 443 | 6 | 120 | 1565
105 | 4 0 12 | 30* | 21 | 23 | 157 | 277
161 | 2 | 458 | 287
75
453
275 | | 15 | | 452 | 451 | 8 | 465 | 427 | 2 | 200 | 189 | 5 1 8 | 180 | 189 | 4 | 283 | 275 | | 17 | | 296 | 291 | 10 | 211 | 208 | ũ | 170 | 160 | | 175 | 118 | 6 | 294 | 284 | | | | 290 | 291 | - 10 | 211 | 208 | | 170 | | 3 | 135
253 | 110 | 0 | 294 | 204 | | 19 | | 224 | 231 | 12 | 178 | 115 | 6 | 42 | 32 | 5 | 253 | 243 | 8 | 168 | 159 | | 21 | | 301 | 305 | 14 | 888 | 830 | 8 | 135 | 129 | 7 | 197 | 189 | 10 | 450 | 430 | | 23 | | 124 | 127 | 16 | 487 | 472 | 10 | 66 | 60 | 9 | 11* | 35 | 12 | 448 | 420 | | 3 1 | 8 | 241 | 222 | 18 | 85* | 64 | 12 | 124 | 116 | 11 | 276 | 261 | 14 | 201 | 181 | | 3 | | 199 | 196 | 20 | 94 | 96 | 4 2 13 | 50 | 47 | 13 | 250 | 238 | 16 | 68* | 78 | | ś | | 372 | 368 | 22 | 281 | 070 | 1 1 | 747 | 777 | - 22 | 171 | | 18 | | 173 | | 7 | | 241 | 248 | 24 | 441 | 270 | 6 | 367
52 | 353 | 15
17 | 174
16* | 169
29 | 20 | 136
140 | 131
134
385 | | | | | | | | 439
85 | | | 47
143 | | | 29 | | 140 | 154 | | . 9 | | 51* | 54 | 26 | 88 | 85 | 5 1 1 | 156 | 143 | 19 | 157 | 153
103 | 22 | 394
65 | 385 | | 11 | | 205 | 199 | 404 | 225 | 206 | 3 | 82* | 100 | 21 | 100 | 103 | 24 | 65 | 69 | | 13 | | 312 | 312 | 2 | 100* | 101 | 5
7 | 596 | 586 | 519 | 395 | 379 | 625 | 223 | 214 | | 15 | | 214 | 220 | 4 | 236 | 225 | 7 | 628 | 601 | 3 1 | 140 | 130 | 4 | 64* | 41 | | 15
17 | | 69 | 51 | 6 | 408 | 397 | 9 | 544 | 523 | ś | 207 | 210 | 6 | 518 | 520 | | 19 | | 162 | 156 | 8 | 1022 | 1033 | 11 | 105 | 381 | ź | 20 | 82 | 8 | 216 | 006 | | | | 102 | | | 767 | 1033 | :: | 395 | 101 | | 79 | 32 | | 236 | 226 | | 21 | | 104
367 | 96 | 10 | 363 | 335 | 13 | 526 | 495 | 9 | 336 | 330 | 10 | 172 | 150 | | 3 1 | 9 | 367 | 355
43 | 12 | 408 | 396
76
134 | 15
17 | 149 | 137 | 11 | 127 | 115 | 12 | 441 | 150
430
115 | | 3 | | 40* | 43 | 14 | 60* | 76 | 17 | 206 | 201 | 13 | 228 | 222 | 14 | 128 | 115 | | 5 | | 197 | 185 | 16 | 157 | 134 | 19 | 161 | 156 | 15 | 198 | 199 | 16 | 346 | 335 | | ź | | 197
157
350 | 157 | 18 | 209 | 200 | 21 | 47* | 156
37
136 | 17 | 168 | 158 | 18 | 103 | 03 | | | | 750 | 717 | 20 | 209 | 287 | | 140 | .26 | | | 307 | 20 | | 97 | | . 9 | |) JU | 343
77 | 20 | 293 | 20/ | 23 | 140 | 130 | 19
5 1 10 | 310 | 707 | 20 | 149 | 150 | | 11 | | 90 | -77 | 22 | 78 | 61 | 25 | 223 | 227 | 5 1 10 | 239 | 227 | 22 | 156 | 151 | | 13 | | 280 | 272
 24 | 29* | 20 | 27 | 214 | 223 | 3 | 204 | 195 | 24 | 39 | 335
93
150
151
32 | | 15 | | 132 | 139 | 26 | 309 | 325 | 5 1 2 | 227 | 227 | 5 | 164 | 153 | 6 0 6 | 96 | 90 | | 17 | | 144 | 141 | 4 2 5 | 32* | 19 | 3 | 551 | 543 | ź | 227 | 236 | 2 | 137 | 129 | | 19 | | 250 | 256 | 1 4 | 303 | 388 | í | 604 | 503 | 9 | 138 | 143 | 4 | 284 | 977 | | 21 | | 259
74
309 | 256
67 | 6 | 393
123 | ,00 | 5
7 | | 593 | , 9 | 7.00 | 308 | 6 | 283
74 | 277 | | | | 74 | | | | 30 | | 69* | 52 | 11 | 320 | | | . /4 | 69 | | | 10 | 309 | 300 | 8 | 229 | 223 | 9 | 197 | 196 | 13 | 143 | 137 | 8 | 488 | 69
476
63
217
77
62 | | 3 | | 257
51 | 254 | 10 | 387 | 370
16 | 11 | 249 | 239 | 15 | 118 | 118 | 10 | 97 | 63 | | É | | 51 | 62 | 12 | 0. | 16 | 13 | 285 | 272 | 17 | | 140 | 12 | 212 | 217 | | | | 227 | 219 | 14 | 307 | 310 | | 270 | 256 | 17
5 1 11 | 136
97 | 87 | 14 | 84 | -17 | | | | 176 | 170 | .2 | 707 | 710 | 15
17 | | 250 | | 97 | .07 | | 04 | 11 | | . 9 | | 176 | 178 | 16 | 30* | 34 | 17 | 107 | 94 | 3 | 190 | 183 | 16 | 75
253 | 62 | | 11 | | 320 | 305 | 18 | 64. | 52 | 19 | 128 | 133 | 5 | 66 | 71 | 18 | 253 | 243 | | 13 | | 164 | 169 | 20 | 152 | 147 | 21 | 223 | 220 | 5
7 | 178 | 169 | 20 | 114 | 107 | | 15 | | 125
174
172 | 130
177
170
97
182 | 22 | 66 | 59 | 23 | 194 | 188 | ģ | 204 | 201 | 22 | 259 | 257 | | 17 | | 174 | 177 | 24 | 70 | 59
70 | 25 | 154 | 153 | 11 | 119 | 120 | 6 2 7 | 410 | 406 | | | | 170 | 170 | 4 0 6 | 1386 | 1394 | 27 | 007 | 208 | 1.7 | 107 | | 0 2 / | 176 | 100 | | 19
3 1 | | 1/2 | 1/0 | | 1386 | 1394 | | 203 | | 13 | 103 | 105 | | 136 | 128 | | 3 1 | 11 | 134 | 97 | 2 | 164 | 164 | 5 1 3 | 158 | 147 | 5 1 12 | 198 | 185 | 6 | 302 | 302 | | 3 | | 193 | 182 | 4 | 196 | 200 | 3 | 634 | 622 | . 3 | 88 | .89 | 8 | 149 | 141 | | 5 | | 42 | 54 | 6 | 473 | 467 | 5 | 251 | 232 | ś | 120 | 123 | 10 | 276 | 264 | | ź | | 208 | 200 | 8 | 450 | 446 | ź | 248 | 941 | í | 00 | 70 | 12 | 100 | 0.1 | Table 1. (Continued) | | | | | 1 | | h k l | 1 . | 1 | h k 1 | in I | Le I | h k 1 | in i in i | | |----------------|------------|------------|----------|-------------------|-------------------|-------------|-------------------|-----------------|--------------|-------------------|------------|---------------|--|--| | h k 1 | | Pc | h k l | Fo | Fe | | Po | Fe | | Fo | Fe | | P _o P _e | | | 6 14 7
16 | 441
93 | 430
73 | 7 9 5 | 547
95 | 521
78 | 8 4 3 | 1147 | 1142 | 9 11 2 | 257
198 | 231
188 | 10 14 1
16 | 376 355
420 405 | | | 18
20 | 112 | 111 | 13
15 | 197
187 | 192
188 | 8
10 | 543
276 | 506
257 | 15
17 | 200 | 184 | 18
20 | 109 118
205 205 | | | 22 | 68 | 65 | 17 | 429 | 412 | 12 | 90 | 105 | 19 | 97
123 | 134 | 22 | 84 87 | | | 6 0 8 | 264
393 | 252
386 | 19
21 | 365
274 | 371
278 | 14
16 | 701
408 | 650
382 | 21
23 | 185 | 185
110 | 10 0 2 | 351 352
507 510 | | | 4 | 334 | 322
75 | 23 | 142 | 145 | 18 | 52* | 1, | 9 1 3 | 302 | 300 | 4 | 224 227 | | | 6
8 | 539 | 75
534 | 7 1 6 | 220
424 | 229
424 | 20
22 | 197
197 | 186
197 | 3
5
7 | 338
127 | 333
102 | 6
B | 67* 78
65* 42 | | | 10
12 | 457
45* | 445
33 | 5 7 | 228
170 | 223
158 | 24
8 0 4 | 377 | 381
115 | 7
9 | 132
446 | 122
410 | 10
12 | 459 439
140 113 | | | 14 | 159 | 152 | 9 | 79 | 37
201 | 2 | 115
71* | 66 | 11 | 361 | 327 | 14 | 124 109 | | | 16
18 | 65
26* | 47
24 | 11 | 214 | 201
90 | 4.
6 | 465
113 | 459
294 | 13
15 | 72
164 | 73
161 | 16
18 | 437 427
238 227 | | | 20 | 152 | 148 | 15 | 289 | 279 | 8 | 313
721 | 691 | 17 | 167 | 158 | 20
22 | 207 205 | | | 629 | 449
172 | 406
168 | 17
19 | 247
77 | 240
74 | 10
12 | 267
557
27* | 248
525 | 19
21 | 175
173 | 173
173 | 10 2 3 | 223 234
162 168 | | | 6
8 | 250
121 | 240
127 | 7 1 7 | 217 | 225
329 | 14
16 | 27*
176 | 27
171 | 9 1 4 | 224 | 228
446 | 4
6 | 220 219
125 87 | | | 10 | 99 | 89 | 3 | 389 | 386 | 18 | 167 | 154 | 3 | 447
197 | 194 | 8 | 108 98 | | | 12
14 | 102 | 152
100 | 5 7 | 433
326 | 427
317 | 20
22 | 213
57 | 218
59 | 5
7 | 315
498 | 312
484 | 10
12 | 128 127
502 474 | | | 16
18 | 214
80 | 211
73 | 9
11 | 209
275 | 192
261 | 8 2 5 | 86
260 | 81
255 | 9 | 155
431 | 340
416 | 14 | 235 228
148 140 | | | 6 0 10 | 229 | 214 | 13 | 450 | 437 | 6 | 84 | 48 | 13 | 161 | 155 | 18 | 344 341 | | | 2 | 387
317 | 371
300 | 15
17 | 369
343 | 362
337 | 8
10 | 419
422 | 406
416 | 15
17 | 90
195
271 | 84
190 | 20
10 0 4 | 212 211
133 135 | | | 6 | 279
60 | 273
56 | 19
21 | 109
208 | 113 | 12
74 | 90
285 | 72
272 | 19
21 | 271
197 | 275
202 | 2 | 328 331
114 104 | | | 8
10 | 256 | 254 | 7 1 8 | 201 | 184 | 16 | 55* | 75 | 9 1 5 | 483 | 500 | 6 | 327 314 | | | 12
14 | 146
271 | 135
267 | 3
5 | 265
471 | 263
462 | 18
20 | 158
305 | 160
305 | 3
5 | 173 | 172 | 8
10 | 120 104
370 352 | | | 16 | 173 | 169 | 7 | 32*
36* | 18 | 8 0 6 | 27*
496 | 28 | 5
7 | 133
273
245 | 272
236 | 12 | 370 352
430 408
141 126 | | | 6 2 11 | 61
159 | 64 | 9 | 48* | 30
11 | 8 0 6 | 164 | 511
161 | 9
11 | 251 | 250 | 14 | 0* 33 | | | 6
8 | 615 | 599
156 | 13
15 | 231
181 | 229
174 | 6 | 62*
450 | 51
437 | 13
15 | 187 | 176
136 | 18
20 | 165 161
101 98 | | | 10 | 97 | 94 | 17 | 179 | 174 | 8 | 630 | 614 | 17 | 292 | 295 | 10 2 5 | 271 283 | | | 12
6 0 12 | 237
165 | 228
159 | 7 1 9 | 195
200 | 186
197 | 10
12 | 477
722 | 455
697 | 19
21 | 236
153 | 247
155 | 6 | 117 114
337 335 | | | 2 | 185 | 176 | 3 | 132
174 | 197
137
184 | 14
16 | 61
92 | 80
98 | 9 1 6 | 188
284 | 190
299 | 8
10 | 337 335
150 137
85 54 | | | 6 | 79
70 | 72
70 | 7 | 255 | 250 | 18 | 109 | 96 | 5 7 | 301 | 307 | 12 | 277 275 | | | 8
7 1 1 | 29*
288 | 36
292 | 9
11 | 225
334 | 217
319 | 20
8 2 7 | 79
46* | 82
51 | 7
9 | 161
49* | 150
48 | 14
16 | 157 158
217 230 | | | 3 | 123 | 86
402 | 13 | 259
251 | 255
247 | 6 | 553
88 | 51
553
69 | 11
13 | 274 | 273 | 18
20 | 217 230
74 77
146 151 | | | 5
7 | 857 | 823 | 15
17 | 202 | 196 | 8 | 152 | 110 | 15 | 115
375 | 375 | 10 0 6 | 137 142 | | | 9
11 | 673
515 | 630
468 | 7 1 10 | 74
245 | 69
250 | 10
12 | 128
74 | 129
77 | 17
19 | 143 | 142
38 | 2 | 0* 23
245 264 | | | 13 | 495 | 456
116 | 5
7 | 86 | 81 | 14
16 | 156 | 154
352 | 917 | 336 | 346 | 6 | 58* 43 | | | 15
17 | 176 | 166 | 9 | 171
49
267 | 179
51 | 18 | 351
59
107 | 65 | 3
5
7 | 312
311 | 323
318 | 10 | 55* 15 | | | 19
21 | | 210
207 | 11 | 267
32 | 260
34 | 20
8 0 8 | 107
245 | 106
253 | 7
9 | 331
108 | 329
98 | 12
14 | 310 309
51 35 | | | 23 | 175 | 179 | 7 1 11 | 80 | 88 | 2 | 222 | 218 | 11 | 209 | 209 | 16 | 100 105 | | | 25
7 1 2 | 43* | 234
73 | 5 | 129
109 | 138
119 | 6 | 161
319 | 162
310 | 13
15 | 239
290 | 235
282 | 18
10 2 7 | 243 245
473 488 | | | 3
5 | | 488
608 | 7 | 176
218 | 178
217 | 8
10 | 88
248 | 76
246 | 9 1 8 | 212
97 | 208
100 | 6 | 157 156
226 235
173 176 | | | 7 | 267 | 252 | 8 0 0 | 2521 | 2789 | 12
14 | 38* | 40 | 3 5 | 138 | 138 | 8 | 173 176 | | | 9 | 66*
114 | 26
101 | 4 | 122
323 | 97
306 | 16 | 47*
24* | 53
22 | 7 | 220
230 | 228 | 10
12 | 178 167
124 122 | | | 13 | 468
300 | 435
272 | 6
8 | 163
81* | 148
76 | 18
8 2 9 | 239
83 | 230
85 | 9
11 | 121
215 | 128
212 | 14
16 | 125 121
52 50 | | | 15
17 | 168 | 156 | 10 | 157 | 135 | 4 | 308 | 310 | 13 | 96 | 81 | 10 0 8 | 165 161 | | | 19
21 | 168
255 | 157
248 | 12
14 | 328
276 | 305
258 | 6
8 | 231
252 | 219
254 | 15
9 1 9 | 96
117
345 | 354 | 2
4 | 155 151 | | | 23
25 | 181
236 | 193
248 | 16
18 | 348
975 | 334
938 | 10
12 | 37. | 148
359 | , 3
5 | 232 | 235
113 | 6
8 | 87 84
354 342 | | | 7 1 3 | 339 | 322 | 20 | 555 | 537 | 8 0 10 | 47
514 | 56 | 7 | 74 | 82
194 | 10
12 | 356 361 | | | 3
5
7 | 283 | 419
277 | 24 | 74
86 | 83
83 | 2 | 204 | 541
198 | 9
11 | 198
169 | 168 | 14 | 128 129 | | | 7 | 180
656 | 169
586 | 8 2 1 | 153
320 | 128
310 | 6 | 49
170 | 51
174 | 13
9 1 10 | 144
74 | 143
72 | 10 2 9 | 152 155
144 140 | | | 11 | 173 | 169 | 6 | 315 | 297 | 8 | 161 | 158 | 3 | 223 | 226 | 6 | 119 114 | | | 13
15
17 | | 207
222 | 8
10 | 695
467 | 625
433 | 10
12 | 84
58 | 79
59
72 | 7 | 134
159 | 133
169 | 8
10 | 45 45
191 190 | | | 17
19 | 339
108 | 326
101 | 12
14 | 552
126 | 530
134 | 8 2 11 | 74
155 | 72
159 | 9 1 11 | 60
48 | 68
45 | 12
10 0 10 | 186 190 | | | 21 | 180 | 175 | 16 | 262 | 245 | 6 | 37 | ¥Ó. | 7 3 | 149 | 45
154 | 2 | 251 256
260 271 | | | 23
25 | 193
63 | 191
58 | 18
20 | 127
69 | 131
68 | 8
9 1 1 | 244
129 | 242
131 | 10 0 0 | 379
161 | 322
118 | 6 | 224 227
175 183 | | | 7 1 4 | 789
492 | 799
495 | 22
24 | 114 | 114 | 3 | 132
250 | 107
239 | 6 | 218
756 | 215
720 | 11 1 1 | 172 179
184 177 | | | 5 7 | 197 | 187 | 8 0 2 | | 280 | 5 | 445 | 423
458 | 8 | 479 | 448 | 5 | 367 366 | | | 9 | 530
335 | 505
314 | 2
4 | 292
153
765 | 159
745 | 9
11 | 406 | 369 | 10
12 | 479
47*
403 |
374 | ?
9 | 367 366
433 425
538 519
450 441 | | | 11
13 | 408
335 | 374
307 | 6
8 | 221
527 | 232
507 | 13
15 | 394
274 | 366
262 | 14
16 | 575
214 | 559
202 | 11
13 | 450 441
505 486 | | | 15 | 123 | 110 | 10 | 223 | 199 | 17 | 49* | 56 | 18 | 189 | 193 | 15 | 63 56 | | | 17
19 | 456
327 | 431
322 | 12 | 108
380 | 88
355 | 19
21 | 198
94 | 186
92 | 20
22 | 467
142 | 463
141 | 17
19 | 245 241
86 83 | | | 21
23 | 289
58 | 282
43 | 16
18 | 72
129 | 355
32
108 | 23
9 1 2 | 242
137 | 249
141 | 10 2 1 | 316
151 | 308
150 | 21
11 1 2 | 95 94
179 172 | | | 7 1 5 | 603 | 611 | 20 | 159 | 151 | 3 | 290 | 267 | 6 | 223 | 235 | 3 | 515 518 | | | 3
5
7 | 264 | 227
269 | 22
24 | 390
13* | 390
11 | 5
7 | 351
56* | 341
55
79 | 8
10 | 136
113 | 125
83 | 5
7 | 578 567
244 229 | | | 7 | 155 | 145 | 8 2 3 | 281 | 260 | 9 | 76* | 79 | 12 | 162 | 143 | 9 | 87 88 | | | | | | | | | | | | | | | | | | Table 1. (Continued) Several cycles of least-squares refinement in which individual form factors were used for Hg and Tl atoms and in which isotropic temperature factors for each atom were varied, reduced R to $11^{0}/_{0}$. During these calculations, an equal weight was used for all reflections. Nonionized atomic form factors given by Ibers, Thomas et al., Thomas and Umeda, Freeman and Watson, and Dawson were employed for Hg, Tl, Sb, As and S respectively (International tables, 1962). Additional cycles of least-squares refinement in which anisotropic temperature factors were varied, reduced R to $4.8^{0}/_{0}$ for all 1772 reflections. In the course of these calculations, individual weights calculated by the modified formula of Gabe (1966) was used for each of the reflections: $$w = rac{1}{\sigma^2\left(F ight)} = 4\,F_0{}^2igg|_{i=1}^4\left\{\left(rac{\partial\,F_0{}^2}{\partial\,q_i} ight)^2\,\sigma^2\,\left(q_i ight) ight\},$$ where q_1 = peak count, q_2 = background count, q_3 = $(LP)^{-1}$ and q_4 = transmission. At the final stage, the effect of anomalous dis- persion was taken into account for each atom, but no significant difference was found between enantiomorphic pair. A block-diagonal least-squares program written by D. VAN DER Helm for the IBM 1620 computer, was used in the earlier stages. The same program, which was adapted and modified for the Bull Gamma 30 S by Engel (1968), was also used in the later stages. Table 1 gives the hkl, $|F_0|$ and $|F_c|$ values. ## Description of the structure The atomic coordinates and the temperature factors obtained are given in Tables 2a and 2b. The root-mean-square displacement of the atoms along the principal axes of the vibration ellipsoids are given in Table 3. The difference in the atomic scattering factors being very small, it is not possible to distinguish mercury from thallium by x-ray diffraction measurements. However, the three heavy atoms in the general positions show two kinds of environments: the first heavy atom has two nearest sulfur atoms at about 2.4 Å, and the angle between these two bonds is about 166 $^{\circ}$, while the second and the third heavy atom have quite irregular coordinations and the distances between heavy Table 2a The final atomic coordinates of vrbaite, and their estimated standard deviations | | | · | | | | | |---------------|----------------|---------|---------|-------------|-------------|-------------| | | \overline{x} | y | z | $\sigma(x)$ | $\sigma(y)$ | $\sigma(z)$ | | TI /1) | 0 | 0 | 0 | | | | | Hg (1) | | _ | | | | | | Hg (2) | 0.50323 | 0.05623 | 0.07614 | 0.00008 | 0.00003 | 0.00007 | | Tl (1) | 0.25336 | 0.38707 | 0.20730 | 0.00010 | 0.00004 | 0.00009 | | Tl (2) | 0.24997 | 0.27189 | 0.43836 | 0.00009 | 0.00004 | 0.00008 | | As (1) | 0.24328 | 0.05352 | 0.09991 | 0.00015 | 0.00007 | 0.00015 | | As (2) | 0.26024 | 0.04862 | 0.39537 | 0.00015 | 0.00007 | 0.00014 | | As (3) | 0.50620 | 0.30217 | 0.40562 | 0.00017 | 0.00006 | 0.00013 | | As (4) | 0.50094 | 0.29338 | 0.10902 | 0.00018 | 0.00006 | 0.00013 | | \mathbf{Sb} | 0.49086 | 0.15836 | 0.28910 | 0.00010 | 0.00004 | 0.00009 | | S (1) | 0.1097 | 0.0906 | 0.0102 | 0.0003 | 0.0002 | 0.0004 | | S (2) | 0.3828 | 0.4954 | 0.1801 | 0.0003 | 0.0002 | 0.0004 | | S (3) | 0.5030 | 0.3643 | 0.2481 | 0.0007 | 0.0001 | 0.0004 | | S (4) | 0.1266 | 0.4996 | 0.1761 | 0.0003 | 0.0002 | 0.0004 | | S = (5) | 0.3916 | 0.1662 | 0.4783 | 0.0003 | 0.0002 | 0.0004 | | S (6) | 0.3839 | 0.2343 | 0.1880 | 0.0003 | 0.0002 | 0.0004 | | S (7) | 0.2577 | 0.1185 | 0.2526 | 0.0005 | 0.0001 | 0.0004 | | S (8) | 0.3594 | 0.4092 | 0.4777 | 0.0003 | 0.0002 | 0.0004 | | S (9) | 0.1160 | 0.1571 | 0.4772 | 0.0003 | 0.0002 | 0.0004 | | S (10) | 0.1144 | 0.2349 | 0.1715 | 0.0003 | 0.0002 | 0.0004 | | | | | | | | | Table 2b. The final anisotropic temperature-factor coefficients The values are the coefficients in the expression $\exp{[-(h^2\beta_{11}+k^2\beta_{22}+l^2\beta_{33}+kl\beta_{12}+kl\beta_{13}+kl\beta_{23}]}$ (all values are multiplied by 105) | | | | | _ | | | | | | | | | |------------------------|--------------|----------------------|--------------|----------------------|--------------|--------------------|--------------|----------------------|------------|----------------------|--------------|----------------------| | | β_{11} | $\sigma(\beta_{11})$ | β_{22} | $\sigma(\beta_{22})$ | β_{33} | $\sigma(eta_{33})$ | β_{12} | $\sigma(\beta_{12})$ | eta_{13} | $\sigma(\beta_{13})$ | β_{23} | $\sigma(\beta_{23})$ | | | | | | | | | | | | | | | | Hg(1) | 95 | 7 | 77 | 2 | 483 | 11 | 0 | | 0 | - | - 85 | 5 | | Hg(2) | 140 | 7 | 116 | 2 | 576 | 10 | 126 | 5 | -228 | 10 | -182 | 4 | | Tl (1) | 334 | 7 | 88 | 2 | 731 | 11 | 18 | 5 | 44 | 15 | 102 | 5 | | Tl (2) | 222 | 7 | 137 | 2 | 562 | 10 | 82 | 5 | 107 | 11 | 201 | 5 | | As (1) | 101 | 10 | 31 | 3 | 223 | 14 | -14 | 9 | -25 | 18 | 7 | 8 | | As (2) | 53 | 10 | 47 | 3 | 195 | 14 | 0 | 9 | -16 | 18 | 9 | 8 | | As(3) | 67 | 9 | 33 | 3 | 191 | 13 | 26 | 9 | -45 | 19 | -5 | 7 | | As (4) | 78 | 9 | 45 | 3 | 150 | 13 | 29 | 10 | 34 | 21 | -6 | 7 | | $\mathbf{S}\mathbf{b}$ | 189 | 8 | 45 | 2 | 294 | 11 | -32 | 6 | 41 | 13 | -86 | 5 | | S (1) | 99 | 19 | 46 | 6 | 419 | 33 | -12 | 20 | -206 | 44 | 65 | 22 | | S (2) | 77 | 19 | 79 | 7 | 314 | 30 | 52 | 18 | -19 | 36 | 10 | 23 | | S (3) | 238 | 19 | 35 | 5 | 258 | 24 | -5 | 40 | 70 | 44 | 26 | 19 | | S (4) | 111 | 19 | 39 | 6 | 434 | 34 | -16 | 18 | 50 | 39 | 34 | 23 | | S (5) | 98 | 19 | 59 | 7 | 245 | 28 | -23 | 19 | -35 | 37 | -20 | 20 | | S (6) | 96 | 19 | 64 | 7 | 205 | 28 | 22 | 17 | —11 | 36 | 8 | 20 | | S (7) | 152 | 17 | 37 | 5 | 295 | 24 | -38 | 30 | -56 | 39 | 12 | 20 | | S (8) | 89 | 19 | 80 | 7 | 309 | 30 | 8 | 20 | — 7 | 38 | -105 | 23 | | S (9) | 139 | 21 | 61 | 7 | 369 | 32 | -17 | 19 | 204 | 41 | 92 | 23 | | S (10) | 79 | 19 | 51 | 6 | 281 | 29 | -6 | 17 | -30 | 38 | 35 | 20 | atoms and sulfur atoms are in the range of 3.1—3.7 Å. Since the former is one of the typical coordinations of mercury (Grdenić, 1965), the former is concluded to be the mercury atom and the latter to be thallium atoms. The structure thus determined confirms the chemical formula Hg₃Tl₄As₈Sb₂S₂₀ proposed by Caye *et al.* Figures 4*a* and 4*b* show the structure of vrbaite parallel to *c* and *a* respectively. Vrbaite contains two kinds of mercury atoms. The first of them, Hg(1) is surrounded tetrahedrally by four sulfur atoms at distances of 2.570 and 2.581 Å. Examples of this coordination are found in the structures of metacinnabarite, HgS (Hg—S = 2.55 Å, Buckley and Vernon, 1925), mercury tetrathiocyanate-copper diethylene-diamine [Hg(SCN)₄]-[Cu(en)₂] (Hg—S = 2.56 Å, Scouloudi, 1953) and some other materials. Hg(2) has two nearest S atoms at distances of 2.38 Å and forms a bent bond (S—Hg—S = 166.0°). This kind of coordination is the most common configuration of mercury and is found in cinnabarite, HgS (Hg—S = 2.36 Å, S—Hg—S = 172°; Aurivillius, 1950), livingstonite, HgSb₄S₈ (Hg—S = 2.35 Å, S—Hg—S = 180°; Niizeki and BUERGER, 1957) and many other compounds. The angles between two Hg—S bonds are variable in the different compounds. Table 3. The root-mean-square displacements of the atoms along the principal axes of the vibration ellipsoids and direction cosines of these axes with respect to the crystallographic axes | | Bisotrop. | Axes | B | $\sqrt{\overline{u^2}}$ | $\cos \alpha_1$ | $\cos \alpha_2$ | $\cos \alpha_3$ | |---------------|-----------|---------------|------|-------------------------|-----------------|-----------------|-----------------| | Hg(1) | 1.62 | 1 | 0.68 | $0.093\mathrm{\AA}$ | 1.000 | 0 | 0 | | | | 2 | 1.49 | 0.137 | 0 | 0.906 | 0.421 | | | | 3 | 2.67 | 0.183 | 0 | -0.421 | 0.906 | | | | | | | j | ļ
I | | | Hg(2) | 2.16 | 1 | 0.63 | 0.089 | 0.938 | -0.311 | 0.150 | | | | 2 | 1.78 | 0.150 | 0.129 | 0.720 | 0.681 | | | | 3 | 4.07 | 0.227 | -0.320 | -0.619 | 0.716 | | | 1 | | | | | | ļ
Ī | | Tl (1) | 2.68 | 1 | 2.42 | 0.175 | 0.972 | 0.232 | 0.003 | | | | 2 | 1.75 | 0.149 | -0.222 | 0.936 | -0.271 | | | | 3 | 3.88 | 0.221 | -0.066 | 0.263 | 0.962 | | | | | | | | j | | | TI (2) | 2.48 | 1 | 1.42 | 0.134 | 0.940 | -0.336 | 0.040 | | | 1 | 2 | 4.13 | 0.228 | 0.228 | 0.717 | 0.658 | | | | 3 | 1.90 | 0.155 | -0.250 | -0.609 | 0.751 | | | | | | | | | | | As(1) | 0.85 | 1 | 0.60 | 0.087 | 0.600 | 0.799 | 0.023 | | | | 2 | 0.78 | 0.099 | -0.774 | 0.588 | -0.233 | | | | 3 | 1.16 | 0.121 | -0.200 | 0.121 | 0.972 | | | | | | | | | 0.0-1 | | As(2) | 0.80 | 1 | 0.37 | 0.068 | 0.997 | -0.009 | 0.071 | | | ļ, | 2 | 1.07 | 0.116 | -0.031 | 0.840 | 0.541 | | | | 3 | 0.96 | 0.110 | -0.065 | -0.542 | 0.837 | | As (3) | 0.72 | 1 | 0.35 | 0.067 | 0.874 | 0.434 | 0.217 | | 115 (9) | 0.72 | 2 | 0.80 | 0.100 | -0.403 | 0.898 | -0.172 | | | 1 | 3 | 1.01 | 0.113 | -0.270 | 0.062 | 0.960 | | | | | 1.01 | 0.110 | 0.210 |
0.002 | 0.000 | | As (4) | 0.77 | 1 | 0.46 | 0.076 | 0.887 | -0.327 | -0.325 | | 110 (1) | \ | $\frac{1}{2}$ | 1.06 | 0.116 | 0.351 | 0.935 | 0.017 | | | 1 | 3 | 0.79 | 0.100 | 0.299 | -0.130 | 0.945 | | | | | , | | | | | | \mathbf{Sb} | 1.28 | 1 | 1.28 | 0.127 | 0.904 | 0.047 | -0.423 | | | | 2 | 0.70 | 0.094 | 0.172 | 0.866 | 0.467 | | | | 3 | 1.85 | 0.153 | 0.389 | -0.496 | 0.776 | | | | | | | | | | | S(1) | 1.29 | 1 | 0.47 | 0.077 | 0.924 | -0.096 | 0.367 | | • / | | 2 | 0.94 | 0.109 | 0.176 | 0.966 | -0.188 | | | | 3 | 2.44 | 0.176 | -0.336 | 0.239 | 0.910 | Table 3. (Continued) | | | | 14010 0. (| | · | | | |-------|--------------------|---------------|------------|--------------|-----------------|-----------------|---| | | $B_{ m isotrop}$. | Axes | B | $\sqrt{u^2}$ | $\cos \alpha_1$ | $\cos \alpha_2$ | cos x3 | | 8797 | 1.90 | | 0.46 | 0.076 | 0.067 | 0.071 | 0.005 | | S(2) | 1.29 | 1 | 0.46 | 0.076 | 0.965 | -0.251 | 0.065 | | | | $\frac{2}{3}$ | 1.82 | 0.151 | 0.236 | 0.954 | 0.181 | | | | ა | 1.59 | 0.142 | - 0.107 | -0.159 | 0.981 | | S(3) | 1.26 | 1 | 1.80 | 0.151 | 0.907 | -0.076 | -0.413 | | | | 2 | 0.74 | 0.097 | -0.028 | 0.970 | -0.241 | | | | 3 | 1.25 | 0.125 | 0.420 | 0.230 | 0.877 | | S(4) | 1.29 | 1 | 0.73 | 0.096 | 0.822 | 0.568 | = 0.015 | | ~(1) | 1.20 | 2 | 0.90 | 0.107 | -0.556 | 0.811 | 0.178 | | | | 3 | 2.25 | 0.168 | 0.114 | -0.138 | 0.983 | | | | ,, | | 0.100 | ,,,,,,, | | 1 | | S(5) | 1.08 | 1 | 0.65 | 0.091 | 0.948 | 0.236 | 0.210 | | . , | | 2 | 1.21 | 0.123 | -0.304 | 0.507 | 0.805 | | | | 3 | 1.39 | 0.132 | 0.083 | -0.828 | 0.553 | | | | | | | 1 | :
 | | | S(6) | 1.05 | 1 | 0.66 | 0.091 | 0.980 | 0.164 | 0.103 | | | | 2 | 1.45 | 0.135 | -0.178 | 0.973 | 0.145 | | | | 3 | 1.04 | 0.114 | 0.076 | 0.161 | 0.983 | | S(7) | 1.13 | 1 | 0.67 | 0.092 | 0.535 | 0.842 | 0.056 | | | | 2 | 1.12 | 0.119 | -0.738 | 0.499 | -0.452 | | | | 3 | 1.60 | 0.142 | -0.409 | 0.200 | 0.890 | | 9797 | 1.31 | | 0.63 | 0.089 | 0.993 | 0.092 | 0.069 | | S(8) | 1.01 | $\frac{1}{2}$ | 1.09 | 0.089 | -0.112 | 0.637 | 0.762 | | | | 3 | 2.22 | 0.113 | 0.026 | - 0.764 | 0.702 | | | | ., | 2.22 | 0.107 | 0.020 | 0.704 | 0.043 | | S(9) | 1.40 | 1 | 0.64 | 0.090 | 0.830 | -0.233 | -0.505 | | | | 2 | 1.15 | 0.120 | 0.399 | 0.882 | 0.248 | | | | 3 | 2.42 | 0.175 | 0.388 | -0.408 | 0.826 | | S(10) | 1.04 | 1 | 0.56 | 0.084 | 0.994 | 0.011 | 0.104 | | D(10) | 1.01 | 2 | 1.03 | 0.004 | 0.032 | 0.913 | -0.405 | | | | 3 | 1.54 | 0.114 | = 0.032 | 0.406 | $\begin{bmatrix} -0.403 \\ 0.908 \end{bmatrix}$ | | | | , , | 1.03 | 0.100 | - 0.000 | 0.400 | 0.000 | The two thallium atoms show irregular coordinations; that is, the interatomic distances between thallium and sulfur atoms have a wide range (Table 4). When distances shorter than 3.75 Å (Tl—Tl distance, *International tables*) are taken into account, the Tl(1) atom is surrounded by two S atoms at distances of 3.086 and 3.152 Å, and by five S atoms at distances between 3.346 and 3.433 Å. Tl(2) is surrounded by three Fig. 4. The structure of vrbaite. (a) Projection along the c axis. (b) Projection along the a axis S atoms at distances between 3.148 and 3.259 Å, and by four S and two As atoms at distances between 3.322 and 3.622 Å. The mean values of the Tl-S distances are 3.32 Å for Tl(1) and 3.37 Å for Tl(2). The environment of both the thallium atoms are, however, somewhat similar, when the longer distances (≤ 4 Å) are included, Fig. 5. Eight sulfur atoms around Tl(1) [or Tl(2)] make a distorted cube which is similar to the CsCl structure, and two S (or two As) atoms are situated in the direction perpendicular to one of the three sets of opposite faces. A few structures of sulfides and sulfosalts which contain thallium have so far been investigated (Table 6), and the coordination around thallium shows diversity in these kinds of compounds. Fig. 5. The environment of thallium atoms. The broken circle indicates the sulfur atom which has slightly longer distance than 4 $\hbox{\AA}$ In TIS, there are two kinds of thallium atoms (SCATTURIN and Frasson, 1956). Tl(1) is at the center of a tetrahedron of four sulfur atoms and the Tl(1)—S distances, being covalent bonds, are 2.59 Å. Tl(2) is surrounded by eight S atoms [Tl(2)-S = 3.33 Å] which form a square antiprism. The sulfur atoms around (Tl, Pb)_{II} in hutchinsonite, (Tl,Pb)₂As₅S₉, (Takéuchi, Ghose and Nowacki, 1965) has a similar configuration to that around Tl(1) in vrbaite, but the former lacks one sulfur atom at a corner of the cube. Hatchite PbTlAgAs₂S₅ (MARUMO and Nowacki, 1967) and wallisite PbTlCuAs₂S₅ (Takéuchi, Ohmasa and Nowacki, 1968), are isotypic and the distances between Tl and S atoms are irregular. Seven sulfur atoms make a distorted pentagonal bipyramid, but one arsenic atom is also located close to the thallium atom (3.4 Å). The mean values of the Tl-S distances of the above materials are in the range of 3.3-3.4 Å. This is close to the sum of the ionic radii of Tl⁺ and S²⁻ (= 3.32 Å; WYCKOFF, 1948) and suggests that the bonding of thallium should be ionic in these structures. If a thallium atom is surrounded by isolated anions, the arrangement of anions is Table 4. Interatomic distances in vrbaite [in Å] | | S(1) | S(2) | S(3) | S(4) | S(5) | S(6) | S(7) | S(8) | S(9) | S(10) | Mean | Hg(2) | Tl(2) | As(3) | As(4) | |---------------|--------------------|--------------------|--------------------------------------|------------------|--------------------|--------------------------------------|--|---|---|-----------------------------------|---------------|--------------------|------------------|------------------|-------| | Hg(1) | 2.581 (0.004) | $2.570 \\ (0.004)$ | | | | | | | | | 2.58 | | | | | | Hg(2) | | | | 2.399
(0.004) | | | | $\begin{array}{ c c c } 2.366 \\ (0.004) \end{array}$ | $\begin{bmatrix} 2.864\\ (0.004) \end{bmatrix}$ | | 2.38 | $3.142 \\ (0.001)$ | | | | | Tl(1) | | 3.086
(0.004) | 3.417
(0.008)
3.433
(0.008) | 3.152 (0.004) | 3.416
(0.004) | | | 3.406 (0.004) | 3.346
(0.004) | | 3.32 | | 3.749
(0.001) | | | | Tl(2) | | | | | 3.148
(0.004) | 3.461
(0.004)
3.343
(0.004) | | 3.558
(0.005) | 3.259
(0.004) | 3.622 (0.004) 3.200 (0.004) | 3.37
3.39* | | | 3.525
(0.002) | 3.415 | | As(1) | $2.232 \\ (0.004)$ | | | | | | $2.305 \\ (0.004)$ | $2.254 \\ (0.004)$ | | | 2.26 | | | | | | As(2) | | 2.228
(0.004) | | 2.273 (0.004) | | | $\begin{vmatrix} 2.295 \\ (0.004) \end{vmatrix}$ | | | | 2.27 | | | | | | A s(3) | | | 2.297
(0.004) | | | | | | 2.195 (0.005) | $2.310 \ (0.004)$ | 2.27 | | | | | | As(4) | | | 2.284
(0.004) | | $2.283 \ (0.004)$ | 2.272
(0.004) | | | | | 2.28 | | | | | | Sb | | | | | $2.522 \\ (0.004)$ | 2.551 (0.004) | | | | $2.478 \ (0.004)$ | 2.52 | | | | | ^{*} The distances for the As(3) and the As(4) are taken into account for the calculation of the mean value. Table 5. Bond angles in vrbaite | G(4) II (4) G(40) | 440.00 | (0. 9 .8) | |-------------------------|--------|------------------| | S(1)— $Hg(1)$ — $S(1')$ | 110.6° | (0.2°) | | S(1)— $Hg(1)$ — $S(2)$ | 110.3 | (0.1) | | S(1) - Hg(1) - S(2') | 110.4 | (0.1) | | S(2)-Hg(1)-S(2') | 104.7 | (0.2) | | Mean | 109.3 | | | S(4)— $Hg(2)$ — $S(8)$ | 165.9 | (0.8) | | S(1)— $As(1)$ — $S(7)$ | 98.6 | (0.2) | | S(1)— $As(1)$ — $S(8)$ | 97.2 | (0.2) | | S(7)— $As(1)$ — $S(8)$ | 98.3 | (0.2) | | Mean | 98.0 | | | S(2)— $As(2)$ — $S(4)$ | 99.4 | (0.2) | | S(2)— $As(2)$ — $S(7)$ | 98.0 | (0.2) | | S(4)— $As(2)$ — $S(7)$ | 95.6 | (0.2) | | Mean | 97.7 | | | | | | | 101.8° | (0.2°) | |--------|---| | 98.7 | (0.2) | | 95.9 | (0.2) | | 98.8 | | | 98.7 | (0.2) | | 100.4 | (0.2) | | 93.5 | (0.2) | | 97.5 | | | 91.8 | (0.1) | | 98.5 | (0.1) | | 87.3 | (0.2) | | 92.5 | | | | 95.9
98.8
98.7
100.4
93.5
97.5
91.8
98.5
87.3 | Fig. 6. (a) The As₂SbS₅ chain projected along the a axis. (b) The Hg₃As₄S₁₀ sheet projected along the b axis Table 6. Tl-S distances in various compounds* | vrbaite | { | hatchite | | |-------------|---------------------------------------|-----------|---------------------| | Tl(1)—S 3 | 3.086 Å | Tl-S | $3.05~\textrm{\AA}$ | | 3 | 1.152 | | 3.12 | | 3 | 3.346 | | 3.46 | | 3 | 3.406 | | 3.46 | | 3 | .416 | | 3.53 | | 3 | .417 | | 3.61 | | 3 | .433 | | 3.65 | | Mean 3 | .32 | -As | (3.48) | | | | Mean | 3.41 | | Tl(2)—S 3 | 3.148 Å | | (3.42) | | 3 | .200 | | | | 3 | .259 | wallisite | | | | .343 | Tl-S | $2.99~{ m \AA}$ | | | .461 | .11—13 | 3.14 | | | .558 | | 3.35 | | | .622 | | 3.46 | | —As (3 | · · · · · · · · · · · · · · · · · · · | | 3.51 | | (3 | .525) | | 3.57 | | Mean 3 | .37 | | 3.64 | | | .39) | -As | (3.37) | | hutchinsoni | t. | Mean | 3.38 | | | Ī | | (3.38) | | | .12 Å | | | | | .15 | TlS | | | | .30 | TIL(1) S | ດ ະດ ໃ *: | | | .31 | TI(1)—S | | | | .33 | Tl(2)-S | 3.33 | | | .37 | | | | 3 | .43 | | | | | | | | ^{*} Tl—S distances in lorandite (TlAsS₂, Zemann and Zemann, 1959) were excluded from this table, because the refinement is not sufficient and As—S distances in lorandite deviate from normal values. mainly affected by the ratio of the radius of an anion to that of a cation and bond distances between the cation and the anions are uniform. The thallium atoms in sulfosalts have an environment of rigid groups in which all atoms are bound by covalent bonds. Therefore, the distances between thallium atoms and anions are not kept uni- ^{**} This bonding may be covalent. form, and the arrangement of sulfur atoms around thallium atoms are variable in each compound. The polyhedra formed by the sulfur atoms around the antimony and arsenic atoms are flat trigonal pyramids, which are quite common in the structures of
sulfosalts (Nowacki, 1969, 1970). The mean distances of Sb—S and As—S bonds are 2.52 Å and 2.27 Å respectively. The temperature factors of both atoms, baving normal values, suggest that Sb and As atoms are in an ordered state. The structure of vrbaite is characterized by infinite As₂SbS₅ chains parallel to the c axis, and by Hg₃As₄S₁₀ sheets perpendicular to the b axis. The former consists of one Sb pyramid and of two pyramids of As atoms, Fig. 6a. This is the first example of chains composed of both Sb and As pyramids. The latter is composed of one mercury tetrahedron, two nonlinear groups of mercury and four arsenic pyramids, Fig. 6b. The As₂SbS₅ chains sandwich Tl atoms and make slabs perpendicular to the b axis. These slabs and Hg₃As₄S₁₀ sheets, sandwiching the other Tl atoms, are arranged alternately along the b direction. This characteristic feature of the structure explains well the good cleavage parallel to (010). ## Acknowledgement The authors are grateful to Dr. H. BÜRKI and Dr. T. HIGUCHI for kind discussions and to Dr. D. MULLEN for his help in improving the English of this paper. The computations in this study were performed on a Bull Gamma 30 S computer at the Rechenzentrum der Universität Bern. We thank Professor W. Nef and Dr. R. R. Hüsser for this opportunity. The investigation was supported by Schweizerischer Nationalfonds (project no. 2.17.68) and Kommission zur Förderung der wissenschaftlichen Forschung (project no. 384/386). #### References - K. L. Aurivillius (1950), On the crystal structure of cinnabar. Acta Chem. Scand. 4, 1413—1436. - W. L. Bond (1951), Making small spheres. Rev. Scient. Instr. 22, 344-345. - H. E. Buckley and W. S. Vernon (1925), The crystal-structures of the sulphides of mercury. Min. Mag. 20, 382—392. - R. CAYE, P. PICOT, R. PIERROT et F. PERMINGEAT (1967), Nouvelles données sur la vrbaite, sa teneur en mercure. Bull. Soc. franç. Minéral. Cristallogr. 90, 185—191. - P. Engel (1968), Kristallographische Programme für die Rechenanlage Bull Gamma 30. [Unpublished Appendix to Diss. Univ. Bern.] - C. FRONDEL (1941), Unit cell and space group of vrbaite [Tl(As,Sb)₃S₄], seligmannite (CuPbAsS₃) and samsonite (Ag₄MnSb₂S₆). Amer. Min. 26, 25–28. - E. J. Gabe (1966), 1620 programs from I.C.R. Department of Molecular Structure (Physics Department), I.C.R. No. 16, data reduction. Appendix. - D. Grdenić (1965), The structural chemistry of mercury. Quart. Rev. 19, 303-328. - International tables for x-ray crystallography, Vol. III (1962), 201-212, Kynoch Press, Birmingham. - B. Ježek (1912), Vrbaite, ein neues Thalliummineral von Allchar in Macedonien. Z. Kristallogr. 51, 365—378. - Fr. Křehlík (1912), Chemische Untersuchung des Vrbaits. Z. Kristallogr. 51, 370—383 - F. MARUMO and W. Nowacki (1967), The crystal structure of hatchite, PbTl-AgAs₂S₅. Z. Kristallogr. 125, 249-265. - N. NIIZEKI and M. J. BUERGER (1957), The crystal structure of livingstonite, HgSb₄S₈. Z. Kristallogr. 109, 129-157. - W. Nowacki (1968), Über Hatchit, Lengenbachit und Vrbait. N. Jahrb. Mineral., Monatsh., 69-75. - W. Nowacki (1969), Zur Klassifikation und Kristallehemie der Sulfosalze. Schweiz. Min. Petr. Mitt. 49, 109-156. - W. Nowacki (1970), Zur Klassifikation der Sulfosalze. Acta Crystallogr. B 26, 286—289. - Charles Palache, Harry Berman and Clifford Frondel (1944), The system of mineralogy, Vol. 1, 484—485. Seventh edition, John Wiley and Sons, New York. - V. SCATTURIN e E. FRASSON (1956), Solfuri di tallio da polisolfuro ammonico: formazione e struttura del monosolfuro di tallio TlS. Ric. Sci. 26, 3382 [SR. 20, 192]. - H. Scouloudi (1953), The crystal structure of mercury tetrathiocyanate-copper diethylenediamine, [Hg(SCN)₄][Cu(en)₂]. Acta Crystallogr. 6, 651-657. - Y. TAKÉUCHI, S. GHOSE and W. NOWACKI (1965), The crystal structure of hutchinsonite, (Tl,Pb)₂As₅S₉. Z. Kristallogr. 121, 321—348. - Y. Takéuchi, M. Ohmasa and W. Nowacki (1968), The crystal structure of wallisite, PbTlCuAs₂S₅, the Cu analogue of hatchite, PbTlAgAs₂S₅. Z. Kristallogr. 127, 349—365. - R. W. G. Wyckoff (1948), Crystal structures. Interscience, New York. - A. ZEMANN und J. ZEMANN (1959), Zur Kenntnis der Kristallstruktur von Lorandit, TlAsS₂. Acta Crystallogr. 12, 1002—1006.