$\label{eq:linear} \begin{array}{l} \text{Die Kristallstruktur} \\ \text{von Strontiumnitrat-Tetrahydrat, } Sr(\text{NO}_3)_2 \cdot 4H_2O \end{array}$

Von B. RIBÁR*, B. MATKOVIČ und M. ŠLJUKIĆ

Physikalisches Institut der naturwissenschaftlich-mathematischen Fakultät, Sarajevo und Institut Rudjer Bošković, Zagreb, Jugoslawien

(Eingegangen am 19 März 1971)

Abstract

The crystal structure has been determined with the use of two-dimensional intensity data. The lattice constants are $a = 11.12 \pm 0.02$, $b = 14.17 \pm 0.03$, $c = 6.34 \pm 0.02$ Å, $\beta = 123^{\circ}45' \pm 10'$ and the space group is $C_{2h}^6 - C2/c$ with Z = 4. The *R* value for observed reflections is $12,7^{\circ}/_{0}$. The Sr atom is surrounded by ten O atoms with distances between 2,65 and 2,80 Å. Eight O atoms lie in the corners of a distorted Archimedean antiprism and the other two O atoms are placed above the larger quadratic surface. The polyhedra form an infinit zig-zag chain running parallel to [101]. The chains form a layer parallel (010).

Auszug

Die Kristalle sind monoklin mit $a = 11,12 \pm 0,02$, $b = 14,17 \pm 0,03$, $c = 6,34 \pm 0,02$ Å, $\beta = 123^{\circ}45' \pm 10'$ und Z = 4. Die Raumgruppe ist $C_{2h}^6 - C_2/c$. Die Struktur wurde aus zweidimensionalen Daten bestimmt. Der *R*-Wert ist 12,7% für die beobachteten Reflexe. Das Sr-Atom hat eine Zehnerkoordination. Die (Sr-O)-Abstände variieren von 2,65 bis 2,80 Å. Acht O-Atome bilden die Ecken eines deformierten archimedischen Antiprismas, und zwei weitere O-Atome befinden sich über der größeren quadratischen Fläche. Die benachbarten Polyeder sind durch zwei gemeinsame O-Atome zu einer unendlichen Zickzack-Kette parallel [101] verbunden. Die Ketten bilden eine Schicht parallel (010).

Einleitung

In den bisher bekannten Strukturen der Sr-Verbindungen sind die häufigsten Koordinationen des Sr-Atoms acht, neun und zehn. Außerdem sind noch Koordinationen mit sechs, sieben und zwölf

^{*} Gegenwärtige Adresse: Prirodno-matematički fakultet, Zavod za fiziku, Novi Sad, Liman, Jugoslawien.

gefunden worden. Elferkoordination des Sr-Atomes ist nicht bekannt (Tab. 4). Um die Strontiumkoordination zu bestimmen und neue Ergebnisse über die Kristallchemie der Strontiumverbindungen zu erhalten, wurde die Kristallstruktur von $Sr(NO_3)_2 \cdot 4H_2O$ bestimmt. Weil die Kristallen sehr unbeständig sind, konnten nur zweidimensionale Daten gesammelt wurden; die Struktur wurde auf Grund dieser Daten bestimmt.

Experimentelles

Über Darstellung, kristallographische Daten und die Strontiumposition von $Sr(NO_3)_2 \cdot 4H_2O$ haben RIBÁR und MATKOVIĆ (1965) berichtet. Die Kristalle sind sehr unbeständig an der Luft; sie verlieren schon bei Zimmertemperatur das Kristallwasser, und es entsteht $Sr(NO_3)_2$. Die Kristalle sind monoklin mit $a = 11, 12 \pm 0, 02, b = 14, 17$ \pm 0,03, c = 6,34 \pm 0,02 Å, β = 123 °45′ \pm 10′, $D_{\rm m}$ = 2,26, $D_{\rm x}$ = 2,27 g \cdot cm⁻³, Z = 4, V = 830,6 Å³. Die Raumgruppe ist C_{2h}^6 -C2/c. Die Parameter wurden aus Schwenk- und Weissenberg-Aufnahmen mit $CuK\alpha$ -Strahlung bestimmt. Die zweidimensionalen Daten wurden mit Hilfe eines integrierenden Weissenberg-Goniometers photographisch erhalten. Die Intensitäten wurden mit einem Zeiss-Schnellphotometer bestimmt, die üblichen Korrekturen vorgenommen. Die Absorptionskorrektur erfolgte für eine Kristallkugel mit $\mu R = 1,73$ an den Daten der (0kl)-Reflexe und für einen Kristallzvlinder mit $\mu R = 1.35$ an den Daten der (hk0)-Reflexe. Zweidimensionale Fouriersynthesen, F(kl)und F(hk), — die Phasen der Strukturamplituden wurden auf Grund der Strontiumlage bestimmt - ergaben Sauerstoff- und Stickstoffpositionen der Struktur. Die Verfeinerungen mit Hilfe der Methode der kleinsten Quadrate (full-matrix) reduzierten den R-Wert von $250/_0$ auf $14,10/_0$ für alle Reflexe und auf $12,70/_0$ für die beobachteten Reflexe allein. Den beobachteten Reflexen wurde das Gewicht 1, den

	X	Y	Z	B
	0	0,2163(3)	0,2500	0,11(13) Å ²
O(1)	0,1350(53)	0,0492(21)	0,5083(110)	2,07(76)
O(2)	0,2782(36)	0,1725(18)	0,6556(80)	0,84(52)
O(3)	0,3634(52)	0,0367(22)	0,8178(87)	2,05(76)
O(4)	0,0866(46)	0,3305(24)	0,6411(106)	2,10(78)
O(5)	0,1136(41)	0,1468(20)	1,0018(100)	1,67(63)
Ν	0,2644(57)	0,0797(25)	0,6583(114)	1,50(80)

Tabelle 1. Koordinaten und Temperaturfaktoren der Atome

h	k 1	F _o F _c	h k l	F _o F _c	h k l	F _o F _c	h k l	F _o F _c	h k l	F _o F _c
0	20	65,0 ~69,0	2 16 0	45,7 -57,3	620	55,0 -50,8	9 11 0	48.9 -57.4	0 4 3	69.7 -61.5
	4	24,9 26,7	3 1 0	28,7 30,4	4	93,2 85,2	10 0 0	55.5 59.9	6	95.1 79.0
	6	50,3 33,8	3	57,8 -59,2	6	54,1 -41,5	2	73.6 -73.0	8	91.0 -86.1
	8	84,3 -76,6	5	94,6 103,5	8	0 3,8	4	35.4 29.3	10	58.2 60.0
1	0	24,7 -13,5	7	86,7 -92,6	10	34,0 34,8	11 10	22,1 18,7	12	42.9 -39.7
1	2	47,8 -42,9	9	84,3 75,1	12	79,7 -78,1	3	36,3 -35,1	14	15.6 9.5
1	4	47,1 50,0	11	48,2 -35,8	14	53,1 54,0	5	41,7 48,5	16	0 15.2
1	6	63,1 -69,7	13	24,5 20,0	7 1 0	56,4 41,0	0 2 1	16.0 2.7	0 0 4	75.0 73.6
1	8	37,0 46,3	15	24,0 - 9,9	3	85,3 -81,7	4	122,3 141,4	2	61.0 -55.7
1	10	28,7 19,7	17	22,8 -23,0	5	77,8 69,5	6	69,5 -60,2	4	63.7 56.4
	3	56,9 -59,3	4 0 0	41,9 37,4	7	79,7 -70,4	8	97,8 101,9	6	40.3 -31.8
	5	56,9 59,6	2	100,4 -127,5	9	44,0 35,7	10	73,6 -75,6	8	0 7.8
	7	91,3 -92,1	4	57,6 50,4	11	32,9 -31,0	12	55,0 48,0	10	24,2 18,3
	9	92,3 89,2	6	60,3 -53,0	13	34,0 31,8	14	0 - 7,6	12	70,1 -75,2
1	1	89,5 -78,9	8	0 -14,6	800	101,8 113,1	16	19,5 -16,2	14	53,2 68,6
1	3	51,7 32,8	10	87,8 79,7	2	49,6 -43,7	18	0 35,7	0 2 5	52,2 -42,2
1	5	32,6 17,7	12	23,5 -24,7	4	48,7 43,8	0 0 2	100,3 -94,5	4	46,0 44,9
1	7	28,9 -30,5	14	59,9 64,6	6	39,8 -22,7	2	106,0 102,6	6	56,5 -68,7
2	00	49,6 47,5	16	49,2 -46,4	8	28,2 -16,0	4	93,7 -86,8	8	59,4 63,8
	2	81,3 -125,0	510	0 - 4,1	10	21,7 15,3	6	34,7 30,4	10	46,0 -43,0
	4	74,6 81,4	3	44,5 -32,5	12	48,5 -51,4	8	33,7 21,8	12	27,1 29,2
	6	29,1 -16,5	5	90,9 84,9	910	0 7,9	10	79,3 -65,4	0 0 6	21,4 -17,1
	8	26,1 17,9	7	88,1 -83,4	3	41,7 -33,9	12	46,4 45,4	2	56,5 61,2
1	0	47,1 38,3	9	81,6 79,8	5	56,2 50,1	14	40,5 -49,6	4	45,8 -49,6
1	2	81,8 -74,6	11	48,7 -45,5	7	55,0 -51,0	16	55,9 59,2	6	23,6 28,5
1	4	70,6 67,5	600	52,2 44,2	9	59,2 62,9	0 2 3	40,7 34,2	8	0 - 8,2

Tabelle 2. Beobachtete und berechnete Strukturamplituden

nichtbeobachteten das Gewicht 0 gegeben. Atomparameter und Temperaturfaktoren sind in der Tab. 1 zusammengefaßt. Tab. 2 gibt die $|F_0|$ und F_c -Werte, die mit diesen Parametern berechnet wurden.

Beschreibung der Struktur

Die Atomabstände und -Winkel sind in der Tab. 3 zusammengefaßt. Das Sr-Atom ist von zehn O-Atomen umgeben, von vier Wasser- und sechs Nitrat-Sauerstoffatomen (aus vier Nitratgruppen). Acht O-Atome bilden die Ecken eines deformierten archimedischen

SrO(1)	2,80(3) Å	O(1)—N	1,29(6) Å		
Sr-O(1)'	2,80(3)	O(2)—N	1,33(4)		
Sr-O(2)	2,79(3)	O(3)—N	1,17(5)		
Sr-O(2)'	2,79(3)				
$Sr-O(2)^{\prime\prime}$	2,71(4)	O(1)-O(2)	2,20(5)		
$Sr-O(2)^{\prime\prime\prime}$	2,71(4)	O(1)—O(3)	2,20(5)		
$Sr-O_w(4)$	2,65(5)	O(2) - O(3)	2,14(4)		
$Sr - O_w(4)'$	2,65(5)				
$Sr-O_w(5)$	2,70(7)	O(1) - N - O(2)	$114,5(3,5)^{\circ}$		
$Sr-O_w(5)'$	2,70(7)	O(1)—N—O(3)	126, 8(3, 9)		
$\mathbf{Sr}-\mathbf{N}$	3,27(4)	O(2)—N—O(3)	117,7(3,9)		
O(1)'	\bar{x}	y	$\frac{1}{2} - z$		
O(2)'	$ar{x}$	y	$\frac{1}{2}$ — z		
O(2)''	$\frac{1}{2} - x$	$\frac{1}{2} - y$	1 - z		
${ m O}(2)^{\prime\prime\prime}$	$x - \frac{1}{2}$	$\frac{1}{2} - y$	$z-rac{1}{2}$		
$O_w(4)'$	${ m O_w}(4)'$ $ar x$		$\frac{1}{2}-z$		
${ m O}_{f w}(5)'$ $ar x$		y	$z - \frac{1}{2}$		

Tabelle 3. Atomabstände und -Winkel

Fig. 2. Projektion der Struktur parallel [001]

Antiprismas. Eine der quadratischen Flächen ist größer als die andere. Die übrigen zwei O-Atome befinden sich über der größeren quadratischen Fläche (Fig. 1). Zehnerkoordination wurde bisher gefunden in $Sr(PO_4)_2$, $SrSO_4$, $SrB_6O_9(OH)_2 \cdot 3H_2O$ und $Sr(MnO_4)_2 \cdot 3H_2O$ (Tab. 4). Die (Sr-O)-Abstände variieren von 2,65 bis 2,80 Å. Den nächstgrößeren Abstand vom Sr-Atom hat ein N-Atom (3,27 Å).

Die Ecken der quadratischen Flächen sind von zwei Wasser- und zwei Nitrat-Sauerstoffatomen (aus zwei Nitratgruppen) besetzt. Die restlichen zwei Nitrat-Sauerstoffatome, O(1) und O(1)', über der

⊖sr on ⊖o @o_w

Fig. 3. Projektion der Struktur auf (010)

größeren quadratischen Fläche gehören zu zwei Nitratgruppen. Je ein O-Atom dieser Nitratgruppen, O(2) und O(2)', bilden mit zwei Wasser-Sauerstoffatomen, O(5) und O(5)', die größere quadratische Fläche. Jede Nitratgruppe gehört zu zwei benachbarten Koordinationspolyedern des Strontiums. Das O(1)-Atom gehört zu einem, O(3) zu keinem Polyeder, und O(2) zu zwei benachbarten Polyedern (Fig. 2). Die Polyeder sind durch zwei gemeinsame O-Atome, O(2) und (O2)', zu einer unendlichen Zickzack-Kette parallel [101] verbunden (Fig. 3). Die Ketten bilden eine Schicht parallel (010) (Fig. 2).

Die Nitratgruppe, mit einer kürzeren und zwei längeren (N-O)-Bindungen, ist von planar-dreieckiger Gestalt. Die Gleichung der

	(Sr-O)-Abstand		Koordi-	Literatur
	von bis	Mittel	nation	Interatur
Sr ₃ SiO ₅	2.54-2.68Å	2.58Å	6	Dent Glasser * (1965)
Sr4PtOs			6	RANDALL* (1959)
SrO	2.57	2,57	6	PRIMAK* (1948)
Sr2PbO4			7	TRÖMEL (1969)
SrZnO ₂	2,58-2,78	2.62	7	SCHNERING* (1961)
$Sr(OH)_2$	2,496 - 2,767	2,598	7	GRUENINGER* (1969)
Sr ₂ CuO ₃	2,51-2,62	2,59	7	TESKE* (1969)
Sr ₄ PtO ₆		Í	8	RANDALL* (1959)
$Sr(UO_2)O_2$	2,57-2,61	2,58	8	ZACHARIASEN (1948)
$Sr(OH)_2 \cdot 8H_2O$	2,60	2,60	8	SMITH (1953)
$Sr(C_5O_6H_9)_2 \cdot 5H_2O$	2,58-2,68	2,61	8	FURBERG* (1962)
$SrC_2O_4 \cdot 2H_2O$	2,56-2,61	2,59	8	STERLING (1965)
$Sr(OH)_2 \cdot H_2O$	2,59-2,74	2,66	8	Bärnighausen* (1967)
$Sr(C_6H_{11}O_6)_2$	2,493-2,639	2,550	8	WERNER* (1969)
$\mathrm{SrC_4H_4O_6}\cdot \mathrm{3H_2O}$	2,54-2,62	2,58	8	Ambady (1968)
$Sr(HCOO)_2 \cdot 2H_2O$	2,524-2,674	2,615	8	Galigné (1971)
(Sr, Ba, Ca) ·				
$(Al_2Si_6O_{16}) \cdot 5H_2O$	2,66-2,87	2,79	9	Perrotta* (1964)
$\mathrm{SrCl}_2\cdot 6\mathrm{H}_2\mathrm{O}$	2,63-2,81	2,75	9	Structure Reports
				(1941 - 1942)
$Sr[B(OH)_4]_2$			9	KUTSCHABSKY (1965)
$ m SrO \cdot 2 B_2O_3$	2,47-2,79	2,66	9	Кводн-Мое (1964)
$\mathrm{SrBr_2}\cdot\mathrm{H_2O}$	2,63	2,63	9	Дуке* (1964)
$\mathrm{Sr}(\mathrm{VO}_3)_2\cdot 4\mathrm{H}_2\mathrm{O}$	2,54-2,74	2,68	9	Sedlacek* (1965)
${ m SrO}\cdot 2{ m B_2O_3}$	2,523 - 2,836	2,689	9	Perloff* (1966)
a no	2,384 - 2,856	2,675	0	TT # (10.00)
α -Sr ₂ P ₂ O ₇	2,539 - 2,997	2,717	9	HAGMAN* (1968)
$SrBe_3O_4$	2,6536-2,7071	2,6893	9	HARRIS* (1969)
$\mathrm{Sr}(\mathrm{NO}_3)_2\cdot 4\mathrm{H}_2\mathrm{O}$	2,65-2,80	2,73	10	Diese Arbeit
$Sr_3(PO_4)_2$	2,48-2,72	2,67	10	ZACHARIASEN (1948)
SrSO ₄	2,48-2,99	2,73	10	GARSKE* (1965)
$\rm SrB_6O_9(OH)_2\cdot 3H_2O$	$2,\!606-\!2,\!977$	2,736	10	Clark (1964)
$\rm Sr(MnO_4)_2\cdot 3H_2O$	2,573 - 2,771	2,677	10	Ferrari* (1966)
$\mathrm{Sr}_3(\mathrm{PO}_4)_2$	2,63-3,10	2,86	12	ZACHARIASEN (1948)
SrTiO ₃	2,76	2,76	12	Structure Reports
]			(1945 - 1946)

Tabelle 4. (Sr-O)-Abstände und Sr-Koordination in Strontium-Verbindungen

* und Mitarbeiter.

besten Ebene für die Nitratgruppe lautet, bezogen auf die Kristallachsen:

 $\frac{X}{-0.257} + \frac{Y}{0.974} + \frac{Z}{0.343} = 1.$

Die Abstände von der besten Ebene sind -0.018, -0.016, -0.020und 0.054 Å für die Atome O(1), O(2), O(3) und N.

Die Autoren danken dem Fond für Wissenschaftliche Forschung Jugoslawien für gewährte finanzielle Hilfe und Frau K. VARGA für Hilfe bei der Übersetzung.

Literatur

- G. K. AMBADY (1968), The crystal and molecular structure of strontium tartrate trihydrate and calcium tartrate tetrahydrate. Acta Crystallogr. **B** 24, 1548-1557.
- H. BÄRNIGHAUSEN und J. WEIDLEIN (1967), Die Kristallstruktur von Strontiumhydroxid-Monohydrat. Acta Crystallogr. 22, 252–258.
- J. R. CLARK (1964), The crystal structure of tunellite, $SrB_6O_9(OH)_2 \cdot 3H_2O$. Amer. Mineral. 49, 1549-1568.
- L.S. DENT GLASSER and F. P. GLASSER (1965), Silicates M₃SiO₅. I. Sr₃SiO₅. Acta Crystallogr. 18, 453-454.
- M. DYKE and R. L. SASS (1964), The crystal structure of strontium bromide monohydrate. J. Physic. Chem. 68, 3259-3262.
- A. FERRARI, A. BRAIBANTI, G. BIGLIARDI and A. M. MANOTTI LANFREDI (1966), The crystal structure of strontium permanganate trihydrate. Acta Crystallogr. 21, 681-685.
- S. FURBERG and S. HELLAND (1962), The crystal structure of the calcium and strontium salts of arabonic acid. Acta Chem. Scand. 16, 2373-2383.
- J. L. GALIGNÉ (1971). Affinement de la structure cristalline du formiate de strontiun dihydrate, Sr(HCOO)₂ · 2H₂O. Acta Crystallogr. B 27, 2429-2431.
- D. GARSKE and D. R. PEACOR (1965), Refinement of the structure of celestite SrSO₄. Z. Kristallogr. 121, 204-210.
- H. W. GRUENINGER und H. BÄRNIGHAUSEN (1969), Die Kristallstruktur von Strontiumhydroxid Sr(OH)₂. Z. anorg. allg. Chem. **368**, 53-61.
- L. HAGMAN, I. JANSSON and CH. MAGNÉLI (1968), The crystal structure of α -Sr₂P₂O₇. Acta Chem. Scand. 22, 1419–1429.
- L. A. HARRIS and H. L. YAKEL (1969), The crystal structure of SrBe₃O₄. Acta Crystallogr. B 25, 1647-1651.
- J. KROGH-MOE (1964), The crystal structure of strontium diborate, $SrO \cdot 2B_2O_3$. Acta Chem. Scand. 18, 2055-2060.
- L. KUTSCHABSKY (1965), Zur Kristallstruktur des Sr[B(OH)₄]₂. Z. Chem. 5, 110-111.
- A. PERLOFF and S. BLOCK (1966), The crystal structure of the strontium and lead tetraborates, $SrO \cdot 2B_2O_3$ and $PbO \cdot 2B_2O_3$. Acta Crystallogr. 20, 274–279.
- A. J. PERROTTA and J. V. SMITH (1964), The crystal structure of brewsterite, (Sr, Ba, Ca) (Al₂Si₆O₁₆) · 5H₂O. Acta Crystallogr. 17, 857-862.
- W. PRIMAK, H. KAUFMAN and R. WARD (1948), X-ray diffraction studies of systems involved in the preparation of alkaline earth sulfide and selenide phosphors. J. Amer. Chem. Soc. 70, 2043-2046.
- J. J. RANDALL, JR. and L. KATZ (1959), The crystal structure of Sr_4PtO_6 and two related compounds. Acta Crystallogr. 12, 519-521.

- B. RIBÁR and B. MATKOVIĆ (1965), Structural studies of strontium nitrate tetrahydrate and monohydrated mercuric oxynitrate. Croat. Chem. Acta 37, 117-118.
- H. G. SCHNERING und R. HOPPE (1961), Die Kristallstruktur des SrZnO₂. Z. anorg. allg. Chem. **312**, 87-98.
- P. SEDLACEK und K. DORNBERGER-SCHIFF (1965), Das Strukturprinzip des Strontiummetavanadat, $Sr(VO_3)_2 \cdot 4H_2O$. Acta Crystallogr. 18, 407–410.
- H. G. SMITH (1953), The crystal structure of strontium hydroxide octahydrate, Sr(OH)₂ · 8H₂O. Acta Crystallogr. 6, 604-609.
- C. STERLING (1965), Crystal structure of tetragonal strontium oxalate. Nature 205, 588-589.
- Structure reports (1940–1941) 8, 133.
- Structure reports (1945-1946) 10, 111.
- CHR. L. TESKE und H. MÜLLER-BUSCHBAUM (1969), Zur Kenntnis von Sr₂CuO₃. Z. anorg. allg. Chem. 371, 325-332.
- M. TRÖMEL (1969), Die Kristallstruktur der Verbindungen vom Sr₂PbO₄-Typ. Z. anorg. allg. Chem. 371, 237–247.
- P.-E. WERNER, R. NORRESTAM and O. RÖNNQUIST (1969), The crystal structure of strontium 3-deoxy-2-C-hydroxymethyl-D-erythro-pentoate. Acta Crystallogr. B 25, 714–719.
- W. H. ZACHARIASEN (1948), Crystal chemical studies of the 5*f*-series of elements. IV. The crystal structure of $Ca(UO_2)O_2$ and $Sr(UO_2)O_2$. Acta Crystallogr. 1, 281–285.
- W. H. ZACHARIASEN (1948), The crystal structure of the normal orthophosphates of barium and strontium. Acta Crystallogr. 1, 263-265.