Zeitschrift für Kristallographie, Bd. 135, S. 374-390 (1972)

The structures of the salt-bearing aluminosilicates, Species P and Q

By R. M. BARRER and D. J. ROBINSON

Physical Chemistry Laboratories, Chemistry Department, Imperial College, London

(Received 8 October 1971)

Auszug

Es wurden die Strukturen der salzhaltigen Alumosilikate vom Typ P und vom Typ Q mit den Zellinhalten Ba₁₅[Al₃₀Si₆₆O₁₉₂] · 1,7 Ba(OH)₂ · 12,5 BaCl₂ · 35 H₂O bzw. Ba₁₅[Al₃₀Si₆₆O₁₉₂] · 1,6 Ba(OH)₂ · 11,9 BaBr₂ · 30H₂O untersucht. Außerdem wurde die Struktur des Zeoliths (Na,Ba_{0,5})₃₀[Al₃₀Si₆₆O₁₉₂] · 1,7 (Na₂,Ba)Cl₂ · 72H₂O bestimmt, der aus P durch Herauslösen von BaCl₂ durch verdünnte Salpetersäure erhalten wurde. Das Untersuchungsergebnis bestätigte, daß das Gerüst aller drei Alumosilikate auf dem des Zeoliths ZK-5 basiert. In allen drei Strukturen sind die nicht zum Gerüst gehörenden Ionen und Moleküle in den charakteristischen 18flächigen Hohlräumen nahezu identisch angeordnet. Die durch Auslaugung des BaCl₂ erhaltene Verbindung ist weitgehend durch die Form des Achtzehnflächners bestimmt. Die drei Strukturen sind auch in den Anordnungen innerhalb der Sechsundzwanzigflächner ähnlich; deren größeres Volumen erlaubt jedoch eine stärkere Variation der Atomverteilung.

Abstract

Determinations have been made of the structures of the salt-bearing aluminosilicates, Species P and Q, having unit-cell compositions $Ba_{15}[Al_{30}Si_{66}O_{192}]1.7 Ba$ $(OH)_2$, 12.5 BaCl₂, 35 H₂O and $Ba_{15}[Al_{30}Si_{66}O_{192}]1.6 Ba(OH)_2$, 11.9 BaBr₂, 30 H₂O respectively. The structure of the zeolite (Na, Ba_{0,5})₃₀[Al₃₀Si₆₆O₁₉₂]1.7 (Na₂, Ba)Cl₂, 72 H₂O obtained from Species P by extraction of BaCl₂ with NaNO₃ · aq has also been determined. The structures confirmed that the alumosilicate frameworks of all three phases were based upon that of zeolite ZK-5. Much of the non-framework scattering material was also located in the three structures. Within characteristic 18-hedral cavities the non-framework ions and molecules were almost identically arranged in Species P and Q and had a very similar configuration in the extracted Species P, so that this configuration appears to be determined largely by the form of the 18-hedron. The arrangement within 26-hedra also showed similarities between the three structures but here the greater volume permitted greater variations in configuration.

Introduction

In 1948 (BARRER) an account was given of the synthesis of two novel aluminosilicates, one rich in intercalated BaCl₂ (Species P) and the other in BaBr₂ (Species Q). The BaCl₂ was extracted from Species P to give a molecular sieve sorbent which, like chabazite or Linde Sieve 5A, could separate *n*-paraffins from iso-paraffins, cycloparaffins and aromatics (BARRER and RILEY, 1948). These syntheses were repeated subsequently by BARRER, HINDS and WHITE in 1953, and Species P and Q were then prepared and examined more fully by BARRER and MARCILLY (1970). It was shown that these phases had powder-diffraction patterns and unit cells very similar to those of the synthetic zeolite ZK-5 (KERR, 1963 and 1966). In addition aluminium-rich modifications, P' and Q', were prepared which were related to the more siliceous modifications in a manner recalling the relation between Linde Sieves X and Y. It was thought to be of considerable interest to determine and to compare the structures of Species P and Q with each other and with the zeolite obtained from Species P by extraction of BaCl₂. The structures of all three phases could then be compared with the structure of Zeolite ZK-5 (MEIER and KOKOTAILO, 1965).

Experimental

Samples of the aluminosilicates Species P and Q, and the zeolite resulting from removal of $BaCl_2$ from Species P were available from the study of BARRER and MARCILLY (1970). The body-centred cubic cell dimensions were determined from Guinier photographs, calibrated with lead nitrate. These, together with the analytical results obtained by MARCILLY gave

a	ı	C	ell contents
Species P	$18.65~\pm~0.03$ Å	Ba15[Al30Si66O192]	$1.7 \mathrm{Ba}(\mathrm{OH})_2, 12.5 \mathrm{BaCl}_2, 35 \mathrm{H}_2\mathrm{O}$
Species Q	18.66 ± 0.03	Ba15[Al30Si66O192]	$1.6 \mathrm{Ba(OH)_2,} 11.9 \mathrm{BaBr_2,} 30 \mathrm{H_2O}$
Extracted P	18.78 ± 0.03	(Na,Ba _{0,5}) ₃₀ [Al ₃₀ Si with a maximum	66O ₁₉₂] 1.7(Na ₂ ,Ba)Cl ₂ ,72H ₂ O of 1.7 Ba per unit cell.

The powder diffraction pattern for Species P was obtained with a General Electric XRD6 diffractometer, using a flat sample holder and $CuK\alpha$ radiation. Integrated intensities were obtained by measuring the areas under the diffractometer trace. Of the seventy reflections available, up to the limit of measurement $2 \theta = 61^{\circ}$, fifty-eight were recorded above background.

For Species Q and extracted Species P the x-ray powder diffraction pattern was obtained with a Philips diffractometer, using a rotating flat sample holder and $CuK\alpha$ radiation. Integrated intensities were obtained from step-scan output.

For Species Q, of the one hundred and seventeen reflections available up to $2\theta = 83^{\circ}$, ninety-nine were recorded above background. Measurement up to $2\theta = 76^{\circ}$, for extracted Species P, gave eighty-one observed reflections out of a possible one hundred and four.

Refinement

Refinement of all three structures was carried out in space-group Im 3m, assuming statistical distribution of Si/Al. Methods of Fourier synthesis (BROUSSARD and SHOEMAKER, 1960) and least-squares refinement (BARRER and VILLIGER, 1969) for dealing with powder data, were employed.

The framework positions determined by MEIER and KOKOTAILO (1965) for ZK-5 (KERR, 1963) were used to provide starting phases for the calculation of electron density and difference electron density maps. An overall temperature factor of 5.0 Å² was used initially, in order to reduce the effects of series termination. For the observed reflections:

	Species P	Species Q	Extracted Species P
Initial $R(I)$	1.17	1.05	0.85

where

$$\begin{array}{ll} R(I) &= (\sum |I_{\rm obs} - I_{\rm calc}|) / \sum I_{\rm obs} \\ I_{\rm calc} &= \sum M_i \cdot (LP)_i \cdot (sF_i)^2 \\ n &= {\rm number \ of \ non-equivalent \ lines \ contributing \ to \ a \ reflection.} \\ M_i &= {\rm multiplicity \ of \ the \ ith \ line} \\ (LP)_i &= {\rm Lorentz \ and \ polarization \ factor} \end{array}$$

 sF_i = scaled structure amplitude.

From successive electron-density maps and difference electrondensity maps a number of non-framework positions were located, and the structures were partly refined. In Species P and Q the non-framework positions were assigned to barium or halogen, depending on the electron density and interatomic distances. In extracted Species P, all non-framework positions were assigned sodium scattering factors. Residuals were

376

	Species P	Species Q	Extracted Species P
R(I)	0.55	0.52	0.58

Full-matrix least-squares refinement of the structures was then begun. Initially unit weights were applied, and only small sets of parameters were allowed to vary. Non-framework atoms were retained if the thermal parameters and occupancy factors remained realistic. Refinement was considered complete when all shifts in parameters were less than half the relevant estimated standard deviations.

For Species P, slow convergence was achieved, and finally individual observational weights were applied. In the final cycles as many parameters as possible were varied to provide a reasonable estimate of standard deviations, though thermal parameters and occupancy factors were never included in the same cycle because of the possibility of correlation. At the completion of refinement

$$R(I) = 0.061$$

R(I) = 0.080 including unobserved reflections at half the minimum observed intensity.

$$R(F) = (\Sigma ||F_{\mathrm{obs}}| - |sF_{\mathrm{calc}}|| / \Sigma F_{\mathrm{obs}} = 0.070.$$

These low R factors probably reflect the low ratio of observations to variable parameters, rather than a particularly accurate structure.

Least-squares refinement of Species Q resulted in unsatisfactorily slow convergence. An examination of the structure-factor list revealed that for reflection 110 F_{cale} was much greater than F_{obs} . This reflection was omitted, and further refinement proceeded satisfactorily, giving as final results

R(I) = 0.150R(I) = 0.169 including unobserved reflections R(F) = 0.133.

Refinement of extracted Species P, by least squares, and further electron-density maps, failed to reduce R(I) below 0.50. Examination of the structure-factor lists showed that F_{obs} was always much less than F_{calc} for reflections 110 and 200. Removal of these two reflections and re-scaling led to an immediate improvement in R(I) to 0.28. Further

		Tal	ole 1		
Atom	x	y		В	Fractional occupancy
		Spec	cies P		
Si,Al	0.0814 (0.002)	0.1937 (0.002)	0.3211 (0.002)	12.6 Ų (1.1)	
O(1)	0.1268 (0.003)	0.1268	0.3156 (0.005)	10.3 (5.0)	•
O(2)	0.2574 (0.004)	0.2574	0.4039 (0.004)	6.5 (2.9)	
O(3)	0	0.1834 (0.004)	0.3400 (0.004)	2.0 (1.9)	
O(4)	1/4	0.1169 (0.006)	0.3831	7.7 (3.1)	
Ba(1)	0	1/4	1/2	5.8 (0.7)	0.60 (0.01)
Ba(2)	0	0.3877 (0.002)	0	2.4 (1.1)	0.39 · (0.01)
Ba(3)	0.1194 (0.003)	0.1194	0	20.6 (3.6)	0.18 (0.01)
Ba(4)	0.1413 (0.001)	0.1413	0.1413	10.4 (1.8)	0.34 (0.01)
Cl(1)	0.4060 (0.002)	0.4060	0	9.7 (1.7)	0.87 (0.02)
Cl(2)	0	$0.1540 \\ (0.015)$	0	3.2 (9.4)	0.20 (0.04)
Cl(3)	0	0.2543 (0.015)	0	16.0 (10.2)	$0.30 \\ (0.05)$
		Spec	cies Q		
Si,Al	0.0795 (0.002)	0.2031 (0.002)	0.3175 (0.002)	14.4 Ų (1.3)	
O(1)	0.1206 (0.003)	0.1206	0.3253 (0.004)	7.8 (4.0)	

Atom	x	y	z	В	Fractional occupancy
O(2)	0.2471 (0.004)	0.2471	0.3840 (0.004)	19.4 Å ² (4.9)	
O(3)	0	0.1705 (0.004)	0.3497 (0.004)	$\begin{array}{c} 6.3 \\ (2.6) \end{array}$	
O(4)	1/4	0.1178 (0.006)	0.3822	7.2 (2.6)	
Ba(1)	0	1/4	1/2	2.3 (0.6)	0.48 (0.01)
Ba(2)	0	0.3821 (0.002)	0	4.9 (1.3)	0.34 (0.02)
Ba(4)	0.1430 (0.002)	0.1430	0.1430	2.8 (1.5)	0.20 (0.01)
Br(1)	0.3998 (0.001)	0.3998	0	6.6 (0.8)	0.57 (0.02)
Br(2)	0	0.2065 (0.008)	0	5.3 (3.9)	0.18 (0.02)
		Extracted	Species P		
Si.Al	0.0852	0.2000	0.3186	3.4 Å ²	

The structures of the salt-bearing aluminosilicates, Species P and Q 379

Table 1. (Continued)

Si,Al	0.0852	0.2000	0.3186	3.4 Å^2	
	(0.001)	(0.001)	(0.001)	(0.4)	
O(1)	0.1203	0.1203	0.3271	2.1	
	(0.002)		(0.003)	(1.5)	
O(2)	0.2569	0.2569	0.3998	2.6	
	(0.002)		(0.003)	(1.8)	
O(3)	0	0.1837	0.3206	3.4	
		(0.003)	(0.003)	(1.6)	
O(4)	1/4	0.1093	0.3907	0.6	
		(0.004)		(1.8)	
A(1)	0	1/4	1/2	9.3	0.74
				(3.5)	0.06

Atom	x	y	z	В	Fractional occupancy
A(2)	0.4481 (0.003)	0.3752 (0.003)	0	13.3 Ų (3.6)	$\begin{array}{c} 0.58 \\ (0.05) \end{array}$
A(3)	0	0	1/2	18.9 (9.9)	$\begin{array}{c} 0.64 \\ (0.10) \end{array}$
A(4)	0	0.3550 (0.006)	0	16.0 (3.8)	$\begin{array}{c} 0.93 \\ (0.07) \end{array}$
A(5)	0	0.2123 (0.006)	0.0374 (0.009)	14.1 (7.8)	0.27 (0.02)
A(6)	0.1136 (0.005)	0.1136	0.1136	$\begin{array}{c} 8.5 \\ (5.1) \end{array}$	0.43 (0.07)
A(7)	0.1582 (0.002)	0.1582	0.1582	4.8 (2.6)	0.65 (0.05)

Table 1. (Continued)

refinement produced slow convergence. An attempt to assign some of the positions to water resulted in some unacceptably high occcupany factors, so this was abandoned. The final residuals were

R(I) = 0.128R(I) = 0.137 including unobserved reflections R(F) = 0.109.

Final difference electron density maps were calculated for all three structures, and apart from peaks at 0,0,0 of about one half the height of a framework oxygen, no other detail was apparent. The position 0,0,0 proved unrefinable in all three structures giving divergent thermal parameters or zero occupancy.

Lack of agreement for the lowest-angle reflections in Species Q and extracted Species P indicates that the unlocated non-framework atoms are delocalized over the available space (SIMPSON and STEINFINK, 1969).

All computation was done on the C.D.C. Computers of the University of London. Electron-density maps were generated by the University of Washington X-Ray 63 System. The least-squares refinement used a version of ORFLS (BUSING, MARTIN and LEVY, 1959) modified for powder data. Final atomic coordinates are listed in Table 1. Interatomic distances and angles, with estimated standard deviations, calculated by the programme ORFFE (BUSING, MARTIN and LEVY, 1964) are listed in Table 2. Observed and calculated intensities are listed in Table 3. Figures 1a, b and c and 2a, b and c which illustrate the configuration of much of the contents of the 18-hedra and 26-hedra of Species P, Q and extracted P, were drawn with the help of the programme ORTEP (JOHNSON, 1965).

Scattering factors were taken from International tables for x-ray crystallography, Vol. 3. Silicon, aluminium and oxygen were assumed

<u>r</u> ran	iework interatomic	uisiunces and angles	·
	Species P	Species Q	Extracted Species P
(Si,Al)—O(1)	1.51 (.05) Å	1.72 (.04) Å	$1.64~(.03)~{ m \AA}$
(Si,Al)-O(2)	1.75 (.05)	1.67 (.05)	1.66(.03)
(Si,Al)-O(3)	1.57 (.05)	1.71 (.05)	1.63(.02)
(Si,Al) - O(4)	1.70 (.06)	1.65 (.05)	1.71 (.04)
Mean	1.631	1.690	1.659
O(1)-O(2)	2.62 (.07) Å	2.81 (.07) Å	$2.82~(.05)~{ m \AA}$
O(1)-O(3)	2.63(.05)	2.48 (.04)	2.56(.03)
O(1)-O(4)	2.63 (.09)	2.64 (.07)	2.72(.06)
O(2)—O(3)	2.78 (.08)	3.21 (.08)	2.63 (.05)
O(2)—O(4)	2.65 (.13)	2.41(.12)	2.78(.07)
O(3)—O(4)	2.64(.08)	2.72(.08)	2.74(.05)
Mean	2.657	2.711	2.707
(Si,Al)-O(1)-(Si,Al)	$157.0~(8.8)^{\circ}$	141.8 (6.8)°	$136.2 (4.1)^{\circ}$
(Si,Al)-O(2)-(Si,Al)	148.3 (9.4)	129.7(6.6)	143.8 (4.2)
(Si,Al)-O(3)-(Si,Al)	150.4 (7.9)	120.1 (5.9)	158.1 (5.2)
(Si,Al)-O(4)-(Si,Al)	156.3(13.9)	155.7 (12.4)	136.3 (6.7)
Mean	153.0	136.8	143.6
O(1)-(Si,Al)-O(2)	$106.6~(6.7)^{\circ}$	$112.1~(5.3)^{\circ}$	117.3 (3.2)°
O(1)-(Si,Al)-O(3)	117.1 (6.3)	92.3 (4.0)	102.7(2.8)
O(1) - (Si, Al) - O(4)	109.8 (5.9)	102.7 (3.6)	108.5 (2.6)
O(2)—(Si,Al)— $O(3)$	113.8 (5.9)	143.7 (5.3)	106.2(2.9)
O(2)-(Si,Al)-O(4)	100.8 (6.4)	93.2 (6.1)	111.4(3.0)
O(3)(Si,Al)O(4)	107.5 (7.6)	107.8 (6.3)	110.2 (4.3)
Mean	109.3	108.6	109.4

 Table 2

 Framework interatomic distances and anales

.

Table 2. (Continued)Non-framework distances and angles

Species PCl(1)--O(1) 3.55 (.10) Å Cl(3)-Ba(2) 2.49 (.32) Å Cl(1) - O(3)3.84 (.07) Cl(3)-Ba(3) 3.36 (.25) Cl(1) - O(4)3.66 (.11) Cl(3)-Ba(4) 4.28 (.16) Cl(1)-Ba(1) 3.40 (.01) Cl(1)-Ba(2) 3.25(.04)Ba(1)--O(3) 3.23 (.08) Cl(1)--Cl(1) 3.51 (.08) Ba(1)-O(4) 3.08 (.19) Ba(2)-O(1) 3.61 (.11) Cl(2) - O(1)4.50 (.27) Ba(2)--O(3) 3.54 (.08) Cl(2) - O(3)4.87 (.26) Ba(3)---O(2) 3.71(.13)Cl(2)--Cl(2)4.06 (.48) Ba(3)-O(3) 4.29 (.10) Cl(2)-Ba(4) 3.73 (.04) Ba(3)—Ba(4)2.70 (.04) Cl(2)-Ba(3) 2.32 (.10) Ba(3)-Ba(3)3.15 (.10) Cl(2)-Cl(3)1.87 (.40) Ba(4) - O(1)3.27 (.10) Ba(4)-O(2) 2.80 (.10) Cl(3)--O(1) 3.54 (.15) Cl(3)--O(3) 3.78 (.16)

Species Q

3.30 (.07) Å	Br(2)-Ba(2)	3.28(.15) Å
3.62 (.07)	Br(2)-Ba(4)	3.95(.06)
3.57 (.09)	Ba(1)-O(3)	3.17 (.09)
3.36 (.01)	Ba(1)-O(4)	3.11 (.17)
3.44(.03)	Ba(2) - O(1)	3.35 (.09)
3.74 (.05)	Ba(2)-O(3)	3.24(.08)
3.88 (.13)	Ba(4)-O(1)	3.45(.07)
4.16 (.12)	Ba(4)-O(2)	2.94 (.10)
	$ \begin{array}{c} 3.30 \ (.07) \ \text{\AA} \\ 3.62 \ (.07) \\ 3.57 \ (.09) \\ 3.36 \ (.01) \\ 3.44 \ (.03) \\ 3.74 \ (.05) \\ 3.88 \ (.13) \\ 4.16 \ (.12) \end{array} $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Extracted Species P

A(1) - O(3)	$3.59~(.07)~{ m \AA}$	A(4) - O(3)	3.51 (.07) Å
A(1)O(4)	2.90 (.10)	A(4) - A(5)	2.77 (.12)
A(1) - A(2)	2.54(.06)	A(5) - O(1)	3.49 (.12)
A(2) - O(1)	3.49 (.06)	A(5)-O(3)	3.42 (.18)
A(2)-O(3)	3.68 (.07)	A(5) - A(6)	3.17 (.11)
A(2) - O(4)	3.30 (.07)	A(5) - A(7)	3.87 (.11)
A(2)-A(2)	1.94 (.12)	A(5) - A(5)	0.99 (.26)
A(2) - A(4)	3.72 (.10)	A(7) - A(6)	1.45 (.18)
A(3) - A(4)	2.72(.12)	A(7) - O(1)	3.33 (.07)
A(2)-A(3)	2.73 (.06)	A(7) - O(2)	2.50(.06)
A(4)-O(1)	3.24 (.06)		1
		•	

,

.

to be half-ionized, and appropriate averages were taken. The ionized values for chlorine, bromine and sodium, and the unionized value for barium were used.

Table 3. Observed and calculated intensities \times 10^{-2}

a Species P

hkl I _{celc}	Icha	hkl I	le Iobs	h k l	Icalc	1.obs	h k l	Icalc	Ioba	h k l	Icalc	I
1 1 0 5036	5041	631 33	7 271	752	360	362	10 2 2	153	120	11 3 2		
2 0 0 566	573	444 15	1 150	840	197	301	666' 1031	.,,,		972	402	452
2 2 0 204	181	5 5 0 82	0 754	833)	5	< 30	952)	302	301	776		
310 120 222 137	120	543/	9 332	921	309	592	871			866)	44	60
3 2 1 1459	1358	7 2 1		761)	459	392	774)	350	422	1141)	46	60
4 0 0 159	291	633/ 194	2113	664	97	90	10 4 0)	73	< 30	10 6 2	120	60
3 3 0 / 1 90	9234	642 63 730 22	7 664 7 211	930 754)	119	60	864/ 1033		- 70	1200	5	< 30
3 3 2 171	150	732) 46	9 633	851/			961		< 30	884	245	181
4 2 2 2834	3049	800 68	8 633	763)	51	90	873	141	< 30	974		
431 ¹¹⁴⁸	- 10	7 4 1	3 1062	844	133	150	11 1 0	272	332	11 5 0	456	· 452
440 620	724	554/ 55	, ,,	941)	454	362	11 2 1	_		981		
530)4048	4075	820) 46 644) 46	9 513	853' 1000,		700	963/	7	< 30	10 7 1	10	< 30
6 0 0) 686	724	653 17	0 211	860'	264	392	880	655	754	1152)	150	120
611 6017	6069	660 6	8 60	10 1 1)	49	< 30	970)	162	90	,		
532,021	150	743	4 150	1020) 862)	221	271	882) 1044)	79	< 30			
5 4 1 738	724	831		943)	267	271						
622 5441	5313	662 22	8 301	950								
				<i>b</i> S ₁	pecies	Q						
			_									
hkl I _{cale}	I _{obs}	hkl I ca	lc ^I obs	h k l	Icale	lobs	hkl	¹ calc	lobs	hkl	calc	obs
1 1 0 29042	5189	743	010	880	607	634	1172	167	187	14 4 2	41	30
2 1 1 196	<4	831	. 210	970)	148	184	10 7 5		,	12 6 6	• •	
220 33 310 116	25 117	662 15 752 30	a 181 I 264	882) 1044)	42	26	12 4 4	25	< 4	1370	8	< 4
2 2 2 60	63	840 6	5 139	11 3 2			12 5 3	32	61	12 7 5		
323 564 400 128	476	$\begin{pmatrix} 9 & 1 & 0 \\ 8 & 3 & 3 \end{pmatrix}$ 6	9 46	10 5 3	434	523	1260	84	25	13 7 2)	13	42
4 1 1 3 3 0) 784	1060	842 10 921.	4 274	776′ 1060、			1084/	•••		11 10 1 /	21	<4
4 2 0 1321	904	761) 28	5 258	866)	51	57	10 9 1)	122	250	15 1 0	40	10
3 3 2 122 4 2 2 2532	2594	664 4	> <4	875)	19	17	12 6 2	101	107	998		2
510) 499	416	930	2 256	1062	208 5	163	1341	54	<4	14 4 4)	59	146
5 2 1 159	147	851		1200)	176	174	1174	-	- 1	14 5 3		
440 208 530 \ 1700	298	$\frac{9}{763}$ 1	2 11	11 4 3			888	32	<4	11 10 3	30	27
433/ 4/99	4920	844 29	5 227	974	347	292	1343			1365		
4 4 2) 342	270	941) 3	1 86	12 1 1		-,-	13 5 0	180	317	14 6 0	1	<4
$\begin{pmatrix} 6 & 1 & 1 \\ 5 & 3 & 2 \end{pmatrix}$ 6732	6695	853		981	25	<4	12 5 5			12 9 3		
620 70	33	860/ 36	. 460	1071	341	315	987/ 1400-			1374	1 19	112
6 2 2 4360	3901	10 1 1) 6	2 38	10 5 5	241	,,,	1264)	11	<4	13 8 1		
631 299 444 372	<4 378	$\begin{pmatrix} 10 & 2 & 0 \\ 8 & 6 & 2 \end{pmatrix}$ 21	9 202	12 2 0 10 6 4)	105	64	13 5 2	169	110	10 10 6)	135	258
7 1 0	0050	943) 18	5 119	$\binom{12}{0} \binom{12}{12} \binom{1}{12}$	121	146	996	142	119	$\frac{1532}{1196}$	70	116
543	20,22	10^{22}) 10	8 59	10 7 3)	259	299	14 2 0			15 4 1		
640 191 721,	232	1031	,	11 6 1 7	44	30	10 8 6	89	70	12 7 7	81	35
633) 1595	2066	952)23 765	1 266	12 3 3			1273) 1190)	21	<4	11 11 0 ' 12 10 0 \		
642 386	302	871		990	140	159	14 2 2)	63	<4	12 8 6)	34	28
730 196	187	774) 68 855	5 604 ز	11 5 4 7			14 3 1			14 5 5	40	50
651) 296	212	10 4 0 7	9 38	1080) 886	53	23	1361	14	34	11 11 2	-19	20
741	010	10 3 3) 30	5 352	992			10 9 5	•••	,1	1464)	19	<4
8 1 1 1237 5 5 4	1818	961, 0	7 68	1163) 976	78	21	11 7 6 /	73	<4	1543		-
820) 746	699	873	6 379	1082	7	<4	1354)	29	49	15 5 0	28	30
653 95	93	954		13 1 0	114	108	14 4 0)	30	35	13 9 6 /		
822) 10 660) 10	< 4	963 5	9 122	985			1282	91	19	15 5 2	65	00
		10 5 1 '		10 6 6	205	264	1363/	- ·		1376 1392		,,,

				Table 3. c Extracte	(<i>Cont</i> d Spe	<i>inued)</i> ecies P						
hkl I _{cale}	I obs	hkl ^I cal	. I	h k l	1 _{calc}	Iobs	h k l	I _{calc}	I.obs	h k l 1	calc	I _{obs}
1 1 0 7322	1200	644) 132	105	10 4 0	30	40	12 4 0	5	<6	14 1 1		
200 8453	5969	820 /	67	864/	,.	.,	11 5 4 1			13 5 2	58	22
2 2 0 332	338	660		1033)	203	134	9991	89	97	10 7 7		
3 1 0 1210	1146	8 2 2) 386	488	10 4 2	0	14	12 3 3 /			14 2 0		
2 2 2 1836	1651	750		11 1 0			10 8 0		0.76	10 10 0	31	< 6
400 232	244	831	242	954	308	280	886	235	256	1086		
3 3 0 1 1090	0011	662 78	33	1121			1163,			1273)	10	<6
4 1 1 / 1980	2044	752 0	<6	10 5 1)	162	179	976)	38	30	14 2 2	36	< 6
4 2 0 240)	2409	840 5	< 6	963	767	700	992'		~ (10 10 2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~ •
4 2 2 1771	1740	833) 196	194	1130	505	380	11 7 0	,	< 0	13 6 1		
510 457	100	842 92	118	970)	285	275	13 1 0	30	-6	11 9 2	142	182
431/ 10	400	761		10 4 4)	1	< 6	12 5 1	2	~0	10 9 5		
521 1141	1404	0 5 5 / 200	240	8821			985	46	30	11761	F	- 4
530	0170	664 34	15	972			1172	-10	,0	1354	, ,	~ 0
433/2110	24/0	930		10 5 3	187	243	1075)	32	< 6	11 8 5	137	72
600) 110	103	851) 13	18	776			13 2 1 '	•	- (14 4 0)	73	60
532		932		866	204	184	12 4 4	U	< 0	1282		
611)3267	3721	763) 71	59	1141,	E 1	*7	12 5 3)	408	486	1363)	23	<6
6 2 0 1217	1569	844 6	21	875'	51	57	994			14 4 2		
541 235	308	770	300	10 6 2	74	86	1260	70	61	10 10 4	114	128
6 3 1 969	1073	853)00	1200	52	~ 0	10 9 1			13 7 0		
444 25	20	10 0 0 1 400	450	884	59	22	13 3 2	149	218	1194)	19	<6
710	- 10	860/ 90	- 52	11 5 9 1			1165'		<i>.</i>	12 7 5		
550 687	718	$\frac{10}{7}$, $\frac{11}{7}$, 138	80	11 4 3	77	86	12 6 2	79	69	14 5 1	=4	70
640 68	88	10 2 0		12 1 1		80	11 8 1	1	< 6	13 7 2	50	/2
721		862 / 351	330	981/			1174			12 8 4	22	< 6
5 5 2 841	1072	950) 29	18	12 2 0	84	35	10 9 3	9	<6			
6 5 3	31	943		10 7 1	11.1	175	888	2	17			
7 3 0 298	301	666) 60	<6	10 5 5	141	175	12 7 1					
6 5 1 72	115	10 3 1		10 6 4 ,	60	91	13 4 3	1.20	500			
732/ 1-		952) 384	529	12 2 2 /	-	• ·	11 8 3	440	226			
800 9 7 k 1	~ 0	705		12 3 1	40	13	987					
554 182	155	7 7 4) 58	45	1161		~ ~	14.00		- 1			
811'		855'	-	1073'	28	21	1264	56	< 0			

Description of the structure

The framework of these three compounds is almost the same as that determined for ZK-5, and is built up of 26-hedral cavities, linked through pairs of six-membered rings, forming hexagonal prisms, and intermediate 18-hedral cavities, which also occur in paulingite (GOR-DON, SAMSON and KAMB, 1966).

The high standard deviations in the atomic parameters prevent any detailed analysis of bond lengths and angles in the four related structures. The positions of the framework atoms in extracted Species P differ by less than three times their estimated standard deviation from the positions in ZK-5. Both Species P and Species Q show some significant positional differences from one another, and from the sodium forms, which are probably due to accomodation of divalent ions and included salts. These differences follow no obvious pattern.

Interatomic distances within the framework show quite a wide range. The mean values of (Si,Al)-O are

Species P	1.63 Å
Species Q	1.69 Å
Extracted Species P	1.66 Å
ZK-5	1.625 Å (MEIER and KOKOTAILO, 1965).

384

Fig.1a. Distribution of located non-framework atoms in the 18-hedron of Species P.

Fig.1b. Distribution of located non-framework atoms in the 18-hedron of Species Q.

Fig.1c. Distribution of located non-framework atoms in the 18-hedron of extracted Species P.

Of these, the value for extracted Species P is closest to the value 1.65 Å predicted for an Si: Al ratio of 2:1 (SMITH and BAILEY, 1963). In the three structures determined, none of the individual bonds differs significantly from the relevant mean value.

Thermal parameters for the atoms of Species P and Q are much higher than is normal for framework silicates. This is due to lack of

Z. Kristallogr. Bd. 135, 5/6

Fig. 2a. Stereoscopic pair showing the distribution of located non-framework atoms in the 26-hedron of Species P

Fig. 2b. Stereoscopic pair showing the distribution of located non-framework atoms in the 26-hedron of Species Q

absorption correction (SRIVASTAVA and LINGAFELTER, 1966). The absence of heavy atoms in extracted Species P results in more reasonable thermal parameters.

Non-framework positions were located in the 18-hedra and in the 26-hedra of each of the three structures. Assignment of these positions to barium or halogen in Species P and Q took account of the interatomic contact distances, and the number of electrons present at each position. No positions could definitely be assigned to the water molecules. In extracted Species P, no differentiation was made between

386

The structures of the salt-bearing aluminosilicates, Species P and Q 387

Fig. 2c. Stereoscopic pair showing the distribution of located non-framework atoms in the 26-hedron of extracted Species P

sodium and water, and sodium scattering factors were applied to all positions.

In the 18-hedra, all three compounds displayed a similar nonframework arrangement, shown in Fig. 1a, b and c. In Species P and Q, Ba(1) is at the centre of the puckered 8-rings shared by two 18-hedra, making two sets of four barium-oxygen contacts:

Species P	Ba(1)-O	3.08 Å, 3.23 Å
Species Q	Ba(1)O	3.11 Å, 3.17 Å

In extracted Species P this position is occupied by A(1), probably sodium, making contacts of 2.90 Å and 3.59 Å with framework oxygen atoms.

Four halogen atoms occur in Species P and Q, at $x,x,\frac{1}{2}$ in the 18-hedra, such that two approach each Ba(1) from each side, at 3.40 Å in Species P, and 3.36 Å in Species Q. In extracted Species P, these positions are split into pairs, giving eight locations at $x,y,\frac{1}{2}$ for A(2), which must be disordered so that only four are occupied at any time.

In Species P and Q, a pair of bariums Ba(2) occurs along the fourfold axis, within the 18-hedra close to the planar 8-rings. This position is occupied by A(4) in extracted Species P, and an additional location A(3) occurs at $0, 0, \frac{1}{2}$, the centre of the 18-hedra.

The arrangement of non-framework atoms within the 26-hedra is illustrated in Figures 2a, b and c. It is simplest in Species Q, and most complex in extracted Species P. In all three structures a position is observed on the [111] axis, equivalent to that assigned by MEIER and KOKOTAILO to sodium in ZK-5. This is assigned to Ba(4) in Species P and Q, and is close to three of the six oxygen atoms in the 6-ring, giving for Ba(4)—O the distances:

Species P	2.80 Å,	$3.27~{ m \AA}$
Species Q	2.94 Å,	3.45 Å

These distances compare with Ba—O 2.67 Å in celsian (NEWNHAM and MEGAW, 1960) and 3.02 Å in harmotome (SADANAGA, MARUMO and TAKEUCHI, 1961). In extracted Species P, two positions occur along the [111] axis, A(7) which is certainly sodium, at 2.50 Å and 3.33 Å from the framework oxygen atoms, compared with Na—O 3.14 Å and 3.55 Å in ZK-5, and A(6) which is closer to the centre of the 26-hedra, and cannot coexist with A(7).

In Species Q, the only other position in the 26-hedra occurs on the fourfold axis, close to the planar 8-ring. This is assigned to Br(2). An additional position, at x,x,0, occurs in Species P and is assigned to Ba(3). This position can only be occupied when Ba(4) is vacant. The halogen located on the fourfold axis is also split into a pair of positions Cl(2) and Cl(3), which appear to represent stable positions of the chloride, depending on whether Ba(2) or Ba(3) is present. The less complicated arrangement in Species Q may be due to the larger size of the bromine ion restricting its movement.

The position close to the planar 8-ring, in extracted Species P, shifts off the fourfold axis, producing a set of four disordered positions assigned to A(5), only one of which can be occupied at one time. Within the 18-hedral cavity the arrangement of non-framework atoms is almost identical in Species P and Q, and is quite similar for extracted Species P, indicating that the final configuration is dictated largely by the cavity. The arrangement in the 26-hedra is similar for the three structures, though the greater free volume allows much greater freedom of arrangement.

Even when the non-framework atoms are heavy, it may not be possible to locate all the scattering material in these open structures. The percentage of non-framework scattering material located in the three structures was

Species P	68º/0
Species Q	$47^{0}/_{0}$
Extracted Species P	$70^{0}/_{0}$.

To account for the observed molecular sieve behaviour of extracted Species P (BARRER and RILEY, 1948), dehydration must move the atoms from positions A(2), A(3), A(5) and A(6). The two most probable sodium positions A(1) and A(7) would have little effect on sorption, even if they did not move significantly during dehydration.

Acknowledgements

Thanks are due to Miss R. OSBORN of the University of London Intercollegiate Research Service, to Mr. J. C. MILLS of Imperial College Analytical Services, for diffractometer measurements, and to Mr. CH. BAERLOCHER for helpful discussion, and assistance with computing problems. We also thank the Science Research Council for financial support which made this investigation possible.

References

- R. M. BARRER (1948), Synthesis of a zeolitic mineral with chabazite-like sorptive properties. J. Chem. Soc. [London], 127-132.
- R. M. BARRER, L. HINDS and E. A. WHITE (1953), The hydrothermal chemistry of silicates, Part III. Reactions of analcite and leucite. J. Chem. Soc. [London], 1466-1475.
- R. M. BARRER and C. MARCILLY (1970), Hydrothermal chemistry of silicates. Part XV. Synthesis and nature of some salt-bearing aluminosilicates. J. Chem. Soc. [London], A 2735-2745.
- R. M. BARRER and D. W. RILEY (1948), Sorptive and molecular-sieve properties of a new zeolitic mineral. J. Chem. Soc. [London] 133-143.
- R. M. BARRER and H. VILLIGER (1969), The crystal structure of synthetic zeolite L. Z. Krystallogr. 128, 352-370.
- L. BROUSSARD and D. P. SHOEMAKER (1960), The structure of synthetic molecular sieves. J. Amer. Chem. Soc. 82, 1041--1051.
- W. R. BUSING, K. O. MARTIN and H. A. LEVY (1959), ORFLS, a FORTRAN crystallographic least-squares program. Oak Ridge National Laboratory, Tennessee.
- W. R. BUSING, K. O. MARTIN and H. A. LEVY (1964), ORFFE, a FORTRAN crystallographic function and error program. Report No. TM-306, Oak Ridge National Laboratory, Tennessee.
- E. K. GORDON, S. SAMSON and W. B. KAMB (1966), Crystal structure of the zeolite paulingite. Science 154, 1004-1007.
- C. K. JOHNSON (1965), ORTEP: a FORTRAN thermal-ellipsoid plot program for crystal structure illustrations. Oak Ridge National Laboratory, Tennessee.
- G. T. KERR (1963), Zeolite ZK-5: A new molecular sieve. Science 140, 1412.
- G. T. KERR (1966), Chemistry of crystalline aluminosilicates. III. The synthesis and properties of zeolite ZK-5. Inorg. Chem. 5, 1539-1541.

- W. M. MEIER and G. T. KOKOTAILO (1965), The crystal structure of synthetic zeolite ZK-5. Z. Kristallogr. 121, 211-219.
- R. E. NEWNHAM and H. D. MEGAW (1960), The crystal structure of celsian (barium felspar). Acta Crystallogr. 13, 303-312.
- R. SADANAGA, F. MARUMO and Y. TAKEUCHI (1961), The crystal structure of harmotome, Ba₂Al₄Si₁₂O₃₂ · 12H₂O. Acta Crystallogr. 14, 1153-1163.
- H. D. SIMPSON and H. STEINFINK (1969), An x-ray diffraction study of the zeolite complex *m*-dichlorobenzene-nickel faujasite. J. Amer. Chem. Soc. 91, 6225-6232.
- J. V. SMITH and S. W. BAILEY (1963), Second review of Al-O and Si-O tetrahedral distances. Acta Crystallogr. 16, 801-811.
- R. C. SRIVASTAVA and E. C. LINGAFELTER (1966), The effect of absorption errors in a crystal structure refinement. Acta Crystallogr. 20, 918–919.