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Auszug

Ein allgemeines Verfahren zur Zerlegung der Vektorsidtze aus zentrosym-
metrischen Satzen von positiven und negativen Punkten wird beschrieben. Die
fiir einen Vektorsatz charakteristischen negativen Bilder kénnen mit Erfolg
zur Lokalisierung von Inversionsbildern benutzt werden. Mehrfache Losungen
von Vektorsitzen, die moglichen Typen multipler Bilder entsprechen, werden
diskutiert. Das Verfahren kann im allgemeinen zur Deutung partieller Patterson-
Funktionen von UUberstrukturen angewandt werden, wenn sie aus den Uber-
struktur-Interferenzen allein berechnet sind. Als Beispiel fiir die Anwendung
wird die Analyse der Strukturen von Serandit und Banalsit, die beide Quasi-
Perioden aufweisen, behandelt.

Abstract

A general procedure has been described of decomposing vector sets of
centrosymmetrical sets of positive and negative unit points. The negative
images which are characteristic of the vector sets can effectively be utilized
to locate inversion images. Multiple solutions of the vector sets due to possible
types of multiple images are discussed. The procedure can readily be exploited,
in general, for the straightforward interpretation of partial Patterson functions
of superstructures calculated from superstructure reflections alone.

Examples of applying this procedure have been shown to the structure
determinations of sérandite and banalsite, both having strong quasi-periodicities.

Introduction

The partial Patterson synthesis of a crystal based upon its super-
structure reflections alone gives the self-convolution of the function
d(z) = o(x) — <o (x)suncen, Wwhere p(x) is the electron density of the
crystal, and (g (z))>suncenr the average of ¢ (x) with respect to its subcells.
Noting that d(x) is a function having negative maxima as well as

* Dedicated to Professor M. J. Buerger on the occasion of his 70th birthday.
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positive, TaxEucHr (1972) has studied the basic geometrical features
characteristic of the partial Pattersons in terms of the vector set
given by a set of positive and negative unit points. The application
of this theory has been shown to the structure determination of
CuzAseSers which has a thirteenfold distortion structure based upon
sphalerite (TaAxkvcHr and Horrvcmi, 1972). The present paper
describes practical procedures of decomposing vector sets of this
specific kind in order to facilitate straightforward application of this
method to the solution of superstructures generally.

Since in the above mentioned paper by TaxZucur (1972), basic
image properties are discussed mainly for vector sets of non-centrosym-
metrical point sets, the present paper will deal with the problem for
those of centrosymmetrical point sets. However, the representation of
vector sets of centrosymmetrical point sets bears some complexity
compared to that of vector sets of non-centrosymmetrical point sets.
Therefore, a general representation of vector sets of centrosymmetrical
point sets is described first.

Representation of veetor sets of centrosymmetrieal sets of points

Consider a centrosymmetrical set of points consisting of 2n
positive points Py, Dy, Pss * * * Dps Pis Pe» Pa» * * * Pry and 211 negative
points Py, P, Ps, * * * Py Dy Das Pys * = * By Lt p; and i)l/c be the points
respectively related to p; and 5 by the center of symmetry in the set.
Then the vector-set array of this point set can conveniently be par-
titioned into four sub-arrays, and expressed by

qu Bm'
V= (1)
C, ’ D ’

»a e

The sub-arrays each of which consisting of 2n X 2n images represent
the arrays of images as follows:

Apg = P11 ;p2 -+ p1Pn P11 P2 * * * MPn
Pep1 PaPec -t P2Pn P2P1L P22t P2in
PuPL Pu2 " PuPn PnD1 PnDe " PnDn
pipL Pipz - Prpe PrP1 P1D2 c  P1Pa
Dapr Pape - PaPn PePr PPz P2Pn

PnP1 PuP2 - PuPn PuPr PuPe * * PnPn
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B, = pipy 1P pipy P1By PPyt P
Pzpi pzplz e pZTJ)/z 2N pzﬁé Tt 77215;

D, 9} 15127; ce ?31P;L v 13115; Tt 7517_’;’1
7_5279/1 ﬁzpfz T 752?7; Py ?3213; ce ?72?3;;
PuPi Pula " PuDy PuBy Pulz "+ Pull

Cpp = PPy PiD2 " P1Dy P1Dy P12 " PiD,
PPy PaDa """ PaDy P2Py oo " Pl

DuPi PpDs** Ppby Ppby

p;‘b]_)_.z *t PuPa
231271 ﬁipz T ﬁ;pn 13;1—’1 ’[5;132 T l_’iﬁn
./2232 te ﬁ;ﬁn

ﬁ;pl Dopy -+ ﬁ;pn 17;771 vz

—_ - 14

PuPs PnD2* " " Do BnPy PoPa " * P

D, = pip] Pips - PP, P1P, PPy DD

PPy PaDs " " Paby PaPy Paby -+ oDy

P Pns** PrDn Doy PyPar* Dyr
P10y Pive - Dypy PiPy PiPa- - P1D,

i 4 = =

Doy Doz Paby PoPy Pabs - ** Do

Puy Pus "+~ Buly BuPy Bubo " Pubn
The symbols 4,, B,,, Cy, and D, . shall be used to represent an
element in the respective sub-arrays A,, B, C, and D, . In the
above expression of the vector-set array (1), the elements in the main
diagonal naturally define the origin point, while those in the diagonals
of sub-arrays B, and C, are the images based upon centrosymmetri-
cal pairs of points. The diagonal images of B, and €, are therefore
positive and single points.

In the sub-arrays images other than the diagonal elements are
either positive or negative. Although they are single point in the above
expression of sub-arrays, there exists, for each non-diagonal image,
the other image which coincides to it. This is because in the fundamen-



316 Y. TaktucHi, Y. Kupon and N. Haca

g

O/U'D'

Fig. 1. Two centrosymmetrical pairs of points (left), showing the vector relating
the points p and ¢, and that relating ¢’ and p’ give, in vector space, a double
image (right)

tal set there are two pairs of points so arranged that the vector re-
lating the points of one pair in the same way as the vector relating
the points of the other (Fig.1). The two vectors coincide in vector
space, and the points at the ends of the vectors become in effect
double points. The images which coincide to each other are given
below:

qu - Dq’p’
Ay = Dy (2)
Am — Dq’p’
Aop - Dz»’q'
qu’ - qu’
qur == qu' (3)
Op’q - Oq’n
Cp'q — O’I'T" (4)

Since the vector-set array (1) is symmetrical about the main diagonal,
there are further relations as shown below.

Ay =—4dy, Dyy=—Dyy (5)
B'pp’ =—0Cpy, By =— O/l'p’ B, = — Op’q' (6)

These minus signs indicate inverse images, i.e. Ay, is inverse to Agp.
Image properties of the vector sets arisen from centrosymmetrical
sets of positive and negative points will be discussed in the following
by using the above representation of vector-set array.

Image properties

Consider, for simplicity, a centrosymmetrical set of eight points
a+b-+é-+d-+a b +¢& -+d,in which a’, b’, &, and d’ are the
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points respectively related, by inversion, to a, b, & and d. Then its
vector-set array is given by

V=aa ab aé ad aa’ ab’ a& ad’
ba bbb b bd  ba’ bbb bd’
éa ¢ ¢ éd . éa’ &b & éd

da db dé dd  da’ db’ d& dd’
aa a'b a’¢ a’'d  a'd b @' a'd’
b'a b'b b'¢ b b'a’ b'b b'¢ b'd’
¢'a &b & &d  &a’ &Y Y Ed
d'a d'b d'¢ d'd . d'o’ Y &'¢ d'd (7

The four parts divided by broken lines respectively correspond to
the sub-arrays in the vector-set array (1). Thus, for example, according
to the relations (2), ba = a’b’, or according to (4), &b = b’¢.

The feature characteristic of vector sets of sets of positive and
negative unit points is the presence of single positive images based
upon centrosymmetrical pairs of “negative” points, and that of nega-
tive double images. The study of the properties of these images is
therefore of essential importance in the decomposition of vector sets
under consideration.

Single positive images hased upon pairs of negative points

Consider first an ordinary single positive image based upon a pair
of positive points, say @ and o’. Let it be chosen as the starting image
and be connected to the origin. Then, as has been shown by BuErGER
(1959), we obtain in vector space a set of eight line images parallel
to the line image aa + aa’. This situation can be shown by connecting
corresponding parts of the first and fifth columns of (7) as follows:

(8)
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Let the line a -+ a’ be denoted by 4 at its centre. Then the collection
of the parallel line images (8) is expressed by

(@4+b+é-+d+a +b +¢&+d)4=PA, (9)

in which P represents the polygon as defined by the points in the
parentheses, and corresponds to the image polygon which is to be
solved.

Now, an image based upon a pair of negative points, say ¢ and ¢,
is chosen, and it is connected to the origin to form a line image é¢ + ¢é’,
we obtain, from the third and seventh columns of (7), the following
set of parallel line images:

d'(E + ). (10)

Since, for example, the negative line image a (¢ + ¢') is expressed by
a (¢ + ¢') (TarEucHI, 1972), (10) can be rewritten by

afc -+ ¢’
b(c+c)
c(c+¢')

d'(c + ¢). (11)
If the line ¢ + ¢’ is likewise represented by C, (11) is rewritten by
@+b4+c+d+a +b +c +d)0="r7C. (12)

Comparing (9) and (12), we notice that P’ = — 1 X P. The image
polygon P’ thus correponds to the negative polygon of P. Using the
notation given by TAKEUCHI (1972), this relation is expressed by
P’ = P. Consequently, if a vector set is solved based upon the image
arisen from a centrosymmetrical pair of negative points, the solution
results which is related to the true solution by anti-inversion opera-
tion. For the convenience of subsequent discussions, the positive
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single images based upon centrosymmetrical pairs of positive points
will be denoted by [ (pp), and those based upon centrosymmetrical
pairs of negative points by 7 (nn).

In the cases of superstructures which are produced by adding atoms
in basic structures, I(pp) and I{nn) have different weights. For
example, if a superstructure in this category has a multiplicity m,
the positive densities in its d(x) are weighted by (m — 1)/m, while
negative ones by 1/m. It follows that the image points I(pp) are
weighted by (m — 1)2/m?2, whereas I (nn} by 1/m?2. This difference will
in principle serve for distinguishing I (pp) from I (nn), except for the
case of m = 2. For this specific case of m = 2, both I (pp) and I (nn)
have in general the same weight. Since, however, for such a case of
superstructure, d(x) itself has an antitranslation, no practical difficulty
arises; irrespective of whether we choose I(pp) or I(nn) as starting
images to decompose vector sets. We shall come to diseuss this point
later (p. 327).

Negative images

In general cases in which fortuitous overlappings of images do not
occur, the negative images in the vector sets arisen from sets of
positive and negative points are always doubled. For centrosymmetri-
cal crystals, the centrosymmetrical pair of a pair of positive and
negative points forms in vector space a pair of linear sets of three
images, which have been called by Taxgvon1 (1972) linear quadrup-
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Fig.2. A pair of linear quadruple sets of images {P(=4s), Q (=1r's-+sr)

R (=rr}and (P, Q’, R’} (right) given by two centrosymmetrical pairs of points

in the left. Solid and open circles respectively represent positive and negative
points
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lets (Fig.2). An inversion image I (pp) occurs at one end of a linear
quadruplet, and I (nn) at the other end of the linear quadruplet; at
its centre, two negative images occur, giving a negative double image.
Therefore, by locating such a linear set of images, each having proper
weight, the location of I (pp) or I (nn) can readily be identified.

However, one should not choose negative images as the starting
images of vector-set decomposition. Should we use them, there arises
a difficulty as shown in the following. Suppose that a negative image
b¢ is connected to the origin to form the line b - b¢. Then, from
corresponding parts of the second and third columns of (7), a set of
eight line images parallel to b (b -+ ¢) results.

Since, according to the relation (2), ¢ = ¢'b’, the above procedure
inheritly yields the other set of line images parallel to b'(b’ + ¢&).
They are shown below:

a b+ é) a (b’ + &)
b(b -+ é) b -+ &)
e+ e +é)
d (b + &) d (b’ 4 &)
a'(b + &) a'(b’ + &)
b'(b + ¢ b+ ¢)
&' (b + ¢) — &+ &)
d’'(b + ¢é) d'(b’ 4 é". (13)

In the above sets of line images, the images which coincide are tied
together. It should be noted in (13) that each of these line images,
unlike those of (8) and (10), is defined by one positive point image at
one end of the line and one negative point image at the other end.
It follows that if an image-seeking function is applied based upon
a negative image like bé, superpositions of positive and negative
images occur in the procedure of forming this function, thus causing
a complexity in interpreting the result. In general, the superposition
of this sort never occur if we so far use positive images to form image-
seeking functions.

Multiple images

The penalty for choosing a multiple peak for forming a line to be
used as a first image is to incur a multiple solution (BUERGER, 1959).
Except unavoidable cases like terramycin hydrochloride (Takfuch:
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and BUERGER, 1960) whose Patterson does not have single images
based upon heavy atoms owing to their specific locations in the unit
cell, straightforward decomposition of a vector set indeed depends
on a successful choice of an initial image having single weight. Since
partial Pattersons are, like ordinary Pattersons, continuously varying
functions, peaks may be multiple owing to fortuitous chance of
coincidence of two or more peaks, or by symmetry operations. It is
thus desirable to look into the properties of multiple images charac-
teristic of partial Pattersons. In addition to the coincidences of images
of the same sign as in ordinary Pattersons, two types which are par-
ticular to partial Pattersons are the following:

1. Coincidence of the two different types of single images, I (pp)
and I (nn).

Suppose in the vector-set array (7), aa’ = é¢’. Then by connecting
this multiple image to the origin, we obtain the following set of sixteen
parallel line images.

~

ala+a’) — a(c+¢)
b(a+ a’) b(E+¢)
¢(a+a’) b—cé+¢)
d(a + a’) d (@ +¢é)
a' (e + a) a’'(¢ + &)
b'(a + a’) b€+ &)
&a +a) &+ &)
d'(a + a’) d'(e + &). (14)

The line images which coincide are tied together. Obviously from this,
two image polygons P4 and PC (= PC) are formed. Thus, we can
describe this situation as follows: when two types of single images
I(pp) and I (nn) coincide in a vector set, the result of decomposition of
the vector set based upon the multiple image is a multiple of positive
and negative solutions. An example of such a multiple solution is
illustrated in Fig.3 using a one-dimensional periodical array of circles.

2. Coincidence of positive and negative images.

Because of the reason given later, negative images have, except
for the purpose of locating initial images of single weight, less practical
importance in actual procedure of vector-set decomposition. The cases,

7. Kristallogr, Bd. 138, 1-6 21
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Fig. 3. An example of multiple solution based upon a multiple image composed
of a centrosymmetrical pair of positive points and that of negative points.
(1) A fundamental set of points, in which a’a = ¢’¢. This set represents the unit
of a linear periodic set of points. (ii) The vector set of the fundamental set (i).
The multiple images are indicated. (iit} The solution of the vector set (ii) based
upon. the multiple images a’a (= ¢’¢), showing resulting multiple image polygons.

Solid and open circles respectively indicate positive and negative points

however, which may be worth mentioning are those in which coinci-
dence of positive and negative peaks still gives a residual positive
peak. If such a multiple positive peak is erroneously chosen for forming
a line to be used as an initial image, superpositions of positive and
negative peaks occur in the process of forming image-seeking functions
based upon the line image. This is because, by forming the line image,
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a set of line images results which consists of line images like those of
(13) in addition to the line images like those of (8) or (10).

Since multiplicity of a peak can be judged by calibrating volumes
expected for single peaks, any confusion which may arise by choo-
sing the multiple peaks as initial images can be avoided.

Proeedure of decomposition

The partial Patterson of a superstructure is, as already mentioned,
the self-convolution of the difference electron density d(z), the differ-
ence between the real electron density of the superstructure and
the electron density corresponding to the structure averaged over all
its subcells. Since d(x) is a function having positive and negative
values, to solve a partial Patterson function for its d(x), we have to,
in principle, take account of negative values as well as positive.
In fact, in the difference electron density of a superstructure caused
by a simple ordering of different kinds of atoms, like Cu and Fe in
chalcopyrite CuFeS;, positive densities represent the positions of
atoms whose densities are higher than the average of the atoms
involved in the ordering process, and negative ones represent those
of atoms whose densities are smaller than the mean value. Therefore,
negative peaks in the partial Patterson of such a structure bears
a significant importance. However, as has been discussed by TAxEUcHI
{1972) elsewhere, in general cases of superstructures arisen by dis-
placement or addition of atoms in a basic structure, negative peaks
in 6 (x) do not necessarily represent the atomic positions corresponding
to complementary structure, the part of superstructure which is
responsible for giving superstructure reflections. Only positive part
of §(x) represents the real electron density corresponding to a com-
plementary structure. Thus in the practice of interpreting partial
Pattersons, in general, we may disregard negative peaks once single
positive peaks are found, as initial images, utilizing geometrical
relations among positive and negative peaks specific to a given
crystal symmetry (TAkEUcHI, 1972).

In general, the vector set formed by a set of n positive and »'
negative points has excess n’ (n’ — 1) positive images compared to
that arisen from a set of n positive points only. It follows that the
partial Patterson of a difference electron density & (x) which contains
n positive peaks has more fortuitous chance of overlapping of positive
peaks than the ordinary Patterson of a crystal having » atoms in the
unit cell. Consequently, if a pair of atoms d¢(xs) and ¢ (2s) in the

21%
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difference density é(x) of a centrosymmetrical crystal gives a peak
Py (xq — xp) in its partial Patterson, the following relation will hold

Py (g — xp) = 2 0p(xa) - Op(xp). (15)

The scale factor 2 in the above relation means that the atoms of the
pair are not related by the centre of symmetry. However, in partial
Pattersons there may also be a possibility that certain positive peaks
overlap with negative peaks. Should it occurs, the partial Patterson
peaks may not hold the relation (15), but may have smaller weight.
We should always bear this situation in mind.

The relation (15) is parallel with that between electron density and
ordinary Patterson function. Thus automatical search of image
locations in partial Pattersons will be most effectively performed by the
method of minimum functions. The general procedure of interpreting
partial Pattersons can now be summarized as follows: Prepare partial
Patterson maps containing negative contours, and find, in the maps
single positive images utilizing geometrical relations among positive
and negative peaks specific to a given crystal symmetry. Then apply
to the positive parts of the partial Pattersons the minimum-funection
method based upon the images. In this image-seeking procedure,
negative parts of the functions may be in general treated as parts
of the functions having zero value.

The real negative atoms

The partial Patterson method can readily be applied to the inter-
pretation of certain Pattersons based upon neutron-diffraction inten-
sities. For neutron diffraction, the nuclei of some of the atoms like
Mn, Ti and V have negative diffraction amplitudes. Therefore these
atoms can be regarded, for neutron diffraction, as “negative atoms”.
If a crystal contains negative atoms, the Fourier synthesis using
structure factors derived from the neutron-diffraction data of the
crystal yields negative peaks corresponding to the atoms. The negative
peaks in the Fourier map are by no means spurious but represent real
existing negative atoms. In that event the Patterson map of the crystal
gives negative peaks based upon pairs of negative and ordinary
atoms. To interprete such a Patterson, the negative peaks evidently
can not be neglected. The theory of vector sets of sets of positive and
negative unit points will naturally aid in locating positive single
images in the Patterson.
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Example

As examples of the decomposition of partial Patterson functions,
the direct determinations of the crystal structures of sérandite and
banalsite are described in the subsequent paragraphs.

Sérandite

This mineral is the manganese analogue of pectolite CasNaHSizOy,
and has a strong quasi-periodicity of b/2, suggesting a substructure
of this periodicity. The structure of sérandite hence bears a super-
structure relation to this substructure. As has been shown by BUERGER
(1956) and PrREwITT (1967) for pectolite, it is thought that the super-
structure of sérandite also would have been arisen mainly by adding
silicate chains, which have the periodicity of b, to arrays of octahedra
formed by oxygen atoms about cations which have the quasi-periodi-
city of b/2. This moderately complex scheme of superstructure is
suited for testing the general procedure of decomposing partial
Pattersons.

The specimens of sérandite we used were from Tanohata mine,
Japan, and kindly furnished by Prof. T. WaTtaxas%. Electron micro-
probe analyses yielded the chemical composition

(Mns,7Cag.3) Nag ¢HaSig,001s -

The triclinic unit cell has dimensions: a == 7.683(1) A, b = 6.889(1) A,
¢ = 6.747(1) A, & = 90.53(5)°, B = 94.12(2)°, y = 102.75(2)°, and
contains one formula unit. The space group P1.

The intensities of 2043 reflections in total were measured with
MoK « radiation on a four-circle automatic diffractometer. Although
the reflections with £ = 2» + 1 which correspond to the superstructure
reflections are mostly very weak, 822 reflections out of possible 1027
superstructure reflections with sin < 0.5 were measured with counts
significantly above background level. The partial Patterson P:(u)
was then computed based upon these superstructure reflections alone.

In order to interprete this partial Patterson function, a search
was first made of locating linear quadruplets of peaks, each of which
is, as stated earlier, composed of two positive single peaks and one
negative double peak between them. The multiplicity of peaks was
predicted by calibrating peaks in comparison with the origin peak
of the ordinary Patterson function of sérandite. Since the multiplicity
of this superstructure is two, the jth atomzin the difference function
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d(x) is in general weighted by Z;/2. Therefore, a single peak in the
partial. Patterson should be weighted by Zj/4. It is to be noted,
however, that such an estimation of peak weights is valid only for
peaks arisen by the atoms which have been added to the basic structure
and responsible for the superstructure reflections. If, in general,
slight displacements of atoms in the basic structure of a superstructure
occur with respect to the corresponding locations in subcells, the
weights of partial-Patterson peaks based upon these atoms are,
related to the magnitude of the atomic displacements, atomic number
and multiplicity.

a

Fig.4. The partial-Patterson section of the level z = 0.32. A linear quadruplet
consisting of three peaks P, @, and I is indicated. The positive peak I’ was
used to form 0 Ma(xyz)

For the case of sérandite, the complimentary part of the structure,
which is responsible for superstructure reflections, consists of 8i, O,
and Na atoms. A single peak in the partial Patterson is therefore
expected to have the weight kZ3/4, kZ3/4 or kZ%,/4, where k is the
calibration factor that places the peak heights upon an absolute basis;
all of these are of similar value. Bearing this situation in mind, we
immediately found several linear quadruplets in the partial Patterson
of sérandite. Of these, one of the well defined ones was chosen (Fig.4),
and a minimum function 0 Ma(xyz) was formed based upon one of
the positive peaks of the linear quadruplet. Since there were, in this
minimum function, still too many peaks, another minimum function
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0 My (xyz) was formed based upon a positive peak of another linear
quadruplet. The both minimum functions thus formed have, if
origins are properly chosen, similar characteristic features in the
arrangements of peaks in the unit cells. They were then combined to
form a minimum function of higher rank o M(xzyz). As shown in
Fig.5, 0 My(xyz) was readily interpreted, and the approximate loca-
tions of silicon, sodium and oxygen atoms which belong to the com-
plimentary structure were unambiguously determined.

In connection with the procedure given above, a mention should
be made of the alternate solutions (Taxfivcur, 1972) based upon

0 bsinx

o 5);\} “ﬁU 0(6)s
' 4 064) C(\
A

asinf

Fig.5. A composite map of 0 Ms(xyz). Final locations of Na, Si, O(3), O(4).

O(7), O(8), and O(9) that form the complimentary structure are indicated,

Those for O(1), 0(2), O(5), and O(6), which are the substructure atoms (their
peaks are hence missing in this map), are also given

a linear quadruplet. One of the positive peaks in a linear quadruplet
is, as argued, given by a pair of negative atoms. If a minimum function
is formed based upon such a positive peak, the result is the anti-
centrosymmetrical image of the minimum function formed by the
other positive image of the same linear quadruplet. However, for
such a superstructure like sérandite that arises from a basic structure
by doubling one of its axes, say b, the difference function 8 (x) itself
has an anti-translation of b’/2. It follows that the two alternate
solutions, for this case, are related to each other simply by a transla-
tion of b/2. This situation is illustrated in Fig. 6. Therefore, in general,
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Fig. 6. A linear centrosymmetrical periodic set .S of positive and negative points,

and its negative set S, showing that they are related to each other by an anti-

translation t’ (¢’ = 7T'/2). Positive and negative points are respectively expressed
by solid and open circles

0 bsine

asinf

Fig.7. Ma(xyz) formed from the ordinary Patterson function of sérandite;
only the peaks of atoms which are in the substructure are given

for this sort of superstructures, there is no practical difficulty due
to the alternate solutions.

The locations of atoms in the subcells of sérandite were readily
obtained from the ordinary Patterson (Fig.7). From this result com-
bined with that of 8 M(xyz), we have now found the whole structure
of sérandite (Fig.8). The coordinates of atoms thus derived gave an
R = 0.35. The structure has been refined to an R = 0.034 for 1766
observed reflections. The difference function 9 (x) computed from Akl
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reflections with £ = 2n + 1 only is shown in Fig.9, which is to be
compared with 9. M(xyz) as given in Fig. 5. Full details of the crystal
structure of sérandite will be given elsewhere. A brief account on the

b since

o

asinf

Fig. 8. The crystal structure of sérandite projected along the ¢ axis

Fig. 9. Difference function & (x) of sérandite. Note that smaller peaks correspond-
ing to substructure atoms Mn(1), Mn(2), O(1) and O(2) occur in this map. This
is because the distance between Mn(1) and Mn(2), and that between O(1) and
0(2)” are respectively slightly deviated from the substructure periodicity of b/2
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Table 1. Atomic parameters of sérandite
Anisotropic temperature coefficients have been multiplied by 103; errors in the
coefficients not indicated

T B3 i iz | i3 l 23

Mn(l); 0.8527(1) | 0.5943(1) | 0.1363(1) | 2.8 ‘;o; 2.6 0.6’ 05| 03

Mn(2) | 0.8496(1) | 0.0840(1) | 0.1332(1) | 2.2| 2.9 | 2.1 0.9/ 03 0.1

Atom x y z B | Bea

Na 0.5573(2) | 0.2547(2) | 0.3518(2) | 3.8| 8.6 6.3 1.0% 1.0 |—0.2

Si(1) 0.2166(1)5 0.4025(1)’ 0.3414(1) | 1.9 | 1.5 1.9 | 0.6 | —0.3 | —0.2

Si(2) | 0.2071(1) | 0.9526(1) | 0.3506(1) | 1.9 | 1.8 | 1.5 0.7’ 0.1 [—0.2
|

)
Si(3) | 0.4545(1) | 0.7388(1) | 0.1430(1) | 1.3 { 2.4 1.5/ 0.3 0.2] 0.2
O(1) | 0.6641(3) | 0.7953(4) | 0.1147(4) | 2.2 | 4.2 45| 07| 1.4 05
0(2) | 0.3236(3) | 0.7097(4) | —0.0569(4) | 2.7 | 4.3 | 3.0 | 0.5 [—0.2 |—0.3
)
)

)

)
0O(3) 0.1809(4) | 0.4954(4) 0.5533(4) | 5.7 1{3.7}3.4] 29 0.9 1—-0.2
O(4) 0.1599(4) | 0.8457(4) 0.5567(4) | 5.5 | 3.2 | 3.3 | 1.2 1.4 0
)
)
)
)

O(5) | 0.0609(3) ][ 0.3905(4) | 0.1684(4) | 2.5 | 4.8 | 2.1 0.6 |—0.2 | 0.3
O(6) | 0.0530(3) | 0.8932(4) | 0.1727(4

0O(7) | 0.4077(3) J 0.5332(4) | 0.2738(4
0(8) } 0.3973(3) | 0.9052(4) | 0.2879(4) | 2.4
0(9) | 0.2613(3 [ 0.1900(3) | 0.3928(4) | 3.8 |

271462913 |—0.6 |—0.7
2.7‘3.8 3.710.8 0 1.8

35|48 /1.3 —0.1 |18
264108 01 02

hydrogen bonding in this structure has appeared (TagEucHI and
Kvupon, 1972). The final atomic coordinates are listed in Table 1.

Banalsite

Banalsite is an orthorhombic mineral which was described by
SmiTH, BaxwisTer and Hey (1944) as a new barium-felspar. The
intensities of x-ray diffractions of this mineral are, if [ = 2n - 1,
very weak, suggesting a substructure having the periodicity of e/2.
The structure of banalsite thus bears a superstructure relation to
this substructure. The partial-Patterson method was tested to the
structure determination of banalsite in order to see the power of this
method especially when it is applied to this sort of superstructures
having higher symmefry.

The lattice constants determined by the use of a four-circle
automatic diffractometer are: a = 8.496(2) A, b = 9.983(2) A,
¢ = 16.755(3) A. The unit cell contains four formula units of
BaNagAlySisO16. The space group is Ibam, the centrosymmetric
structure being confirmed by the N (z) test. A total of 1074 inde-
pendent reflections were measured up to sin@ = 0.50. A calculation
shows that the average of the normalized structure factors |E| for
the superstructure reflections is 0.36, while that for the reflections
with [ = 2n is 1.06. Because of such a big difference in intensities
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between odd-order and even-order reflections in ! neither the ordinary
Patterson method nor statistical methods are of advantage to straight-
forward determination of the crystal structure of banalsite.

Determination of the average structure

The structure analysis was initiated by determining the average
structure, or substructure, having the periodicity of ¢/2. To deal with
average structures having higher symmetry like the present case,
it is desirable to derive their symmetries first. This can be done by
the use of the theory of derivative crystal structures given by BUERGER
(1947), who showed the way to derive the symmetry of a derivative
structure, or superstructure, from that of the basic structure from
which the superstructure was derived. Since the symmetry relation
between a superstructure and its basic structure is parallel to that of
the superstructure and the structure averaged over all its subcells,
we can derive, by following, in the reverse way, the result given by
the BUBRGER’s theory, the symmetry of the average structure from
that of a given superstructure. Thus we found the space group of
the average structure of banalsite to be Cbam whose standard notation
is Ommm.

Since the true unit cell contains only four barium atoms, they
should be distributed over the set of special positions (000, 005, 111,
110) or (004, 002, 114, 311). These sets of special positions respectively
correspond to those of the special positions (000, 110) and (00}, 111)
in the subcell. This situation immediately yields the probable sign
of Fyxr in terms of the contributions of barium atoms, where L repre-
sents even number of /. Thus, by assigning a weight to each Fpgy,
according to the probability (Sim, 1961) that the sign of Fpgy is the
same as the sign of the contributions of barium atoms, a Fourier
synthesis was evaluated to obtain the atomic locations in the sub-
structure. As shown in Fig.10, which shows the resulting Fourier
map, all atoms are clearly resolved. The atomic locations thus obtained
are in actual case composed of the set of true atomic locations and
its mirror images due to the sets of mirrors parallel to (100) and (010),
which are both missing in the true structure.

Partial-Patterson map

In order to select, from the above result, the true set of atomic
locations, the partial Patterson was then calculated using the super-
structure reflections only. Since only odd-order terms in / are used
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OO ©—©
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Fig.10. Composite diagram of three-dimensional Fourier synthesis, showing
the average structure of banalsite. Contours at equal intervals on an arbitrary
scale. Peaks in the sections from x = 0 to ¥ = } are given

cf2
E(2x,8) S(.16)
Op—r—
F(016) | T(5-2x,8)
I (25,4) L 5 M)
L(Q8) I N(3-2x,8)
:{:Z’ 27
2z ;
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- )
® QN,
OH(Zx,IS) ;
2y —| o2y —
0 b/2

Fig.11. Geometrical relationship between an inversion image I at 2z, 2y, 2z,
and its satellites characteristic of the vector set of a point set having the Shub-
nikov symmetry I.bam. The vector set itself has the Shubnikov symmetry
I, mmm. The images indicated by letters with primes or double primes are respec-
tively related, by the symmetry, to those indicated by corresponding letters.
For each image, the height and multiplicity are indicated in this order in
parentheses. Solid and open circles are respectively positive and negative images
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cl?

0 x=07157 b2
Fig.12. Partial-Patterson sections, * = 0 and a = 0.157, of banalsite; an

inversion image I, and some of its satellites are indicated. Broken contours
indicate negative peaks

for this computation, the map displays an antisymmetry corresponding
to the Shubnikov group /3% —1I,mmm (Koprsik, 1966). The inter-
pretation of this partial Patterson should be made, in the first place,
with due regard to the symmetry of the difference function d(x) of
banalsite. This function also has an antitranslation having the mag-
nitude of ¢/2. Therefore, by multiplying this antitranslation to the
space group fbam of banalsite, we can obtain the space group for é(z).
This procedure may be shown by

{Ibam} - {€'/2} — {I.bam}.

The resulting group of antisymmetry corresponds to the Shubnikov
group II53° (KopTsik, 1966).

The distribution of positive and negative points in this space
group defines, in vector space, a specific geometrical relation in the
locations between inversion images and their satellites. Some repre-
sentative satellites of an inversion image are graphically shown in
Fig.11. As will be observed in Fig. 11, the presence of negative satel-
lites in addition to positive highly secures the correct choice of inver-
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Fig.13. 0 M(xyz) based upon the image I as shown in Fig.12; peaks in the

sections from x = 0 tox = } are given. Final atomic locations are indicated by

dots. Numbers give in decimal fractions of the a length the hight of peaks;
those in parentheses the hight of final atomic locations
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Fig. 14. The a-axis projection of the crystal structure of banalsite
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Table 2. dtomic parameters of banalsite
Anisotropic temperature coefficients have been multiplied by 103

Atom x Y ‘ z b1 ﬂzzT 33 Pz pa Bes
Ba 0.0000 0.0000 0.2500 3.4511.670.69 0 0 0
Na 0.0422(4)| 0.1745(4)| 0.5000 4.75(2.67|1.41 0.57 0 0

T(1) |0.2283(2) 0.4429(2) 0.4067(1)|2.10/1.01 [0.29| —0.38 | 0.07 | —0.05
T(2) |0.0754(2)] 0.3095(2)! 0.1586(1)|2.54{2.06|0.62| —0.21 | 0.13 | —0.03
0O(1) |0.2143(7) 0.0153(6)| 0.0000 |2.6514.18{0.56] 0.20 | 0 0

0(2) |0.0000 |0.2928(6) 0.2500 |5.42(2.62/0.89| o0 —0.32] 0

0(3) |0.1255(5)| 0.1532(4)| 0.1287(3)/2.55/1.29[1.39| 1.16 | 0.37 | —0.06
O(4) |0.0618(6)| 0.3534(4)| 0.4082(3)|5.46 (1.630.81| —0.54 | 0.31 | —0.32
0(5) |0.2238(5)| 0.4213(4), 0.1535(3)/2.14{2.93/1.07| —1.25 | 0.29 | 0.20

sion images. For this specific set of symmetries under consideration
the linear quadruplet based upon a centrosymmetrical pair of positive
points and that of negative points necessarily occurs parallel to the
@ axis.

Using the above geometrical relation between inversion images
and their satellites, an inversion image was in fact readily identified
in the partial-Patterson map of banalsite. Then, based upon it,
a minimum function @ Ms(xyz) was formed. The partial-Patterson
sections which contain the inversion image and some of its satellites
are shown in Fig. 12, and d Ma(xyz) in Fig.13. A comparison between
0 Ms(xyz) and the average structure as shown in Fig.10 has now
revealed that Na, T(1), and T(2) are the true atoms of the banalsite
structure. The true locations for some of the oxygen atoms are also
found in @ Ma(xyz), but some are missing. Nevertheless, by taking
account of bond lengths, the locations of T(1) and T(2) thus found
immediately permit us to construct, in the average structure, the
true framework of the banalsite structure. In 0 Ma(zyz), we notice
that the peak for T(1) is smaller than that for T(2). A study of the
partial-Patterson map showed that this was caused by coincidence
of positive and negative peaks due to interatomic vectors in which
the T(1) atom is involved. The missing oxygen atoms in ¢ Ma(xyz)
are in the similar situation.

The structure thus derived has been refined to an B = 0.038.
The a-axis projection of the structure is illustrated in Fig.14. To aid
in constructing a three-dimensional view from this projection, the
atomic coordinates are given in Table 2. Full details of the structure
will be reported at a later date.
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