Verfeinerung der Kristallstruktur von Samsonit, (SbS₃)₂Ag^{III}Ag^{IV}Mn^{VI} *

Von A. EDENHARTER und W. NOWACKI

Abteilung für Kristallographie und Strukturlehre, Universität Bern

(Eingegangen am 4. Juli 1973)

Abstract

The crystal structure of samsonite has been refined by three-dimensional counter data. Two chemical units of MnAg₄Sb₂S₆ are in the unit cell of the symmetry $C_{2h}^5 - P 2_1/n$. The lattice constants are $a = 10.362 \pm 0.004$ Å, $b = 8.101 \pm 0.003$ Å, $c = 6.647 \pm 0.003$ Å, $\beta = 92^{\circ}38' \pm 4'$. The refinement of the structure was performed by least-squares method. With anisotropic temperature factors and anomalous dispersion the *R* factor has been reduced to 7.3%.

The Mn atoms are surrounded by six S atoms as a slightly-deformed octahedron. The Sb atoms have a trigonal pyramidal coordination by the S atoms. The SbS₃ pyramids are isolated. Samsonite contains two varieties of Ag atoms. A first type is deformed tetrahedrally coordinated by four S atoms. A second type is triangularly coordinated by three S atoms at 2.394 Å, 2.481 Å and 2.862 Å.

Auszug

Die Kristallstruktur von Samsonit wurde mit dreidimensionalen Zählrohrdaten verfeinert. Zwei Formeleinheiten MnAg₄Sb₂S₆ befinden sich in der Elementarzelle der Symmetrie $C_{2h}^5 - P 2_1/n$. Die Gitterkonstanten betragen $a = 10,362 \pm 0,004$ Å, $b = 8,101 \pm 0,003$ Å, $c = 6,647 \pm 0,003$ Å, $\beta = 92^{\circ}38' \pm 4'$. Die Struktur wurde mit der Methode der kleinsten Quadrate verfeinert. Unter Berücksichtigung von anisotropen Temperaturfaktoren und anomaler Streuung erhielten wir $R = 7,3^{\circ}/_{0}$.

Die Mn-Atome sind von seehs S-Atomen leicht deformiert oktaedrisch umgeben. Die Sb-Atome weisen trigonal-pyramidale Koordination durch die S-Atome auf. Die Sb-Pyramiden sind isoliert. Samsonit enthält zwei Arten von Ag-Atomen. Die erstere ist deformiert-tetraedrisch von vier S-Atomen umgeben; die zweite planar-dreieckig von drei S-Atomen in den Abständen von 2,394 Å, 2,481 Å und 2,862 Å.

^{*} Mitteilung Nr. 219. - Teil 62 über Sulfide und Sulfosalze.

Einleitung

Samsonit wurde erstmals von WERNER und FRAATZ (1910) beschrieben. Eine weitere Arbeit über dieses Mineral stammt von PALACHE (1934). Die ersten Einkristalluntersuchungen wurden von FRONDEL (1941) durchgeführt; er bestimmte mit Hilfe von Weissenbergaufnahmen die Gitterkonstanten und die Raumgruppe. Die Struktur fanden HRUŠKOVÁ und SYNEČEK (1969). Da Samsonit das einzige bis jetzt bekannte Sulfosalz ist, das Mangan enthält, und HRUŠKOVÁ und SYNEČEK in ihrer Arbeit nur angenäherte Atomlagen angeben, haben wir die Struktur mit eigenen dreidimensionalen Zählrohrdaten verfeinert.

Experimentelles

Als Untersuchungsmaterial standen uns Samsonitkristalle von Andreasberg im Harz zur Verfügung. Aus verschiedenen Bruchstücken wurden Kugeln hergestellt und röntgenographisch untersucht. Für die weiteren Arbeiten wurde schließlich eine Kugel mit r = 0.0775 mm ausgewählt. Aus Rückstrahlaufnahmen mit einer Supper-back-reflection-Kamera (Durchmesser 114,6 mm) wurden die in Tab. 1 zusammengestellten Gitterkonstanten erhalten. Die Filme wurden mit Linien einer Pulveraufnahme von $99,9^{0}/_{0}$ reinem Si geeicht. Aus der Dichte $d = 5,51 \text{ g} \cdot \text{cm}^{-3}$ ergeben sich zwei Formeleinheiten (Z = 2) Ag₄MnSb₂S₆ in der Elementarzelle der Symmetrie C_{2h}^5 -- $P2_1/n$. Die röntgenographische Dichte berechnet sich zu $d_x = 5,50 \text{ g} \cdot \text{cm}^{-3}$. Die chemische Zusammensetzung wurde in unserem Laboratorium mit der Elektronenmikrosonde Typ Cameca von H. RUDOLF bestimmt und ergab folgende Werte: Ag 45,0% (46,79), Mn 6,3% (5,96), Sb 26,6% (26,40), S 21,8%/ $_0$ (20,85), Σ 99,7%/ $_0$ (100,00). (Die theoretische Zusammensetzung ist in Klammern angegeben.) Mit einem Supper-Pace-Autodiffraktometer wurden //c 2183 äquivalente (0.-7. Schichtlinie) und //b 1086 äquivalente Reflexe (0.-3. Schichtlinie) mit CuKa-

Tabelle 1. G	itterkonstanten	und	Raumgruppe	von	Samson it
--------------	-----------------	-----	------------	-----	-----------

Eigene Werte	Hrušková und Syneček	FRONDEL
$a = 10,362 \pm 0,004$ Å	10,31 Å	$10,29 \pm 0,05$ Å
$b = 8,101 \pm 0,003$ $c = 6,647 \pm 0,003$	8,07 6,62	$8,05 \pm 0,05$ $6,61 \pm 0,05$
$eta=92^\circ 38'\pm 4'$		$92^{\circ}41'$

Raumgruppe: $C_{2h}^5 - P 2_1/n$; Z = 2; $d_x = 5.50 \text{ g} \cdot \text{cm}^{-3}$

Strahlung gemessen. Die Intensitäten wurden für Absorption und die Lorentz- und Polarisations-Effekte entsprechend einer Kugel mit $\mu \cdot r = 8,86$ korrigiert. Jedem Reflex wurde ein Gewicht $w = \frac{1}{\sigma^2(F_0)}$ zugeordnet. Reflexe mit $I < 2,33 \cdot \sigma(I)$ wurden als nicht beobachtet kodifiziert. Anschließend wurden die 3269 äquivalenten Reflexe gemittelt und es verblieben 1156 unabhängige Reflexe.

Verfeinerung

Eine erste Strukturfaktorrechnung mit den von HRUŠKOVÁ und SYNEČEK publizierten Koordinaten ergab ein $R = 40,6^{\circ}/_{0}$. Da sich das Modell mit weiteren Kleinste-Quadrate-Zyklen nicht verfeinern ließ, wurden eine Differenz-Fouriersynthese und Abstände berechnet. Daraus war sofort ersichtlich, daß die Koordinaten von Ag(2) nicht genau genug bestimmt worden waren. Ein [Ag(2)—S]-Abstand war mit 2,08 Å zu kurz. Nach dieser Korrektur konnte das Modell mit isotropen Temperaturfaktoren auf $R = 11,5^{\circ}/_{0}$ verfeinert werden. Nun wurden anisotrope Temperaturfaktoren eingeführt und der R-Wert sank

Tabelle 2. Koordinaten und Temperaturfaktoren für die Gleichung $T = \exp - (h^2 B_{11} + k^2 B_{22} + l^2 B_{33} + 2hk B_{12} + 2k l B_{23} + 2lh B_{13})$ mit den Standardabweichungen der Atome von Samsonit

			Ko	ordinaten				
	<u>x</u>			y		z		
Mn)	0		0.5	0.5		
Sb		0.18420(8)	0.1	6426(11)	0.038	353(13)		
Ag(1	(1) 30762(14)		2	2455(3)	572	24(2)		
Ag(2	Ag(2) 4966(3)		(9691(2)	760	06(3)		
S(1)	S(1) 0919(3)		2	2689(4)	343	32(5)		
S(2)	S(2) 9823(3)		t)	737(5)	8311(5)			
S(3)	S(3) 7643(3)		(0793(5)	388	82(6)		
	Temperaturfaktoren					· · · · · ·		
	B ₁₁	$2B_{12}$	$2B_{13}$	B_{22}	$2B_{23}$	B ₃₃		
Mn	0,0034(3)	0,0006(6)	0,0019(7)	0,0054(6)	0,0009(9)	0,0122(8)		
\mathbf{Sb}	25(2)	12(1)	10(2)	36(4)	4(2)	105(6)		
Ag(1)	52(3)	- 89(3)	46(3)	191(5)	-41(5)	170(6)		
Ag(2)	196(4)	166(5)	40(6)	87(4)	-77(5)	229(7)		
S(1)	35(4)	2(6)	12(7)	39(6)	10(9)	110(8)		
S(2)	27(3)	2(6)	6(7)	51(6)	-11(9)	100(8)		
S(3)	23(3)	14(6)	6(7)	45(6)	- 24(10)	153(9)		

A. EDENHARTER und W. NOWACKI

Tabelle 3. Beobachtete und berechnete Strukturamplituden von Samsonit

b k 1 F. F.	hkl F_ F_	hkl F_ F_	hkl F_ F_	h k 1 F. F.
0 0 2 99.9 96.9	-111 31.7 5.1	-7 1 2 52 1 56 9	-227 36.6 43.9	-9.2 & 6.0* 4.5
4 96.3 91.9	1 1 2 105.6 107.2	7 1 3 9.2* 2.5	3 2 0 18.2 19.8	9 2 5 7.3 2.4
8 21.8 17.5	1 1 3 159.4 174.1	7 1 4 35.0 34.4	3 2 1 163.7 173.7	10 2 0 78.2 74.9
1 0 1 115,2 106.8	-1 1 3 33.4 29.1	-7 1 4 21.0 20.0	-321 62.6 59.3	-10 2 0 81,2 74.9
1 0 3 89.5 86.2	-1 1 4 9.1* 5.1	-7 1 5 78.9 76.4	-3 2 2 52.8 47.0	-10 2 1 63.3 65.5
-103 18.1 15.4 105 54.8 53.2	1 1 5 95.9 92.7 -1 1 5 20.1 19.6	716 6.5 5.8	3 2 3 78.7 78.8 -3 2 3 55.3 52.9	10 2 2 19.3 21.5
-105 15.4 13.6	1 1 6 45 1 43 5	8 1 0 5.6* 5.8	3 2 4 63.2 58.4	10 2 3 18.6 20.1
-107 67.7 58.7	1 1 7 36.8 41.4	8 1 1 103.6 107.3	3 2 5 72.2 69.6	10 2 4 8.5* 10.3
200 46.8 26.4 -200 47.6 26.4	-117 6.9 7.2 118 32.2 29.7	-8 1 1 43.3 46.0 8 1 2 57.6 62.4	-325 65.4 62.2 326 87.3 90.3	-10 2 4 54.6 55.6 -10 2 5 70.1 68.0
2 0 2 214.6 246.7	-118 4.8 3.2	-8 1 2 143,5 164.4	-3 2 6 57.9 53.6	11 2 0 4,1* 1.3
2 0 4 52.2 50.8	-2 1 0 47.5 37.6	-8 1 3 39.2 40.7	-3 2 7 44.0 50.4	11 2 1 59.9 63.0
-204 104.3 106.1 206 5.2 4.9	2 1 1 63.2 61.5	8 1 4 76.8 74.6 -8 1 4 123.6 125.9	4 2 0 147.5 141.2 -4 2 0 153.6 141.2	-11 2 1 59.6 62.1 11 2 2 46.1 46.6
-2 0 6 104.2 92.6	2 1 2 113.7 120.2	8 1 5 10.9 8.3	4 2 1 103.2 102.9	-11 2 2 23.0 22.5
-2 0 8 85.7 75.1	2 1 3 133.6 143.5	8 1 6 87.4 79.0	4 2 2 16.7 8.3	-11 2 3 26.3 24.6
3 0 1 298.7 368.1 -3 0 1 170.9 190.5	-2 1 3 96.0 93.0 2 1 4 53.7 49.1	-8 1 6 31.3 28.2 9 1 0 10.6* 3.2	-4 2 2 100.5 99.7 4 2 3 66.8 68.9	-11 2 4 37.5 38.1 12 2 0 13.2 15.8
3 0 3 203.8 222.1	-2 1 4 134.1 135.8	-9 1 0 9.1 3.2	-4 2 3 62.8 59.9	-12 2 0 13.7 15.8
3 0 5 25.0 25.6	-2 1 5 13.8 14.2	-9 1 1 19.2 18.9	-4 2 4 12.8 14.3	-12 2 1 39.2 41.2
-305 65.0 61.2 307 46.1 62.4	2 1 6 12.9 9.5	9 1 2 13.2 13.5 -9 1 2 18.7 18.3	4 2 5 7.6* 6.3 -4 2 5 42.6 39.1	-12 2 2 27.2 25.4 0 3 1 160.5 203.9
-307 33.9 37.8	2 1 7 32.9 37.6	9 1 3 49.8 55.0	4 2 6 21.7 23.6	2 65.5 70.5
-4 0 0 192.2 202.1	-2 1 8 53.1 42.5	914 6.0 4.1	4 2 7 19.3 20.8	4 111.7 117.4
402 66.8 64.8	3 1 0 154.3 156.1 -3 1 0 156.4 156.3	-914 53.6 54.3 915 75.6 74.2	-4 2 7 32.6 38.8 5 2 0 109.4 104.5	5 56,1 56,0 6 8,1 6,6
404 62.7 58.6	3 1 1 161.8 187.3	-9 1 5 18.1 17.7 10 1 0 25 b 73 9	-5 2 0 112.9 104.5	7 23.3 25.6
4 0 6 19.2 20.6	3 1 2 95.8 99.5	-10 1 0 76.4 73.2	-5 2 1 234.6 260.3	-1 3 0 161.7 166.2
-4 0 6 70.6 65.5 5 0 1 213.0 216.0	-3 1 2 37.3 34.4 3 1 3 104.9 112.2	-10 1 1 27.2 29.7	5 2 2 52.8 55.9 -5 2 2 56.6 54.7	1 3 1 42,1 42,1 -1 3 1 218,1* 265,2
-5 0 1 169.7 204.6 5 0 3 68.3 64.1	-3 1 3 174.2 188.6	10 1 2 10.6 12.1	5 2 3 21.7 16.1	1 3 2 148.9 170.7
-503 13.9 9.2	-3 1 4 104.4 106.2	10 1 3 27.6 26.9	5 2 4 88.8 87.1	133 9.4* 6.6
-505 28.5 20.0 -505 63.6 62.7	-3 1 5 128.2 124.1	-10 1 3 50.7 54.1 10 1 4 59.9 56.2	-5 2 4 83.0 78.3 5 2 5 29.1 25.8	-1 3 3 27.3 28.6 1 3 4 18.4 17.2
507 15.0 16.9 -507 34.6 36.4	3 1 6 51.6 49.9 -3 1 6 59.6 55.1	-10 1 4 101.1 102.6	-525 10.0* 7.1 526 48.8 450	
6 0 0 207.7 222.5	3 1 7 78.5 83.5	11 1 0 32.1 26.3	+5 2 6 65.2 59.5	-1 3 5 27.8 23.3
-6 0 0 216.0 222.5 6 0 2 66.2 63.5	4 1 0 19.3 18.1	-11 1 0 32.3 26.3	5 2 7 3.9 1.5 -5 2 7 31.9 35.7	-1 3 6 89.4 88.9 -1 3 6 42.2 38.4
-6 0 2 87.3 93.1 6 0 4 133.7 125.3	-4 1 0 26.2 18.1 4 1 1 55.6 51.0	-11 1 1 64.4 67.0	6 2 0 22.2 19.1 -6 2 0 17.7 19.1	1 3 7 14.0 14.2
-6 0 4 92.6 87.9	-4 1 1 46.1 48.3	-11 1 2 44.1 47.8	6 2 1 75.8 73.5	2 3 0 41.3 35.3
-6 0 6 10.5 5.7	-4 1 2 24.1 22.3	-11 1 3 51.6 52.2	-6 2 1 46,2 51.2 6 2 2 118.5 121.9	-2 3 0 38.7 35.3 2 3 1 64.5 65.8
701 70.9 69.2 -701 65.4 68.6	413 9.4* 2.9 -413 86.8 89.8	-11 1 4 28.9 29.0 12 1 0 20.3 20.2	-6 2 2 65.4 65.8 6 2 3 56.3 56.7	-2 3 1 34.4 29.6 2 3 2 157.5 186.2
7 0 3 108.4 103.3	4 1 4 77.6 80.6	-12 1 0 20.2 20.2	-6 2 3 45.0 45.2	-2 3 2 56.3 61.0
7 0 5 39.7* 41.1	4 1 5 59.0 55.5	-12 1 1 13.8 16.0	-6 2 4 92.4 91.2	-2 3 3 12.8 14.9
-705 21.2 19.7 -707 87.4 78.4	-4 1 5 28.9 28.7 4 1 6 43.0 39.3	12 1 2 10.3 12.6 -12 1 2 52.2 54.8	6 2 5 69.6 63.2 -6 2 5 75.1 71.1	2 3 4 42.7 39.5 -2 3 4 30.1 28.9
800 95.3 94.4 	-4 1 6 57.4 53.3 4 1 7 8 5 11.0	0 2 0 115.3 102.6	6 2 6 28.6 27.6	2 3 5 64.2 62.7
8 0 2 171.2 178.8	-4 1 7 47.9 55.8	2 167.6 197.3	-6 2 7 44.3 39.9	2 3 6 31.8 28.4
804 13.4 7.8	-510 45.9 44.2	3 38.6 56.7 4 98.1 103.7	-7 2 0 123.2 122.4	-236 51.8 47.6 237 8.7 11.6
-804 26.7 22.5 806 0.8* 7.2	5 1 1 26.4 21.9 -5 1 1 39.2 42.2	5 116.2 112.0 6 12.9 15.1	7 2 1 7.3* 1.3	-2 3 7 67.0 74.8 3 3 0 31.7 27.4
-8 0 6 58.1 52.9	5 1 2 120.7 123.6	7 21.1 21.6	7 2 2 64.8 65.7	-3 3 0 29.5 27.4
-9 0 1 93.0 95.1	5 1 3 124.6 131.3	-1 2 0 98.8 97.1	7 2 3 16.6 17.1	-3 3 1 38.7 39.7
903 33.4 30.4 -903 43.1 42.3	-5 1 3 166.4 181.9 5 1 4 19.2 10.4	-1 2 1 104.3 111.7 -1 2 1 114.9 123.1	-7 2 3 76.7 77.4 7 2 4 34.7 33.0	3 3 2 197.6 232.2 -3 3 2 218.5 226.4
9 0 5 7.3* 10.8 -9 0 5 20.3 24.0	-514 39.8 39.3 515 92.3 87.2	1 2 2 88.6 92.8 -1 2 2 107 9 121.9	-7 2 4 32.0 30.0	3 3 3 73.8 78.0
10 0 0 148.4 144.3	-5 1 5 173.4 173.8	1 2 3 86.7 87.6	-7 2 5 63.6 63.5	3 3 4 12.4 3.1
10 0 2 31.8 27.4	-516 21.2 21.5	1 2 4 132.2 133.9	-7 2 6 15.9 12.6	-335 481.0 80.8 335 48.8 44.6
-10 0 2 93.1 94.0 10 0 4 73.5 70.4	5 1 7 12.7 12.4 -5 1 7 31.0 34.7	~1 2 4 19.2 15.8 1 2 5 61.2 54.0	8 2 0 169.9 173.3 -8 2 0 177.0 173.3	-3 3 5 34.8 33.9 3 3 6 10.6 11.4
-10 0 4 13.9 12.7	6 1 0 59.6 60.7	~1 2 5 9.1* 4.4	8 2 1 5.8* 6.6	-3 3 6 61.4 59.7
-11 0 1 107,9 111.6	6 1 1 25.0 26.9	-1 2 6 10.1 9.9	8 2 2 124.7 128.2	-3 3 7 10.6 11.1
-1103 36.5 35.8	-6 1 1 59.8 63.3 6 1 2 114.1 121.5	127 39.1 45.4 -127 3.9* 4.9	-822 29.6 27.2 823 8.2 5.6	4 3 0 135.4 130.6
12 0 0 43.8 45.7 -12 0 0 44.5 45.7	-612 79.4 83.3 613 16.6 193	2 2 0 234.0 259.8 -2 2 0 230.8 250 H	-8 2 3 82.9 83.1 8 2 4 39.5 20 4	4 3 1 83.8 83.0
12 0 2 15.5 13.7	-6 1 3 15.4 13.3	2 2 1 81.2 85.1	-8 2 4 38.1 36.9	4 3 2 83.1 86.2
011 47.5 33.5	-6 1 4 39.7 35.3	-2 2 1 140.1 149.2 2 2 2 35.3 34.6	8 2 5 41.0 39.3 -8 2 5 47.9 45.1	-4 3 2 8.5* 5.2 4 3 3 71.5 77.2
2 83.2 83.5 3 7.5 4.0	6 1 5 26.7 24.2 -6 1 5 21.5 22.7	-2 2 2 110.6 113.8 2 2 3 48.2 46.7	-826 41.2 37.0 920 93.0 92.5	-4 3 3 64.1 65.9
4 190.2 210.8	6 1 6 65.0 58.2	-2 2 3 161.4 169.6	-9 2 0 95.2 92.5	-4 3 4 34.8 33.1
6 113.3 107.3	-617 8.7 8.1	-2 2 4 134.6 135.5	-9 2 1 28.0 26.8	4 3 5 93.0 94.8 -4 3 5 78.0 79.2
7 24,0 25,1 8 7,3 4,5	7 1 0 44.5 41.3	225 9.5* 4.8 -225 25.1 19.3	9 2 2 84.2 87.5 -9 2 2 23.2 23.3	4 3 6 49.2 44.5 -4 3 6 8.2 6.6
1 1 0 81.3 60.9 -1 1 0 78.8 60 0	7 1 1 50.1 50.7	2 2 6 43.3 42.4	9 2 3 24.1 27.3	4 3 7 41.9 57.4
1 1 1 21,0* 9.9	7 1 2 32.9 23.4	2 2 7 42.4 50.3	-9 2 5 27.4 28.4 9 2 4 30.4 28.3	-4 3 / 25.3 27.9 5 3 0 179.3 179.5

90

Tabelle 3. (Fortsetzung)

h k l	F	F _c	h k l	Fol	Fe	h k l	Fol	F	h k 1	Fo	F _c	h k l	P.	Fe
-530	196.4	179.5	143	86.2	89.4	-842	38.5	38.8	554	44.4	39.2	-364	21.7	21.8
-531	51.3	48.6	144	42.6	40.6	-843	56.7	57.6	555	45.9	42.2	-365	67.8	66.0
532 -532	18.2	16.8	-144	2.3* 42.7	3.2 41.2	844 -844	65.5 63.6	63.5 63.7	-555 -556	47.4	43.9	-366 460	6.6 46.5	6.9 38.1
533	44.4	48.5	-145	141.7	142.2	-845	30.5 68.6	27.4	650	126.1	111.6	-460	45.5	38.1
534	103.3	106.5	-146	44.8	42.6	-940	69.5	63.1	651	66.4	64.1	-461	68.2	63.0
-534 535	10.0*	8.8 74.8	147	3.4 40.8	1.8	941 1-941	8.3	3,0	-651 652	32.1 31.0	31.4	462	17.2 79.1	15.0 81.4
-535	78.0 30.0	74.7 27.8	240	113.4	101.4	942	31.6	32.0 46.3	-652	109.6	111.1	463	30.0	29.5 27.1
-536	35.4	33.3	241	14.7	11.8	943	52.5	51.4	-653	20.8	16.5	464	136.0	136.7
630	61.7	57.9	242	58.8	58.4	944	42.2	41.0	-654	36.2	34.7	465	37.9	35.5
-630 631	62.9 81.2	57.9 78.5	-242 243	128,2	135.6	-944 1040	31.4 59.4	$29.7 \\ 57.2$	655 -655	7.3	4.9	-465 560	18.8	18.4
-631 632	118.2	122.1	-243 244	18.1	9.9 138.7	-10 4 0	60.8 87.6	57.2 88.7	750	15.0	9.4	-560 561	17.6	13.2
-632	65.2	68.1	-244	27.1	27.2	-10 4 1	76.1	77.9	751	149.8	151.0	-561	15.8	11.3
-633	118.8	125.4	-245	80.8	74.9	-10 4 2	37.9	35.3	7 5 2	30.9	29.7	-562	31.1	29.9
-634	25.0	7.5	-246	13.8	45.2	10 4 3	26.7 53.4	26.3 53.0	-752 753	48.0	51.1 72.8	563 -563	23.0	21.5 22.0
635 -635	23.9 69.7	20.8 68.1	247	38.1	47.4	11 4 0	29.5 29.3	25.4 25.4	-753 754	82.0 56.3	81.7	564 -564	32.6	30.0
636	16.5	13.7	340	109.7	99.5	11 4 1	14.6	16.5	-754	17.9	18.2	565	76.9	72.5
730	10.9*	6.0	241	62.5	58.4	11 4 2	18,1	18.7	850	5.9*	2.4	660	146.6	133.4
7 3 1	27.8	30.1	342	68.2	67.8	-11 4 2	7.3 54.9	8.6 57.4	-850 851	63.6	2.4	-660 661	146.9	28.3
-731 732	35.2 138.7	34.6 150.1	-342 343	42.3 30.4	41.7	2 3	10.9	2.1	-851 852	9.1 6.5*	7.2	-661 662	46.2	43.6
-732	26.2	21.7	-343	76.5	74.9	4	45.1	42.4	-852	5.1	1.6	-662	84.5	87.6
-7 3 3	13.2	10.5	-344	68.8	62,2	6	17.2	16.6	-853	56.6	59-6	-663	53.4	52.8
-734	47.1	48.6	-345	36.1	31.4	~150	16.3	12.1	854 -854	10.2	12.4	-664	20.4 79.4	17.8
735	6.8* 15.6	5.8	346 -346	47.0	43.2	151 -151	167.1	193.1	950 -950	5.5*	4.7	-665 760	9.2 25.4	5.3 19.9
736	65.2 56.2	61.5	-347	32.2 72.8	38.2	152	63.2	65.2	951 -951	115.2	119.0	-760	25.3	19.9
830	26.7	22.7	-440	77.7	62.7	153	15.1	16.2	952	37.1	39.7	-761	5.7*	3.5
831	75.5	79.2	-445	15.9	14.4	154	24.7	26.5	953	54.5	55.6	-762	15.5	17.2
-831 832	39.2 17.4	36.7 19.2	442	77.4	75.0 72.5	-154 155	21.2 86.9	22.2 86.2	-953 -954	$24.9 \\ 20.0$	24.7	763 -763	91.9 54.3	93.6 57.3
-832 833	38.0 77.4	40.9 79.6	443	32.2 99.3	35.8 98.7	-155 156	70.4	66.6	10 5 0	69.8 70.6	63.5	764	5.3	4.2
-833	29.5	28.9	444	34.0	28.9	-156	73.1	71.8	10 5 1	11.3	8.4	860	27.7*	22.0
-834	63.4	61.4	445	36.8	32.3	-250	118.0	110.3	10 5 2	58.4	60.5	861	28.2	22.0
-835	20.1	0.2	-445 446	75.3	71.4	2 5 1 -2 5 1	79.0 39.6	84.8 38.5	-10 5 2	39.4 30.4	39.7	-861 862	37.3 54.2	34.4 57.3
-836 930	5.8 53.2	3.7 27.3	-446 540	34.4 74.5	30.8 64.4	252	65.9 126.4	69.6 131.2	11 5 0	$35.8 \\ 35.2$	29.0 29.0	-862 863	32.8	35.1
-930 931	32.5 52.0	27.3	-540 541	76.8	64.4	253	77.6 38.8	78.5	060	94.5	87.3	-863	19.5	17.7
-9 3 1	39.1	43.8	-541	5.5	8.3	254	54.5	52.0	2	40.1	40.6	960	10.2*	4.5
-932	87.8	97.3	-5 4 2	48.1	45.3	255	38.8	40.2	5	114.8	114.2	-960 961	17.0	4.5
933 -933	16.5	15.8	543 -543	102.4	105.9	-255 256	$\frac{39.7}{72.2}$	36.0 66,1	5	44.5 41.6	42.1	-961 962	40.4	42.6
934	29.5 88.3	30.8 92.5	544 -544	34.6 103.3	32.6	-256 350	7.3	7.9 27.6	160 -160	13.1	14.6	-962	17.5	16.7
-935	18.7	19.0	545	73.7	67.3	-350	34.1	27.6	161	21.1	20.2	10 6 0	31.4	31.2
-10 3 0	35.8	35.7	546	43.9	40.0	~3 5 1	29.9 99.1	99.1	162	13.4	13.8	-10 6 0	12.7	12.5
-10 3 1	54.8	56.7	640	32.6	27.1	-352	15.0 54.6	53.4	163	136.8	6.8 156.8	071	50.8 19.3	50.6 19.0
10 3 2	20.8 16,6	20.3 15.6	-640 641	31.6 11.0	27.1	353 -353	96.6 10.1	100.8	-163 164	82.1 11,5	86.6	3	23.9 17.9	27.7
10 3 3	65.7 13.6	71.0	-641 642	59.6 42.0	56.9 39.6	354	35.2	33.7	-164	7.7*	6.3	170	25.9	23.3
10 3 4	28.4	27.6	-642	77.1	78.8	355	7.7	2.9	-165	99.8	96.5	-170	58.7	52.9
11 3 0	53.8	55.2	-643	22.8	18.9	- 3 5 6	54.3	51.1	-166	10.2	29.2	-171	9.6	6.6 197.7
-11 3 0	53.7 23.0	55.2 24.5	644 -644	81,4	76.3 49.3	-356 450	6.7 206.1	7.3	260	71.3	65.6 65.6	172	58.9 26.0	59.0 31.3
-11 3 1 11 3 2	57.2	60.2 17.3	645 -645	34.1	32.2	-450	207.8	193.2	261	69.8 48.8	68.6	173	97.2	106.7
-11 3 2	50.7	52.2 42.4	646 	12.4	11.7	-4 5 1	11.9	2.6	262	117.4	127.1	174	26.2	27.6
12 3 0	43.5	43.4	740	68.2	59.6	-4 5 2	84.4	84.3	263	67.2	70.3	-175	12.3	12.2
-12 3 0	44.2	45.4	741	33.9	59.6 31.5	453 -453	25.3 93.9	20.9 98.1	-263 264	31.9 79.7	33.1 77.1	-175 270	2.8* 64.5	3.1 63.5
040	153.7 114.8	146.3	-741 742	121.9	122.3	454 -454	20.4 39.9	15.5 38.2	-264 265	29.4 37.0	31.2 34.8	-270 271	65.4 104.8	63.5 114.7
2 3	61.1 84.5	62.5 89.6	-742	125,2	128.0	455	7.1	4.9	-2 6 5	54.5 70.0	49.7	-2 7 1	44.7	40.0
4	20.5	20.7	-743	87.7	88.6	456	20.0	19.2	-266	30.5	30.7	-2 7 2	78.3	83.0
5	45.4	42.0	-7 4 4	56.0	25.0 54.8	-456 550	56.7	27.8	-360	12.3	7.6 7.6	273 -273	32.2 12.5	51.8 10.8
140	44.6 138.7	57.8 135.3	745	48.8 44.1	43.9 43.4	~550 551	55.4 27.2	46.3 26.6	361 -361	10.9 127.8	7.5 135.0	274	$13.3 \\ 42.5$	13.9 42.2
-140	138.1	135.3	840 -840	23.7	18.6	-551	118.0	113.1	362	9.4	5.3	275	25.1	27.4
-141	90.3	92.9	841	42.3	36.8	-552	40.2	38.1	363	40.7	43.5	370	54.2	48.9
142 +142	80.0	87.5	-841 842	80.9 12.9	12.6	553 -553	57.8 23.1	56.0 21.0	-363 364	132.4	136.8	-370 371	55.7 103.4	48.9

h k l	P.	F _c	h k 1	F.	Fel	h k	1	F	Fe	b k	1	F	Fel	h k 1	F	F _c
-371	48.0	43.1	-670	70.7	67.5	-18	5 0	92.5	91,1	4 8	1	50.2	56.8	191	51.5	51.4
372	19.0	15.8	671	4.7*	3.6	18	3 1	19.7	16.6	-4 8	1	76.9	80.1	-191	9.1	5.2
-372	26.7	25.4	-671	63.7	64.1	-18	3 1	40.6	41.7	4 8	2	4.9	1.7	192	11.0	16.8
373	10.5	2.7	672	40.5	41.8	18	3 2	40.2	46.0	-4 8	2	49.0	50,1	-192	27.3	30.5
-373	64.1	64.8	-672	72.3	71.5	-18	3 2	62.9	70.4	4.8	3	88.5	92,1	195	56.2	56.3
374	24.4	24.3	673	7.1	5.1	18	33	18.2	17.3	-4 8	3	21.5	18.9	-193	25.9	25.1
-374	14.1	14.0	-673	12.0	13.2	-18	3 3	24.9	26.8	-4 8	4	72.6	75.8	290	16.4	14.5
375	52.1	51.1	674	41.4	43.5	18	34	72.7	68.0	58	0.	16.3	18.1	-2 9 0	15.9	14.5
-375	46.3	43.4	-674	23.5	20.0	-18	34	34.3	33.1	-58	0	14.6	18.1	291	38.3	39.2
470	146.8	134.2	770	20.3	14.2	28	8 0	25.3	22.3	5.8	1	6.0*	2,9	-2 9 1	16.9	11.2
-470	146.3	134.2	-770	20,2	14.2	-28	0 8	28,1	22.3	-58	1	26.3	27.2	292	25.3	29.0
471	28.5	30.7	771	37.7	39.4	28	8 1	73.7	79.8	5.8	2	19.3	20.0	-2 9 2	17.6	16.1
-471	19.0	15.6	-771	95.8	95.9	~2 8	1 1	13.7	8.0	-58	2	56.2	54.8	293	66,4	74.6
472	79.7	87.0	772	19.1	16.3	28	3 2	64.8	65.4	5.8	3	65.1	66.3	-293	4.1	2.2
-472	50.8	54.7	-772	47.0	52.6	-28	3 2	8.4	7.7	-5 8	3	5.5	7.3	390	96.2	83.0
473	8.3*	5.5	773	87.0	90.5	28	3 3	10,2	7.3	6.8	0	12.5	8.0	-390	93.4	83.0
-473	76.4	82.5	-773	24.8	26.9	-2 8	13	113.1	115.6	-6-8	0	11.8	8.0	391	26.7	25.0
474	11.4	10.6	870	11.0	8.5	28	34	38.7	40.0	68	1	68.6	70.5	-391	55.2	55.6
-474	19.0	17.7	-870	10.6	8.5	-2.8	34	4.1*	0.8	-6 8	1	10.0	5.8	392	45.7	46.8
-475	54.0	52.0	871	47.9	46.7	38	0	28.1	30.5	68	2	44.9	44.4	-392	87.3	94.9
570	43.2	35.6	-871	47.0	47.5	-38	8 0	28.7	30.5	-6 8	2	13.8	15.3	490	15.5	18.0
-570	45.0	35.6	872	7.4	7.2	38	3 1	4.8	0.3	78	0	19.6	19.5	-490	16.4	18,0
571	92.8	93.7	-872	11.9	10.6	-38	8.1	21,8	24.9	-78	0	19.4	19.5	491	28.0	31.4
-571	7.5	6.7	970	28.5	31.4	38	3 2	81.1	79.4	78	1	35.8	34.6	-4 9 1	4.0	3.0
572	81.2	84.1	-970	29.3	31.4	-38	3 2	32.5	30.7	-78	1	70.2	72.6	492	21.1	20.6
-572	36.1	38.1	080	11.9	6.3	38	3 3	12.4	16.6	-78	2	60.8	68.6	-492	35.6	38.0
573	33.5	32.5	1	71.6	70.2	-38	33	30.4	32.1	0 9	1	87.7	87.3	590	45.8	40.1
-573	53.4	53.1	2	2.7*	1.9	38	84	45.6	44.6		2	34.6	36.4	-590	44.2	40.1
574	45.4	43.3	3	7.7	2.5	-38	34	28.9	26.5		3	49.1	51.9	591	47.0	47.7
-574	28.4	26.8	4	10.6	4.8	4.8	3 0	24.6	17.4	19	0	47.4	43.2	-591	14.7	12.8
670	71.0	67.5	180	93.5	91.1	-4 8	3 0	23.0	17.4	-1 9	0	45.6	43.2			

* nicht-benhachtete Reflexe

während mehrerer Kleinste-Quadrate-Zyklen auf $R = 7,3^{0}/_{0}$. Die Berücksichtigung der anormalen Streuung brachte keine Verbesserung des R-Wertes.

Die Verfeinerung wurde mit den Block-Matrix-Programmen von D. VAN DER HELM, Philadelphia, für die IBM 1620 und von P. ENGEL, Bern, für die Rechenmaschine Bull Gamma 30 S der Universität Bern ausgeführt.

Die Atomparameter und Temperaturfaktoren sind in Tab. 2 zusammengefaßt. Die $|F_0|$ - und $|F_c|$ -Werte, die mit diesen Parametern berechnet wurden, enthält Tab. 3. In Tab. 4 sind die Hauptachsen der Vibrationsellipsoide angegeben. Die in den Tab. 5 bis 8 angegebenen Standardabweichungen der Bindungslängen und -winkel wurden mit den Formeln berechnet, die wir in einer früheren Arbeit mitgeteilt haben (EDENHARTER und NOWACKI, 1970).

Beschreibung der Struktur

Die Atomabstände und die Winkel sind in den Tab. 5 und 6 zusammengefaßt. Eine Projektion der Struktur //b ist in Fig. 1 dargestellt. Figur 2 zeigt die Koordinationspolyeder um die Metallatome und Fig. 3 diejenigen um die Schwefelatome.

Mangan besetzt als einziges Atom eine der vier zweizähligen Lagen der Eigensymmetrie $\overline{1}$ von $P2_1/n$. Es ist von sechs S-Atomen (drei Paaren von kristallographisch verschiedenen S) in Form eines leicht deformierten Oktaeders umgeben. Der mittlere Oktaederwinkel

	$B_{\rm isotrop}$	Achse	В	$\sqrt{u_r^2}$	$\cos \alpha_1$	$\cos \alpha_2$	$\cos \alpha_3$
Mn	$1,67$ Å 2	1	$1,48$ Å 2	0,137 Å	0,685	0,678	-0,264
		2	1,34	0,130	-0,693	0,718	0,045
		3	2,20	0,167	0,221	0,152	0,963
\mathbf{Sb}	1,28	1	1,19	0,123	0,778	0,619	-0,101
i		2	0,79	0,100	-0,622	0,782	0,001
		3	1,86	0,153	0,080	0,062	0,994
Ag(1)	3,40	1	1,50	0,138	0,913	0,356	0,196
0()	,	2	5,77	0,270	-0,394	0,893	-0,213
i		3	2,93	0,192	0,099	0,272	0,956
Ag(2)	4.89	1	9,49	0.346	0,923	0,365	0.118
		2	1,08	0,117	0,335	0,917	0,214
I		3	4,10	0,228	-0,186	-0,157	0,969
S(1)	1.49	1	1.49	0.137	0.984	0.009	-0.175
~(-)	_,	2	1,01	0,113	-0,029	0,993	-0.111
		3	1,97	0,158	0,173	0,114	0,978
S(2)	1.42	1	1.13	0.119	0.978	-0.202	-0.040
~(-)	1,1-	2	1.32	0.129	0.206	0.943	0.258
		3	1,80	0,151	-0,014	-0,260	0,965
8(3)	1.62	1	1 30	0.128	0 594	0.788	0.158
~(0)	1,04	$\frac{1}{2}$	0.80	0.101	-0.803	0.592	0.063
		3	2,75	0,186	-0,043	-0,164	0,985

Tabelle 4. Achsenlängen und Richtungscosinus der Vibrationsellipsoide von Samsonit (bezogen auf die Achsen a, b, c^*)

beträgt 89,99°. Die Oktaeder sind isoliert (keine gemeinsamen Flächen, Kanten oder Ecken) und miteinander über die Ag- und Sb-Polyeder verknüpft. Der mittlere (Mn—S)-Abstand beträgt 2,614 Å und ist vergleichbar mit den (Mn—S)-Abständen im Hauerit, MnS₂, (PAULING und HUGGINS, 1934; OFFNER, 1934) von 2,59 Å und im Alabandin, α -MnS, (WYCKOFF, 1921) von 2,60 Å. Dieser Abstand entspricht einem Oktaederradius des Mn von 1,57 Å (Hauerit: 1,55 Å, Alabandin: 1,56 Å). PAULING (1964) erklärt den anormal großen Oktaederradius des Mangans mit Hilfe der Resonanz zwischen kovalenten und ionischen Bindungstypen.

Ag(1) ist deformiert-tetraedrisch von vier S-Atomen umgeben. Die drei kristallographisch verschiedenen S bilden die Basis einer defor-

	Mn		\mathbf{Sb}
S(1) S(1)'' S(2) S(2)'' S(3) S(3)''	$\begin{array}{c} 2,614 \ \pm \ 0,003 \ {\rm \AA} \\ 2,614 \ \pm \ 0,003 \\ 2,627 \ \pm \ 0,003 \\ 2,627 \ \pm \ 0,003 \\ 2,600 \ \pm \ 0,003 \\ 2,600 \ \pm \ 0,003 \end{array}$	S(1) S(2) S(3)‴	$\begin{array}{c} 2,433 \pm 0,003 \ \text{\AA} \\ 2,454 \pm 0,003 \\ 2,465 \pm 0,003 \end{array}$
	Ag(1)		Ag(2)
S(1) S(2)''' S(3)'' S(3)'''	$\begin{array}{c} 2,653 \pm 0,003 \ {\rm \AA} \\ 2,558 \pm 0,003 \\ 2,750 \pm 0,004 \\ 2,592 \pm 0,004 \end{array}$	S(1)''' S(2)' S(3)''	$\begin{array}{c} 2,394 \pm 0,004 \ {\rm \AA} \\ 2,481 \pm 0,004 \\ 2,862 \pm 0,004 \end{array}$
	S(1)		S(2)
$egin{array}{l} { m Mn} \\ { m Sb} \\ { m Ag}(1) \\ { m Ag}(2)^{\prime\prime\prime} \end{array}$	$egin{array}{rl} 2,614\ \pm\ 0,003\ { m \AA}\ 2,433\ \pm\ 0,003\ 2,653\ \pm\ 0,003\ 2,394\ \pm\ 0,004 \end{array}$	$\begin{array}{l} \mathrm{Mn} \\ \mathrm{Sb} \\ \mathrm{Ag}(1)^{\prime\prime\prime} \\ \mathrm{Ag}(2)^{\prime} \end{array}$	$\begin{array}{c} 2,627 \ \pm \ 0,003 \ \text{\AA} \\ 2,454 \ \pm \ 0,003 \\ 2,558 \ \pm \ 0,003 \\ 2,481 \ \pm \ 0,004 \end{array}$
	S(3)		
Mn Sb''' Ag(1)'' Ag(1)''' Ag(2)''	$egin{array}{rl} 2,600 \ \pm \ 0,003 \ { m \AA} \ 2,465 \ \pm \ 0,003 \ 2,750 \ \pm \ 0,004 \ 2,591 \ \pm \ 0,004 \ 2,862 \ \pm \ 0,004 \ \end{array}$		

Tabelle 5. Zwischenatomare Abstände in Samsonit

miert-trigonalen Pyramide, an deren Spitze das Ag(1) liegt. Diese [Ag(1)—S]-Abstände sind etwas kürzer (2,558—2,653 Å) als die vierte (Ag—S)-Bindung (2,750 Å), die die Konfiguration zum deformierten Tetraeder vervollständigt. Eine ähnliche Vierer-Koordination haben die Ag-Atome in Trechmannit (MATSUMOTO und NOWACKI, 1969). Der mittlere [Ag(1)—S]-Abstand ist mit 2,638 Å etwas größer als derjenige bei kovalenter Bindung (1,52 + 1,04 = 2,56 Å). Der mittlere Tetra-ederwinkel beträgt 107,76°.

Ag(2) ist von drei (2 + 1) S-Atomen umgeben. Die Konfiguration ist eben. Zwei S-Atome liegen mit 2,394 und 2,481 Å deutlich näher bei Ag(2) als das dritte S mit 2,862 Å. Das Silber besitzt bei dieser Koordination einen hohen Temperaturkoeffizienten (siehe Tab. 2 und 4). Eine ähnliche Koordination haben die Ag-Atome im Proustit (ENGEL und

	Mn				\mathbf{Sb}	
S(1)	MnS(2)	85,91 \pm 0,04 $^\circ$	S(1)	-Sb	-S(2)	$95,75\pm0,14^{\circ}$
	$-S(2)^{\prime\prime}$	94,08 \pm 0,04			$-S(3)^{\prime\prime}$	101,35 \pm 0,08
	-S(3)	$91,97\pm0,13$	S(2)	-Sb	$-S(3)^{\prime\prime}$	92,27 \pm 0,12
	$-S(3)^{\prime\prime}$	$88,02\pm0,13$				
S(1)''	-Mn - S(2)	$94{,}08\pm0{,}04$			Ag(1)	
	$-S(2)^{\prime\prime}$	$85,91\pm0,04$	S(1)	-Ag(1	-8(2)'''	$102.84 \pm 0.13^{\circ}$
	-S(3)	$88,02\pm0,13$	~(-)	8(-	-S(3)''	84.17 ± 0.12
	$-S(3)^{\prime\prime}$	$91,97\pm0,13$			-S(3)'''	104.71 ± 0.13
S(2)	-Mn - S(3)	90,36 \pm 0,11	S(2)'''	-Ag(1	-S(3)''	120.45 ± 0.10
	$-S(3)^{\prime\prime}$	$89,63\pm0,11$		81-	-S(3)'''	$121,50 \pm 0,18$
S(2)''	-Mn -S(3)	$89,63\pm0,11$	S(3)''	-Ag(1)-S(3)'''	112.87 + 0.07
	$-S(3)^{\prime\prime}$	90,36 \pm 0,11	. ,	0.	, , ,	,
					Ag(2)	
			S(1)'''	-Ag(2)-S(2)'	150,56 \pm 0,25 $^\circ$
					$-S(3)^{\prime\prime}$	$125,04 \pm 0,14$
			S(2)'	-Ag(2	$)-S(3)^{\prime\prime}$	82,85 \pm 0,13
	S(1)				C (A)	
Mn	S(1) Sh	101.00 1.0.090			S(3)	
MIU	$-\delta(1)-\delta b$	$101,90 \pm 0,02$	Mn	-S(3)	-Sb	114,94 \pm 0,05 $^\circ$
	$-\operatorname{Ag}(1)$	$91,50 \pm 0,00$			$-\mathrm{Ag}(1)'$	$89,51\pm0,07$
Sh	$-\operatorname{Ag}(2)$ S(1) Ag(1)	$132,33 \pm 0,19$ 05.70 ± 0.18			$-Ag(1)^{\prime\prime}$	99,88 \pm 0,10
00	-S(1) - Ag(1) - $Ag(2)'''$	$95,75 \pm 0,18$ 106.93 ± 0.05	\mathbf{Sb}	-S(3)	-Ag(1)'	$86,61 \pm 0,11$
$\Delta \alpha(1)$	Ag(2) -S(1)-Ag(2)'''	$100,55 \pm 0,05$ 121 55 ± 0.15			$-Ag(1)^{\prime\prime}$	132,05 \pm 0,15
mg(1)	-5(1)-Ag(2)	$121,00 \pm 0,10$			-Ag(2)	$85,71\pm0,17$
	S(2)		Ag(1)	' - S(3)	-Ag(1)''	131,24 \pm 0,12
	N(2)				-Ag(2)	$89,49 \pm 0,16$
Mn	-S(2)-Sb	111,34 \pm 0,13 $^\circ$	Ag(1)	''-S(3)	-Ag(2)	$69,28\pm0,18$
	$-\mathrm{Ag}(1)^{\prime\prime\prime}$	137,88 \pm 0,17				
~	$-\operatorname{Ag}(2)'$	$107,46 \pm 0,04$				
Sb	-S(2)-Ag(1)'''	$105,32 \pm 0,07$				
	$-\operatorname{Ag}(2)'$	$94,91 \pm 0,15$				
$Ag(1)^{\prime\prime}$	''–S(2)–Ag(2)'	88,89 \pm 0,11				

Tabelle 6. Bindungswinkel in Samsonit

NOWACKI, 1966). Der mittlere Ag-Abstand für die Zweier-Koordination beträgt 2,438 Å; er liegt damit deutlich unter dem für kovalente Bindung. Für die Dreier-Koordination beträgt er 2,579 Å.

Die Sb-Atome weisen die übliche trigonale Koordination auf. Die SbS₃-Pyramiden sind voneinander getrennt. Samsonit gehört demnach in der Klassifikation der Sulfosalze von NOWACKI (1968/1969) mit einem Verhältnis von Sb:S = $\varphi = 3$ zur Gruppe II.a₁. Der mittlere (Sb-S)-Abstand von 2,451 Å ist in guter Übereinstimmung mit dem-

A. EDENHARTER und W. NOWACKI

 \bigcirc Ag \odot Mn \bigcirc Sb \bigcirc S

Fig. 1. Projektion der Struktur von Samsonit parallel b

jenigen für kovalente Bindung (1,41 + 1,04 = 2,45 Å). Der mittlere Bindungswinkel für die trigonale Pyramide beträgt 96,46°.

Die Koordinationspolyeder um die drei S-Atome sind in Fig.3 dargestellt. Die S(1)- und S(2)-Atome sind deformiert-tetraedrisch von Ag(1), Ag(2), Mn und Sb umgeben. Der mittlere Tetraederwinkel beträgt 108,34° bzw. 107,63°. S(3) ist deformiert trigonal-bipyramidal von fünf Metallatomen umgeben. Ag(1), Ag(1') und Sb bilden die Basis, während Ag(2) und Mn an der Spitze liegen. S(3) ist etwas aus der Basis in Richtung Mn verschoben.

Die (S-S)-Abstände in den Mn- und Sb-Polyedern sind in Tab.7 zusammengestellt. Diese Abstände sind mit dem van der Waalsschen Bindungsabstand von 3,70 Å nach PAULING vergleichbar.

96

Verfeinerung der Kristallstruktur von Samsonit

Fig.2. Koordination der Ag-, Mn- und Sb-Atome in Samsonit

Fig. 3. Koordination der S-Atome in Samsonit

Die (Metall-Metall)-Abstände sind in Tab.8 enthalten. Sie sind durchwegs größer als die Summe der Metallradien.

Die charakteristischen Koordinationspolyeder der Samsonitstruktur sind die Mn-Oktaeder und die Sb-Pyramiden. Jede Sb-Pyramide

Z. Kristallogr. Bd. 140, 1/2

 $\mathbf{7}$

Tabelle 7. (S-S)-Abstände im Mangan-Oktaeder und in der Antimon-Pyramide von Samsonit

Mn-Oktae	der	Sb-Pyramide	,
$\begin{array}{c} S(1)-S(2) \\ -S(2)'' \\ -S(3) \\ -S(3)'' \\ S(2)-S(3) \\ -S(3)'' \end{array}$	$egin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	S(1)—S(2) —S(3) ^{***} S(2)—S(3) ^{***}	$3,625 \pm 0,004$ Å $3,790 \pm 0,005$ $3,547 \pm 0,004$
~(0)	0,000 0,001		

Mn—Sb	$3,921 \pm 0,001 \text{ \AA} \\ 4,198 \pm 0,001 \\ 4,271 \pm 0,001$	Sb-Ag(2)	$3,636 \pm 0,002$ Å $3,673 \pm 0,002$ $3,879 \pm 0,002$ $4,116 \pm 0,002$
Mn—Ag(1)	$\begin{array}{c} 3,769 \pm 0,001 \\ 3,974 \pm 0,001 \\ 4,840 \pm 0,001 \end{array}$	Ag(1)-Ag(1)	$4,866 \pm 0,002$
Mn—Ag(2)	$\begin{array}{c} 4,120 \ \pm \ 0,001 \\ 4,585 \ \pm \ 0,001 \end{array}$	Ag(1)—Ag(2)	$3,191 \pm 0,002$ $3,530 \pm 0,002$ $3,843 \pm 0,003$
b-Sb	$4,662\pm0,001$	Ag(2)-Ag(2)	$4,407 \pm 0,002$ $3,222 \pm 0,002$
Sb—Ag(1)	$egin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		$3,507 \pm 0,002$
umme der Meta	llradien:		
Mn-Mn	$2,536~{ m \AA}$	Mn-Sb	$2,925~{ m \AA}$

Tabelle 8. (Metall-Metall)-Abstände in Samsonit

 \mathbf{S}

Mn-Mn	$2,536~{ m \AA}$	Mn-Sb	$2,925~{ m \AA}$
Mn-Ag	2,710	Sb-Ag	3,099
Ag–Ag	2,884	Sb-Sb	3,314

ist über Ecken mit drei verschiedenen Mn-Oktaedern bzw. jedes Mn-Polyeder ist über gemeinsame Ecken mit sechs Sb-Pyramiden verknüpft. Das so aufgebaute dreidimensionale Netzwerk wird durch die Ag-Polyeder eng verflochten. Die Ag(1)-Tetraeder haben mit einem Mn-Oktaeder eine gemeinsame Kante und verknüpfen über zwei Ecken zwei andere Mn-Polyeder sowie über drei Ecken drei Sb-Pyramiden. Außerdem ist jede Tetraederecke mit der planaren DreierKonfiguration des Ag(2) verbunden, die ihrerseits zwei verschiedene Mn-Oktaeder und eine Sb-Pyramide miteinander verknüpft.

Wir sind Herrn Dr. P. ENGEL (Bern) für verschiedene Hilfe sehr zu Dank verpflichtet. Die Untersuchung wurde unterstützt vom Schweizerischen Nationalfonds (Projekt Nr. 2.516.71), und der Stiftung Entwicklungsfonds Seltene Metalle, wofür an dieser Stelle bestens gedankt sei.

Literatur

- A. EDENHARTER und W. NOWACKI (1970), Verfeinerung der Kristallstruktur von Bournonit und Seligmannit. Z. Kristallogr. 131, 397-417.
- P. ENGEL und W. NOWACKI (1966), Die Verfeinerung der Kristallstruktur von Proustit, Ag₃AsS₃, und Pyrargyrit, Ag₃SbS₃. N. Jahrb. Min. Monatsh., 181–184.
- C. FRONDEL (1941), Unit cell and space group of vrbaite [Tl(As,Sb)₃S₅], seligmannite (CuPbAsS₃) and samsonite (Ag₄MnSb₂S₆). Amer. Min. 26, 25–28.
- J. HRUŠKOVÁ and V. SYNEČEK (1969), The crystal structure of samsonite, 2Ag₂S · MnS · Sb₂S₃. Acta Crystallogr. B 25, 1004-1006.
- T. MATSUMOTO and W. NOWACKI (1969), The crystal structure of treehmannite, AgAsS₂. Z. Kristallogr. **129**, 163–177.
- W. NOWACKI (1968/1969), Zur Klassifikation und Kristallehemie der Sulfosalze.
 Z. Kristallogr. 128, 427-428; Schweiz. Min. Petr. Mitt. 49, 105-156 und Acta Crystallogr. B 26, 286-289 (Bragg-Festschrift).
- F. OFFNER (1934), A redetermination of the parameter for hauerite, MnS₂. Z. Kristallogr. 89, 182-184.
- C. PALACHE (1934), Contributions to crystallography: claudetite; minasragrite; samsonite; native selenium; indium. Amer. Min. 19, 194-205.
- L. PAULING (1964), Die Natur der chemischen Bindung, 2. Aufl. Verl. Chemie, Weinheim, S. 239.
- L. PAULING and M. L. HUGGINS (1934), Covalent radii of atoms and interatomic distances in crystals containing electron-pair bonds. Z. Kristallogr. 87, 205-238.
- WERNER und FRAATZ (1910), Samsonit, ein manganhaltiges Silbermineral von St. Andreasberg, Harz. Centralbl. Min., Geol., Paläont. 331-336.
- R. W. G. WYCKOFF (1921), The crystal structure of alabandite (MnS). Amer. J. Sci. 2, 239-249.