Die Kristallstruktur von Fülöppit $(Sb_8S_{15}|Pb^{VII}Pb_2^{VII})^*$

Von A. EDENHARTER und W. NOWACKI

Abteilung für Kristallographie und Strukturlehre, Universität Bern**

(Eingegangen am 12. Dezember 1974)

Abstract

The crystal structure of fülöppite has been determined by means of threedimensional counter data. Four chemical units of Pb₃Sb₈S₁₅ are in the monoclinic unit cell with the lattice constants $a = 13.435 \pm 0.005$, $b = 11.727 \pm 0.004$, $c = 16.934 \pm 0.005$ Å, $\beta = 94^{\circ}42' \pm 5'$, space group C_{2h}^{6} -C2/c. The crystal structure was found by means of the symbolic-addition procedure for the phase determination. The refinement of the structure was performed by the least-squares method. Taking into account anisotropic temperature factors and anomalous dispersion the R value has been reduced to $3.8^{\circ}/_{0}$ for the observed reflections.

Pb(1) is surrounded by eight, Pb(2) by seven S atoms. The coordination is not regular. The Sb atoms have trigonal-pyramidal coordination by the S atoms. The Sb pyramids build up Sb_8S_{15} groups. These are connected together very closely by Pb atoms, building up the whole structure.

Auszug

Die Kristallstruktur von Fülöppit wurde mittels dreidimensionaler Zählrohrdaten bestimmt. Vier Formeleinheiten Pb₃Sb₈S₁₅ befinden sich in der monoklinen Elementarzelle mit den Gitterkonstanten $a = 13,435 \pm 0,005$, $b = 11,727 \pm 0,004$, $c = 16,934 \pm 0,005$ Å, $\beta = 94^{\circ}42' \pm 5'$, Raumgruppe $C_{2h}^{6}-C2/c$. Die Kristallstruktur wurde durch direkte Phasenbestimmung nach dem symbolischen Additionsverfahren ermittelt. Die Verfeinerung mit der Methode der kleinsten Quadrate ergab unter Berücksichtigung von anisotropen Temperaturfaktoren und anormaler Streuung einen *R*-Wert von $3,8^{\circ}/_{0}$ für die beobachteten Reflexe.

Pb(1) ist von acht, Pb(2) von sieben S-Atomen umgeben. Die Koordination ist unregelmäßig. Die Sb-Atome besitzen trigonal-pyramidale Koordination

* Mitteilung Nr. 256b.—Publ. Nr. 77 über Sulfide und Sulfosalze; vorläufige Mitteilung: A. EDENHARTER und W. NOWACKI (1974).

** 3012-Bern, Sahlistraße 6.

durch die S-Atome. Die Sb-Pyramiden bilden zusammen Sb₈S₁₅-Gruppen, die durch die Pb-Atome eng verknüpft werden und so das Gitter aufbauen.

Einleitung

Im Jahre 1929 beschrieben DE FINALY und KOCH eine neue Mineralart aus dem Kreuzstollen von Baia Mare, Rumänien, die sie zu Ehren von Dr. BELA FÜLÖPP, Fülöppit nannten. Fülöppit gehört zur Jamesonit-Boulangerit-Gruppe der Blei-Antimon-Spießglanze (STRUNZ, 1970). Diese Gruppe enthält eine interessante Reihe von Sulfosalzen, die sich durch die allgemeine Formel $Pb_{3+2n}Sb_8S_{15+2n}$ mit n = 0, 1, 2, 3 darstellen läßt und Plagionitgruppe genannt wird (Tab. 1), weil Plagionit, Heteromorphit und Semseyit bereits 1899 von SPENCER als morphotrope Reihe beschrieben wurden. Zwei Gitterkonstanten, a und b, bleiben nahezu konstant, während sich c mit n ändert. Der monokline Winkel β zeigt keine Gesetzmäßigkeit; hingegen findet man eine solche bei $c \sin \beta$. Die Raumgruppe ist für die vier Sulfosalze C_{2h}^{6} – $C_{$ (CHO und WUENSCH, 1970, 1974), Semseyit (KOHATSU und WUENSCH, 1974) (Gitterkonstanten und Raumgruppe schon bei NUFFIELD und PEACOCK, 1945) und Heteromorphit (EDENHARTER und NOWACKI, 1975) sind bekannt; von Heteromorphit, einem sehr seltenen Sulfosalz, wurden von JAMBOR (1969) vorläufige Gitterkonstanten bestimmt. Unsere Gitterkonstanten an einem Heteromorphitblättchen (Grain 2.2, Geol. Survey of Canada) sind in Tab. 1 enthalten.

		a		<i>b</i>
Fülöppit ¹	$Pb_3Sb_8S_{15}$	13,435(5)	11,7	27(4)
Plagionit ²	$Pb_5Sb_8S_{17}$	13,4857	11,8	656
Heteromorphit ³	$Pb_7Sb_8S_{19}$	13,628(5)	11,9	43(4)
Semseyit ⁴	$\mathrm{Pb}_9\mathrm{Sb}_8\mathrm{S}_{21}$	13,603(3)	11,9	36(8)
	с	β	$c \sin \beta$	d_{obs}
Fülöppit	16,934(6)	$94^{\circ}42'(5)$	16,8	5,22
Plagionit	19,9834	107°10′	19,1	5,58
Heteromorphit	21,285(8)	90°55′(7)	21,3	5,86
Semseyit	24,435(7)	106.047(10)°	23,5	6,03

Tabelle 1. Die Plagionit-Gruppe

Raumgruppe: $C_{2h}^6 - C_2/c$, Z = 4.

¹ diese Arbeit (erste Gitterkonstantenbestimmung bei NUFFIELD, 1946); ² CHO und WUENSCH (1970); ³ EDENHARTER und NOWACKI (1975); ⁴ KOHATSU and WUENSCH (1974).

A. EDENHARTER und W. NOWACKI

KLJACHIN et al. (1969) haben Fülöppit bei einer Temperatur von 365°C synthetisch hergestellt.

Experimentelles

Als Untersuchungsmaterial standen uns zwei Handstücke mit Fülöppitkristallen aus dem Kreuzstollen von Baia Mare, Rumänien, zur Verfügung. Die Kristalle haben meist kurz-prismatischen oder "rhomboedrischen" Habitus; selten findet man dicktafelige Exemplare. Sie zeigen keine Spaltbarkeit.

Wegen der hohen Absorption ($\mu = 113 \text{ mm}^{-1}$) wurde besonderer Wert darauf gelegt, aus dem vorhandenen Material gute Kugeln zu schleifen. Die folgenden Untersuchungen wurden mit einer Kugel (vom Handstück AK. 760–71) von r = 0.0785 mm ($\mu \cdot r = 8.87$) durchgeführt. Zur Bestimmung der Gitterkonstanten wurden Aufnahmen mit einer Stoe-Rückstrahlkamera (Durchmesser 114,6 mm) vermessen, die mit $99,90/_0$ reinem Silicium geeicht waren. Die mit der Methode der kleinsten Quadrate berechneten Gitterkonstanten sind in Tab. 1 enthalten. Die Raumgruppe ist $C_{2h}^6 - C_2/c$ mit Z = 4. Die röntgenographische Dichte berechnet sich zu $d_x = 5,18 \text{ g cm}^{-3}$. Die chemische Zusammensetzung wurde mit der Elektronenmikrosonde Typ Cameca von H. WALTER bestimmt (Anal. Nr. 701, 28. 1. 74) und ergab folgende Werte: Pb 28,2 (29,9), Sb 46,0 (46,9), S 25,0 (23,2), $99,2^{0}/_{0}$ (100,0%) [theoretische Zusammensetzung in Klammern]. Eine frühere Analyse (Nr. 199, 25. 7. 67, G. BURRI) an anderem Material (Grube Kreuzberg, Nagyabanya) ergab die Werte 29.8, 47,1 und $22,2^{0}/_{0}$ (99,1). Mit einem Supper-Pace-Autodiffraktometer wurden anschließend ||c|4959 äquivalente (nullte bis 19. Schichtlinie) und ||b| 1338 äquivalente Reflexe (nullte bis 2. Schichtlinie) mit CuKa-Strahlung aufgenommen. Die Intensitäten wurden bezüglich Absorption, des Lorentz-Effekts und der Polarisation korrigiert. Gleichzeitig wurde jedem Reflex auf Grund der Zählrohrstatistik ein Gewicht $w = 1/\sigma^2$ (F₀) zugeordnet. Reflexe mit $I < 2,33 \sigma(I)$ wurden als nichtbeobachtet kodifiziert. Anschließend wurden die 6297 äquivalenten Reflexe gemittelt, und es blieben 2592 unabhängige Reflexe übrig, von denen 462 als nicht beobachtet kodifiziert wurden.

Bestimmung der Struktur und Verfeinerung

Die Struktur von Fülöppit konnte mit Hilfe der direkten Methoden gelöst werden. Zunächst wurden die korrigierten Intensitäten in normalisierte Strukturamplituden, E, umgerechnet. Die statistische Ver-

teilung der *E*-Werte stimmt gut mit der theoretischen Verteilung für zentrische Raumgruppen überein:

E > 1,0	831	$32,10/_{0}$	$(32,0^{0}/_{0})$	$<\! E >$ 0,808	(0,798)
E > 2,0	128	5,0%/0	(5,0%/0)	$<\! E ^2\!>$ 1,006	(1,000)
E > 3,0	6	0,2%/0	(0,3%/0)	$<\mid\!E^2\!\!-\!\!1\mid>0,\!968$	(0,968).

Die Angaben in Klammern entsprechen den theoretischen Werten. Die Vorzeichen s(E) wurden nach der Σ_2 -Formel bestimmt:

$$s(E_h) \approx s\left(\sum_{h'} E_{h'} \cdot E_{h-h'}\right).$$

Für eine erfolgreiche Vorzeichenbestimmung genügt im allgemeinen ein Ausgangssatz von nur wenigen Vorzeichen; so wurden zu allen $E_h > 1,3$ sämtliche Paare $E_{h'}$ und $E_{h-h'} > 1,6$ aufgesucht. Als Ausgangssatz wurden große *E*-Werte, die in möglichst vielen Paaren auftreten, ausgewählt:

h	k	l	E	Vorzeichen	
5	1	6	2,892	+)	Unoppulper
6	2	1	2,783	+ }	Orsprung
1	5	3	3,966	+A	
0	0	12	2,623	+B	
-3	3	1	2,642	+C	

Die ersten zwei Reflexe bestimmen den Ursprung; die nächsten drei Reflexe erhielten die angegebenen Symbole. Im Verlaufe der Berechnungen ergab sich für das Symbol B ein positives, für C ein negatives Vorzeichen, während dasjenige von A nicht bestimmt werden konnte. Insgesamt wurden 482 Vorzeichen bestimmt. Ein Vergleich am Ende der Strukturbestimmung ergab, daß alle Vorzeichen richtig bestimmt worden waren.

Mit den erhaltenen Vorzeichen wurde eine *E*-Fouriersynthese berechnet. Die sechs stärksten Maxima (relative Werte 40–58, alle anderen ≥ 10) wurden den Metallatomen zugeordnet. Die Pb-Lagen konnten von den Sb-Lagen mit Hilfe der Pattersonsynthese unterschieden werden, da bei einer Gesamtzahl von 12 Pb in der Elementarzelle mindestens vier Pb in einer speziellen vierzähligen Lage sein müssen. Einige Verfeinerungszyklen nach der Methode der kleinsten

	x	ĥ	N	B_{11}	B_{22}	B_{33}	$2B_{12}$	$2B_{13}$	$2B_{23}$
Pb(1)	0	0,37152(7)	0,25	0,00417(4)	0,00363(5)	0,00173(2)	0	0,00161(4)	0
Pb(2)	0,30734(4)	0,42873(5)	0,33250(3)	0,00266(2)	0,00410(4)	0,00203(2)	-0,00055(5)	0,00066(3)	0,00010(4)
Sb(1)	0,40864(5)	0,17967(7)	0,15603(4)	0,00153(3)	0,00270(5)	0,00106(2)	-0,00011(7)	0,00037(4)	0,00032(5)
Sb(2)	0,37257(5)	0,13634(7)	0,49473(4)	0,00149(3)	0,00285(5)	0,00123(2)	-0,00054(7)	0,00051(4)	0,00006(5)
Sb(3)	0,14011(5)	0,25135(7)	0,06043(4)	0,00115(3)	0,00266(5)	0,00101(2)	0,00038(7)	0,00028(4)	-0,00041(5)
Sb(4)	0,08854(6)	0,05019(8)	0,41625(5)	0,00213(4)	0,00334(6)	0,00182(2)	-0,00122(8)	0,00021(5)	0,00064(6)
S(1)	0,2662(2)	0,0273(2)	0,03574(15)	0,00150(13)	0,0017(2)	0,00122(8)	0,00001(2)	0,00097(15)	0,0006(2)
S(2)	0,3572(2)	0,0482(3)	0,25503(16)	0,00237(14)	0,0026(2)	0,00129(8)	-0,00001(3)	0,00071(16)	-0,0013(2)
S(3)	0,2720(2)	0, 3205(3)	0,16017(16)	0,00179(14)	0,0025(2)	0,00134(8)	0,00004(3)	-0,00102(16)	-0,0009(2)
S(4)	0,0301(2)	0,4172(2)	0,08296(14)	0,00112(11)	0,0018(2)	0,00097(7)	-0,00005(2)	0,00017(14)	0,0003(2)
S(5)	0,1853(2)	0,2456(3)	0, 39668(18)	0,00152(13)	0,0026(2)	0,00201(9)	-0,00003(3)	0,00130(17)	-0,0016(2)
S(6)	0,4662(2)	0,3653(3)	0,46163(15)	0,00193(13)	0,0019(2)	0,00123(8)	0,00010(3)	0,00008(15)	-0,0003(2)
S(7)	0,0700(2)	0,1330(3)	0,16428(15)	0,00185(13)	0,0018(2)	0,00115(7)	0,00002(3)	0,00100(14)	0,0003(2)
S(8)	0	0.8163(4)	0,25	0,0017(2)	0,0025(3)	0,00150(12)	0	-0.0011(2)	0

Tabelle 3. Beobachtete und berechnete Strukturampliluden von Fülöppit Die Tabelle enthält nur die beobachteten Reflexe

hk F _o F _c hk F _o	F _c hk	F _o F _c	h k	F.	F _c	h k	Fo	F _c	h k	Fo	Fc	h k	Fo	F _c
h k 0 -8 10 100 8 12 174	103 -4 2 171 4 4	583 576 215 220	h k	2		10 0	641 256	662 289	55	331 166	314 146	-1 9	150 417	149 405
0 4 343 388 -8 12 172	171 4 6	133 88	02	202 325	199 325	10 2	309 265	311 276	-5 9 5 11	416	408	-1 11	439	437
0 8 102 92 -9 1 227	255 4 12	79 69	0 8	465	448	10 6	136	137	-5 11	193	183	-1 13	105	110
1 3 723 658 -9 3 305	300 5 1	113 101	0 14	39	30	-10 8	102	98 15/	-5 13	278	285	-2 0	334	333
1 7 387 394 -9 5 169	157 5 5	953 954	-1 1	544	531	-10 10	65	65	-6 2	174	157	-2 2	996	966
1 9 176 174 -9 7 271	264 5 7	108 115	1 7	241	244	-11 1	316.	331	-64	863	847	-2 4	140	105
1 11 95 84 -9 9 109	110 -5 9	240 262	-1 9	164	159	-11 3	167	175	-6 6	780	767	28	216	295
1 13 56 50 -9 11 127	134 -5 11	87 88	1 13	230	260	-11 7	77	75	-6 8	174	177	2 10	88	77
-2 0 143 102 -10 0 473	487 6 2 1	135 1160	2 2	320	256	-11 9	71	61	-6 10	386	399	-2 12	177	183
2 2 176 109 10 2 202 2 4 540 509 -10 2 261	263 6 4 ·	234 257	26	284	298	-12 0	382	· 383	7 1	547	553	3 1	753	691
2 6 369 375 -10 4 258	273 6 6	210 195	2 8	669	641	-12 2	549	577	7 3	161	152	35	238	228
2. 8 224 236 -10 8 421 -2 8 217 236 10 10 45	431 6 8	101 85	-2 12	235	246	-12 4	107	110	75	200	219	3 7	130	132
2 12 257 262 -10 10 50 -9 19 246 262 11 1 386	42 6 12	227 215	-2 14	278	298	12 8	55	64	-7 7	190	182	39	379	355
-2 12 240 202 11 1 360 -2 14 38 10 -11 1 381 3 1 361 380 11 3 393	391 7 1	252 243	3 3	332 1076 1	292	13 1	300	294	-7 9	200	210	-3 13	278	283
-3 1 355 380 -11 3 392	396 7 3 976 7 3	220 214	35	705	706	13 3	155	149	-7 11	71	66	-4 0	466	492
-3 3 201 194 -11 5 240 3 5 369 386 11 7 253	236 7 5	139 144	-3 9	177	187	13 5	316	317	-8 4	222	208	-4 2	112	123
-3 5 345 386 -11 7 252 3 7 116 133 11 0 130	256 -7 7 191 -7 0	80 75	5 13	137	152	13 7	116	110	-8 6	116	122	-4 4	172	184
-3 7 393 433 -11 9 124	121 -7 11	167 161	4 2	642	630	-14 0	511	523	8 12	34	209	48	232	223
-3 9 73 74 -12 4 65	55 -7 13	217 233	-4 4	194	251	-14 2	156	160	9 1	163	179	-4 10	205	222
-3 11 128 137 -12 6 192 3 13 146 144 12 8 220	197 -8 2	201 186	-4 6	282	331	14 6	136	125	9 3	518	558	-4 12	157	154
-3 13 137 144 -12 8 219	223 -8 4	279 288	-4 8	88	925	-15 1	260	258	-9 5	200	202	-53	187	175
-4 0 552 509 -13 1 181	179 8 8	86 55	-4 10	355	375 168	15 5	278 91	87	99	71	250 69	-5 7	155	146
-4 2 328 332 -13 3 70	50 8 10	296 299	-5 1	268	281	16 0	216	210	9 11	99	91	5 11	176	170
-4 4 333 310 -13 5 64 4 6 109 93 13 7 199	69 8 12 100 -8 19	78 73	-5 3	532 393	543	16 2	69	61	10 2	288	290	5 13	57	43
-4 6 91 93 -13 7 128	122 9 1	82 84	-5 5	137	115	-10 2 b k	3	2.0	-10 4	172	160	6 2	236	224
4 10 358 361 -14 0 174	181 9 3	196 207	-5 7	724	773	0 2	459	435	-10 6	387	372	-6 6	639	649
4 12 65 66 -14 2 181	174 9 5	833 841	-59	423	464	0 10	161	140	10 10	300	295	-6 10	219 95	110
5 1 189 237 -14 4 60	53 9 7	256 256	-5 11	312	338	-1 1	317	245	11 1	170	172	-7 1	202	228
5 3 463 431 15 3 89	92 -9 9 92 -11	136 129	60	537 807	556	-1 5	346	390	11 3	309	312	-7 3	234	227
-5 5 98 95 15 5 50 5 7 230 242 -15 5 52	48 -9 11 48 10 2	289 291	64	462	478	-1 7	297	290	-11 5	123	111	-7 5	292	298
-5 7 222 242 16 0 101 5 9 243 242 -16 0 103	99 -10 2 99 10 4	490 508	6 6	152	146	-1 9	118	120	-11 7	250	244	-7 7	112	100
-5 9 229 242 h k 1 5 11 328 324 h k 1	-10 4	272 294 117 113	-6 8	270	282	1 13	139	136	-11 9	102	109	-7 9	135	137
-5 11 324 324 0 2 364 5 13 169 168 0 4 329	375 -10 6 372 10 8	121 102	6 12	198	215	2 2	1011	1003	12 4	215	219	8 0	366	399
-5 13 165 168 0 6 301 6 2 142 112 0 8 309	274 10 10	72 75	7 1	209 404	195	-2 6	112	103	-12 6	141	132	8 2	169	158
-6 2 135 112 0 12 170 6 4 120 107 1 3 557	160 -11 1	91 87 192 171	7 3	138 370	122	2 10	153	155	-12 8	112	106	84	484	490
-6 4 132 107 -1 3 861 6 6 514 525 1 7 420	811 -11 5	115 116	75	104	115	2 12	110	113	13 3	117	121	86	345	344
-6 6 529 525 -1 7 362 6 8 411 410 1 9 433	371 11 9 433 -11 9	101 98	77	147	147	2 14	201	213	-13 5	246 176	242	-8 8	292	300
-6 8 401 410 -1 9 393 6 10 76 76 1 11 159	361 12 2 152 -12 2	155 156	7 9	172	171	3 1	1072	1064	14 2	100	92 370	8 12 -8 12	76	75
-6 10 75 76 1 13 167 6 12 113 115 -1 13 460	174 -12 4	139 132 167 170	-7 11	170	181 261	-3 3	587 436	575 398	14 4	259	259	9 1	694 320	706
-6 12 108 115 -2 2 289 7 1 691 715 2 4 173	279 -12 6. 139 13 1	239 233 75 70	-8 0 8 2	930 101	967	3 7	141	136	14 6	56 195	53 195	93	111	106
-7 1 664 715 -2 4 576 7 5 450 471 2 6 245	570 -13 1 200 13 3	127 125	-82 84	152 112	158 97	39	442	414	-15 1	175	173	95 -95	155 146	169
-7 5 458 471 -2 6 969 7 9 109 71 2 10 91	978 -13 3 80 13 5	154 148 239 248	-84 86	122 223	119	311	146	141 117	-15 3	146	142	-9 7	448 207	450
-7 9 69 71 -2 10 629 7 11 407 408 2 12 98	654 -13 5 91 -13 7	480 473 262 260	88 -88	263 87	252 96	-3 13	66 236	66 245	-15 5 -16 2	144 53	143 52	-9 9 9 11	375 195	386 211
-7 11 397 408 -2 14 59 7 13 67 71 3 1 405	47 14 2 405 -14 2	219 219 236 234	-8 10 8 12	234 39	251 40	-4 2 4 4	372 732	406 750	h k	4		-9 11 10 0	154 713	158 740
-7 13 69 71 -3 1 194 8 0 196 163 3 3 352	202 14 4 391 -14 4	198 199 111 111	-8 12 9 1	161 234	171 252	-4 4 4 6	493	519 124	04	472 254	449 261	-10 0	148 112	168
-8 0 187 163 -3 3 1260 1 8 2 367 391 3 7 178	271 14 6 157 -14 6	64 60 42 39	-9 1 9 3	213 253	233 268	-4 6 4 8	264 171	250 186	0 8	679 102	674	-10 2	99 124	85 127
-8 2 372 391 -3 7 269 8 4 118 103 3 9 436	248 15 1 416 -15 1	357 364 110 110	-9 3 9 5	257 151	244 151	-4 8 4 10	165 211	170 215	0 12	359 117	351 129	-10 4	162 333	151 347
-8 4 121 103 -3 9 128 8 6 293 308 3 11 225	114 15 3 211 -15 3	253 265 102 86	97 -97	212 134	210 143	-4 10 4 12	118	123 334	-1 1	1069 163	1076	-10 6	254 206	250 202
-8 6 302 308 -3 11 104 8 8 534 542 3 13 47	98 15 5 41 -15 5	252 253 187 178	99 -99	65 146	74 147	-4 12 5 1	275 397	274 397	-1 5 1 7	566 579	632 577	-10 8 10 10	297 296	307 290
-8 8 535 542 -3 13 430 8 10 94 103 4 2 859	440 16 2 816 -16 2	250 247 199 194	9 11 -9 11	246 239	248 249	53 -53	199 527	207 480	-1 7 1 9	137 313	176 305	-10 10 11 1	74 119	78 114

Tabelle 3. (Fortsetzung)

h k	F _o F _c h	k F	, F h	k	Fo	F _c hk	Fo	F _c h	k	P	Fe	h k	Fo	F I	ı k	F	Fe	h	k F _o	F.e	
-11 1 1	195 200 7 140 143 -7	5 30	3 311 3 5 257 ~3	7	565 587	561 -13 7	430	411 9	;	575 313	606 305 ~	5 1 5 1	215 158	233 - 124	0	484 -	475	-13	1 113	108	
-11 3 3	317 309 7	7 7 71	708 3	9	217	217 ~14 0	241	253 -9	5	274	260	5 5	150	155 -	11	193	191	13	5 103	105	
-11 5 3	196 198 -7 316 322 7	9 64	2 329 -3 5 650 3	11	172	169 ~14 4	117	118 -9	5	129	105 -	$\frac{2}{5}$ $\frac{5}{7}$	184	758 - 201 - 1	2 2	295	512 · 845	-13	5 231 2 233	223	
-11 7 3	308 313 -7 137 138 7	924 1133	1 239 -3 0 131 -3	11	278 140	275 -14 6	176	167 -9	7	71 343	63 350 -	59 59	77	64 1	24	107	- 94 - 154 -	-14	2 99 4 997	97 212	
12 0	90 93 8	2 24	5 260 -7	13	85	74 -15 1	181	178 -9	9	101	113	5 11	47	36 1	2 6	101	104	~15	1 229	234	
-12 2 1	110 109 8	3 4 33	5 296 4 1 343 -4	ő	221	259 - 16 0	318	332 10	2	275	271 -	6 0	391	408 -	2 8	201	198	Ъ	k 10		
-12 4 2	264 257 -8 141 140 8	3 4 16 3 6 10	7 183 -4 7 99 4	2	333 874	289 h k 855 h k	7	-10 10	24	258 491	256 504 -	$\begin{array}{c} 6 & 2 \\ 6 & 2 \end{array}$	92 166	174 -	2 10 2 10	365 · 79	359 78	0	0 637	646 246	
12 6 4	455 458 -8 230 225 -8	169 1829	7 84 - 4 262 4	4 6	659 587	607 0 4 579 0 6	640 453	631 -10 436 10	4	237 286	232		125 330	133 : 313 -9	2 12	51	47	0	8 120	105	
13 1 1	119 110 8	10 Š	2 58 -4	6	223	207 0 8	133	147 -10	6	67	49	66	326	332	5 1	230	242	1	1 282	299	
13 5	74 78 -8	12 9	84 -4	8	328	322 0 12	241	245 -10	8	71	66 -	6 8	97	97	5 3	89	91	-1	3 72	57	
13 7 1	164 - 166 - 9	1 1 10	2 97 4 2 546 -4	10	86	86 -1 1	167	585 -10 164 -11	10	348	367 -	6 12	171	181 ~	5 5	208 :	69	- 1	5 400 7 213	205	
14 0 -14 0 3	66 69 -9 365 372 9	0 3 12- 0 5 18	5 873 4 I 176 –4	12	184 66	182 1 3 51 -1 3	48 1 42 1	498 -11 410 -11	3	198 337	207 340	7173	143 215	158 - 210 -	57	79 210 :	82 212	~1	7 89 9 156	91 159	
~14 2	59 67 -9 102 96 9	5 24	7 248 5 4 218 ~5	1	777	829 -1 5	264 351	275 -11	3	167 209	131 - 208	7 3	242 416	239 -	5 ģ 5 11	296	288	22	1 75	77	
-14 4 1	183 183 -9	9 33	7 333 5	3	242	255 -1 7	455	442 -11	5	290	295 -	7 5	241	232 -	5 11	119	123	2	2 154	162	
-14 6	52 57 10	2 14	150 5	5	210	236 -1 9	162	175 -11	ź	65	56 -	÷	467	455 -	2	112	88	2	4 378	365	
-15 1 2	235 246 10) 2 28) 4 30	1 280 -5 1 320 5	7	247 280	262 1 11	143	159 -12	4	382 197	185 -	79 79	60	195 - 55 -	4 4 4	870 1	182 839	-2 2	4 153 6 550	157 534	
-15 3 1	170 176 ~10 265 259 10	1451	7500-5 2945	. 7	122	131 1 13 351 -1 13	157	163 12 76 - 12	6	50 74	46 67 -	711 711	171 159	176 - 1 162 - 1	+ 6 + 6	237 : 346	232 341	-2 2	6 122 8 132	130 127	
-15 5	57 46 -10 260 274 10) 6 30) 8 16	5 292 -5 169 -5	11	318 158	319 2 2 156 -2 2	670	712 -12	8	48 410	32 419 -	80 80	321	337 × 524 =-	8	60 187	61 184	-2 2 1	8 382	370	
-16 2 2	266 264 -10	8 13	3 131 6 00 -6	0	88	72 2 4	214	222 ~13	1	248	249	82	606	597 -	10	129	131	-21	2 91	97	
h k 5	5 -10	10 6	49 6	2	486	473 2 6	264	259 -13	3	154	147	8 4	425	443 -	12	205	209	- 3	7 458	442	
0 2 1	142 118 -11 393 909 11	3 24	, 250 -6 , 250 6	4	705 314	735 -2 6 302 -2 8	286	127 13 278 ~13	5	153	185 -	84 86	650 204	618 208 -	51	468 -	490 478	-3	3 64 5 88	63 64	
0 6 5	535 534 -11 203 202 -11	5 81 5 15	3 809 6 5 138 –6	6	402 266	406 2 10 258 ~2 10	146 483	138 -13 498 -14	7	71	152 -	86 88	494 81	468 79 -	55	88 121	73	-3	5 473 7 427	464 417	
0 12 1	188 191 11 396 396 -11	7 28	2 291 6 1 283 -6	8	186 381	185 2 12	266 119	274 -14	2	230 268	229 265 ~	8 10 8 10	140	144	5 7	169	174	-3	7 110	116	
-1 1 7	753 774 11	9 10	102 6	10	183	179 3 3	384	406 -14	4	341	339	9 1	237	241	5 9	435	421	-3	9 91	81	
-1 3 2	296 334 12	2 33	5 342 7	3	267	256 3 5	397	401 15	1	175	179 -	93	306	962 - 294 -	5 11	109	125	-5	0 692	733	
1 7 2	207 190 12	2 10 17) 150 -7 5 176 7	5	105	99 -3 5	98 609	99 -15 588 -15	3	376	37 360 -	95 95	131	130 - 106 -	5 11 5 2	102 190	109 183	-4 4	0 285 2 428	315 424	
-1 7 2	211 206 -12 289 286 12	2 4 17) 162 ~7 I 90 7	5	125 85	132 -3 7 73 3 9	229 514	221 h 523 h	k	8	_	97 97	344 78	350 (62 (54 56	725	726 431	4 -4	4 395 4 609	391 578	
1 13 2 2 4	218 217 -12 497 529 13	85 130	50 -7 3 323 -7	9	79 61	59 -3 9 49 3 11	101 169	96 0 169 0	04	117	140 581 -	99 99	314 202	312 I 202 - 0	58 58	155	159	-4	6 476	459	
-2 2 12	249 1218 -13 101 96 13	5 T 8	5 78 8	0	484	514 -3 11	129	140 0 82 0	6	557 268	533 1	ο ό ο ο	280	278 0	5 10	248	249	-4	8 454	453	
-2 6 1	182 192 -13	3 29	274 ~8	2	159	159 4 2	259	264 0	10	90	85 1	02	113	114 -	12	84	90	-4	0 105	110	
-2 8 2	299 267 -13	5 27	7 264 -8	4	134	137 -4 4	331	708 0 327 1	12	945	1055 1	02	587 129	585 127 -:	2 1	269	44) 267	-4 1	1 388	362 385	
2 10 3	528 304 - 13 177 169 14	579. 126	1 92 8 62 -8	6	438 181	449 4 6	144 82	125 1 78 -1	3	88 376	76 1 364 -1	06	194 225	192 (203 –	7373	453 - 143	457 148	-5 5	1 106	116	
2 12 1	109 125 -14 163 166 14	2 7	5 69 -8) 224 8	8 10	349 132	351 -4 8	119	110 † 166 =1	5	339 186	341 1	08	178 464	183 1 458 1	7 5	74 248 :	78 239	-5	3 72 5 169	49 147	
314	422 427 -14 258 261 14	4 28	5 272 -8	10 1	113	105 ~4 10	206	203 1	7	94	101 ~1	0 10	53	41	, <u>9</u>	66	68	-ş	5 324	311	
3 3 3	588 361 -14	6 15	1 151 ~9	1	102	88 -4 12	170	171 1	9	266	247 1	13	138	135	2 11	49	49	-5	7 322	329	
-3 5 8	321 795 15	3 22	223 9	5	93	95 -5 1	796	801 1	11	303	219 -1	1 5	157	155 8	3 2	113	129	-5	9 420 9 255	394 267	
-3 7 2	230 214 -15	5 5 23	5 185 -9 5 223 9	9	127	125 ~5 3	293	420 ~7 320 -1	13	103		2^{-7}	283	283 8 158 -8	54 54	130	128 92	-51	1 213	223 306	
-393	325 340 -16 282 270 _	28	5 79 -9 -9	-9 -11	65 50	- 65 5 5 - 56 ~5 5	143 178	151 -2	0	721 378	718 -1 376 1		237 270	240 -8 268 8	8 6 8 10	297 : 148	293 147	-6 -6	0 130	139 505	
-3 11 3	587 594 ⁴ 183 196 0	1 K U 1 0 21	10 10 - 10	0	116 275	130 5 7	226 440	216 -2 430 -2	2	356	348 -1	22	115	113 -8 159 - 6	3 10	165	167	-6	2 125	136	
-3 13	87 80 0	0 4 61 1 6 37	573-10	2	170	159 5 9	198	191 -2	4	159	177 -1	2 6	299	293 -9	1	242	250	6	4 191	173	
-4 2 5	532 512 0	8 35	358 ~10	4	99	90 -5 11	269	267 -2	6	440	464 1	31	131	137 -9	3	250	257	-6	6 183	171	
-4 4 7	74 735 0	10 20	5 150 -10	6	288	281 -6 2	218	200 2	10	266	258 1	33	230	77 -	1 5	279	379 277	-6	6 398 8 362	394 344	
4 6 4	485 472 -1 344 352 1	5 46	+ 233 10 5 434 -10	8	349 159	346 6 4 157 -6 4	166	184 -2 93 2	10 12	277 96	280 ~1 102 1	33 55	136 102	118 -9 99 -9	77 19	430 - 149	427 152	-6	8 91 0 138	91 148	
-4 10 1 -4 12 2	127 120 -1 296 287 1	5 42 9 23	5 416 10 5 227 -11	10 3	87 99	95 -6 6 88 -6 8	303	304 -2 108 -3	12 1	110 491	119 =1 463 =1	35 37	85 93	90 10) 2	79 253 :	82 241	-6 1	0 142	159 205	
5 1 2	244 267 -1 323 292 1	9 26	8 260 11 1 139 -11	5	347 429	343 6 10 423 ~6 10	48	31 3	3	337	359 1	4 0	313	312 10 200 - 10	4	220	220	-7	1 226	231	
5 3 6	553 689 -1	13 11:	2 109 11	7	161	168 6 12	163	162 3	5	267	269 1	4 2	94	91 10 970 10	6	272	266	-2	3 163	166	
572	298 285 -2	0 18	3 222 11	9	200	200 -7 1	327	326 3	ź	198	196 -1	4 4	189	180 10	5 8	39	32	-2	5 99	104	
591	159 152 2	4 15	5 162 12	0	256	261 -7 3	166	207 -3 162 -3	9	781 431	183 = 1 424	51 65	147	140 -10) 8 1	186 105	184 108	-7	7 266 7 192	255 183	
-592 511	215 219 -2 95 97 2	4 45 6 37	9 449 -12 2 379 12	$^{0}_{2}$	302 330	314 7 5 328 -7 5	255 791	254 -3 756 -3	11 13	100 54	93 70	чк 02	9 128	1 128 – 1	3	141 69	135 50	-7 -7	9 54 9 234	50 243	
5 13 3	512 322 -2 144 155 2	6 14 8 7	152 -12 77 12	2 4	120 274	121 -7 7 280 7 9	531 113	515 Å 115 –4	0 0	$\frac{402}{144}$	447 158	о 4 о я	135 70	126 1	5	85	78 300	-7 1	1 37	28 175	
623	517 313 -2 136 426 9	8 36	359 - 12	4	149	142 -7 9	437	540 4 109 -	20	361 169	339	0 10	179	167 1	1	214	213	-8	0 275	273	
642	215 209 -2	10 12) 119 -12	6	198	186 -7 11	314	318 4	4	251	242	1 1	624	651 -1	9	248	240	-8	2 264	258	
6 8 1	-55 245 2 187 183 -2	12 15	2 149 13	1	178	182 -8 2	313	972 -4 318 4	6	519 409	412	1 3	181 386	178 14 423 -19	2 2	91 439 -	76 434	8 -8	4 144 4 397	(49 400	
-6 10 2	240 237 ~3	10	5 96~13 7 187 13	3	223	152 -8 4 222 8 6	520 69	507 4 73 -4	8 8	95 401	97 - 416 -	1 3 1 5	578 542 .	595 13 535 -13	2424	110 270 ;	110 265	-8 8	6 171 8 199	162 190	
6 12 1 -6 12 1	171 178 3 130 136 -3	3 51 3 40	1 502 -13 5 394 13	3 5	194 78	189 8 8 78 8 10	117	110 -4 155 4	10 12	165 366	164 381 -	1 7 1 7	227 359	211 10 346 - 10	2628	$\frac{60}{40}$	54 22	-8 1 9	0 102	104 72	
7 3 5	583 609 ~3	5 19	179 13	7	305	310 -8 10	79	88 -4	12	198	198	1 9	345	336 1	5 1	123	125	-9	1 291	297	

Tabelle 3. (Fortsetzung)

Fo F_c h k Fo F_c h k $\begin{array}{c} \mathbf{F} & \mathbf{0} & \mathbf$ k Fo Fc h P_c $\begin{array}{c} 82\\ 107\\ 63\\ 122\\ 6\\ 132\\ 11066\\ 9\\ 3\\ 1421\\ 225\\ 1441\\ 225\\ 1441\\ 225\\ 1421\\ 116\\ 1226\\ 224\\ 5\\ 7\\ 9\\ 366\\ 1249\\ 9\\ 3\\ 7\\ 1346\\ 1311\\ 1439\\ 209\\ 519\\ 65\\ 39\end{array}$ $\begin{array}{c} 10 & 1 & 1 & 6 \\ 1 & 1 & 5 & 5 \\ 1 & 269 \\ 2 & 4 \\ 4 & 1 & 5 \\ 1 & 5 & 5 \\ 1 & 27 \\ 1 & 29 \\ 1 & 20 \\ 1$ $\begin{array}{c} 43 \\ 1915 \\ 205 \\ 655 \\ 145 \\ 454 \\ 546 \\ 201 \\ 542 \\ 201 \\ 542 \\ 201 \\ 561 \\ 201 \\$ $\begin{array}{c} 4348\\ 313292\\ 52743\\ 3294\\ 313292\\ 52743\\ 3294\\ 313292\\ 52743\\ 3294\\ 313292\\ 52743\\ 3294\\ 3294\\ 3294\\ 3294\\ 31329\\$ $\begin{array}{c} 16\\ 400\\ 1008\\ 889\\ 1642\\ 2222421\\ 165\\ 1028\\ 880\\ 1642\\ 2222421\\ 165\\ 1028\\ 880\\ 1642\\ 2222421\\ 165\\ 1028\\ 880\\ 1642\\ 2222421\\ 165\\ 1028$ 2223333333444555556677788880 h 00111111122222333344444555566666778889 h 00111122233333445555667 h 0011222144 455 500 4177 288 4900 1023 24877 4851 1011 2222 49 1122 49 1122 49 203 185 4468803357799024668113355702446811133570024468113521 k 246811335577922448813557922446688135579224466881355722244666881 224466801113357799224668811335557792244668113355722441133241 k 1133557224461133522413 k 2681135577002246688133770024468133557002244613350024113021 k 461133557722 $\begin{array}{c} 223\\ 2411\\ 114\\ 648\\ 789\\ 1179\\ 658\\ 218\\ 793\\ 1266\\ 838\\ 2474\\ 3523\\ 1266\\ 818\\ 2474\\ 1047\\ 4014\\ 217\\ 3208\\ 865\\ 2514\\ 82\\ 1548$ 024601335779002244668800133557790022 42 230 73 377 208 185 109 187 162 164 108 237 200 197 142 166 292 104 139 217 122 363 148 70 157 52 517 211 224 297 82 113 393 40 205 272 72

Tabelle 4. Achsenlängen und Richtungscosinus der Temperaturellipsoide in Fülöppit(bezogen auf die Achsen a, b, c*)

Atom	B_{isotr}	Achse	В	$\cos(1)$	$\cos(2)$	$\cos(3)$
Pb(1)	$2,29{ m \AA}^2$	1	$3,17{ m \AA}^2$	0,903	0,000	0.429
、 <i>,</i>		2	2,00	0,000	1,000	0,000
-		3	1,70	-0,429	0,000	0,903
Ph(2)	2.15	1	1.78	0.907	0.362	-0.214
(- /	-,10	$\tilde{2}$	2.32	-0.324	0.926	0.193
		- 3	2,34	0,268	-0,106	0,958
Sh(1)	1 95	1	1.03	0.845	0.217	0.480
(1)uu	1,20	1	1,00	0,845	0,217	-0,489
		2	1,00	0,040	0,939	0,340
		ឋ	1,20	0,533	-0,266	0,803
Sb(2)	1,34	1	0,97	0,926	0,275	-0,260
		2	1,62	0,296	0,954	-0,046
		3	1,42	0,236	0,120	0,964
Sb(3)	1,14	1	0,77	0,958	-0,224	-0,178
		2	1,54	0,147	0,918	-0.367
		3	1,10	0,246	0,326	0,913
Sb(4)	1.81	1	1.95	0.797	0.595	-0.105
55(±)	1,01	9	9.35	0.377	0,000	0.683
		3	1,84	0,472	-0,504	0,033
C (1)		,		0.040	0.500	0.504
S(1)	1,11	1	0,74	0,610	0,588	-0,531
		2	0,96	-0,655	0,751	0,078
		3	1,64	0,445	0,300	0,844
S(2)	1,52	1	1,67	0,918	-0,389	-0,080
		2	0,89	0,232	0,689	-0,687
		3	1,99	0,323	0,611	0,722
S(3)	1,43	1	0.84	0.678	0,238	0.696
. ,		2	1.25	-0.459	0.876	0.147
		3	2,21	-0,574	-0,419	0,703
S(4)	0.97	1	0.71	0.851	0.511	0.190
N(T)	0,01	9	0.02	-0.459	0,511	-0.663
		3	1,21	0,267	0,619	0,739
87.20		_		0.000	0.005	0.000
8(5)	1,57	1	0,84	0,832	-0,385	-0,398
	i i	Z	1,18	0,509	0,815	0,276
	1	3	2,69	0,218	-0,433	0,875

Atom	$B_{ m isotr}$	Achse	В	$\cos(1)$	$\cos(2)$	$\cos(3)$
S(6)	1,27	1	1,64	0,768	0,471	-0,434
		$\begin{vmatrix} 2\\ 3 \end{vmatrix}$	0,83 1,34	-0,482 0,422	0,871 0,138	$0,092 \\ 0,896$
S(7)	1,19	1	0,92	0,568	0,484	-0,666
		$\begin{vmatrix} 2\\ 3 \end{vmatrix}$	1,00 1,66	-0,476 0,672	$\begin{array}{c}0,853\\0,195\end{array}$	$0,215 \\ 0,715$
S(8)	$1,\!46$	1	0,84	0,801	0,000	0,599
		$\begin{vmatrix} 2\\ 3 \end{vmatrix}$	1,35 2,18	0,000 -0,599	1,000 0,000	0,000 0,801

Tabelle 4. (Fortsetzung)

Quadrate mit den sechs Metallagen, isotropen Temperaturfaktoren und den 990 stärksten Reflexen ($F_{\rm obs} > 100,0$) senkten den R-Wert auf 24,5%/0. Eine Fourier- und Differenz-Fouriersynthese zeigte fünf der acht Schwefellagen, und mit einigen Verfeinerungszyklen sank der *R*-Wert auf $10,60/_0$. Einer weiteren Differenz-Fouriersynthese konnten die restlichen drei S-Lagen entnommen werden. Mit isotropen Temperaturfaktoren und allen beobachteten Reflexen erhielten wir einen R-Wert von $6,0^{0}/_{0}$. Nun wurden anisotrope Temperaturfaktoren eingeführt und mit den 2130 beobachteten Reflexen auf $4,1^{0}/_{0}$ verfeinert. Für alle unabhängigen Reflexe ergibt sich ein R-Wert von 5,5% Wegen der hohen anomalen Streuung der Pb-Atome ($\Delta f' = 4$, $\Delta t'' = 10-9$) wurde zusätzlich durch eine erweiterte Strukturfaktorformel der anomale Streuanteil berücksichtigt. Einige Verfeinerungszyklen mit den beobachteten Reflexen ergaben einen R-Wert von 3,8%/0. Die endgültigen Parameter sind in Tab. 2 zusammengestellt. Tab. 3 enthält die mit diesen Parametern berechneten F_{o} - und $F_{\rm c}$ -Werte. Die Hauptachsen der Temperaturellipsoide sind in Tab. 4 aufgeführt.

Beschreibung der Struktur

Die Atomabstände und Bindungswinkel sind in den Tab. 5 und 6 zusammengestellt. Fig. 1 zeigt eine Projektion der Fülöppitstruktur ||b. Die Koordinationspolyeder um die Metallatome sind in Fig. 2, diejenigen um die Schwefelatome in Fig. 3 dargestellt.

Der Fundamentalbereich (\equiv asymmetrische Einheit) des Fülöppits enthält 14 Atome. Pb(1), in spezieller Lage auf der zweizähligen Achse,

Fig. 1. Projektion der Struktur des Fülöppits $\| b$

Fig.2. Koordination der Pb- und Sb-Atome im Fülöppit

Fig. 3. Koordination der S-Atome im Fülöppit

besitzt eine sehr unregelmäßige Achter-Koordination, die sich als Antiwürfel (square antiprism) beschreiben läßt. $S(4)_4$, $S(7)_4$, $S(5)_4$ und $S(2)_5$ bilden die obere Basis und sind gegenüber der unteren Basis, die von $S(5)_1$, $S(7)_1$, $S(4)_1$, $S(2)_8$ gebildet wird, um ca. 40° verdreht. Die Abstände [Pb(1)—S] liegen zwischen 2,830 und 3,679 Å; der Mittelwert beträgt 3,193 Å. Er ist vergleichbar mit dem Mittelwert von 3,12 Å anderer Achter-Koordinationen des Pb (NOWACKI, 1969). Pb(1) von Fülöppit ist mit Pb(1) (2,851—3,682 Å) von Plagionit (CH0 und WUENSCH, 1974) oder mit dem fünften Pb von Semseyit (KOHATSU und WUENSCH, 1974) vergleichbar. Pb(2), in allgemeiner Lage, ist von sieben S-Atomen umgeben. Dieses Polyeder läßt sich als verzerrtes Oktaeder beschreiben mit S(2), S(7), S(6), S(5) als Basis und S(1) als Spitze; das andere Ende ist aufgespalten und von zwei S-Atomen,

S(3) und S(8), besetzt. Die Abstände variieren zwischen 2,766 und 3,314 Å; der Mittelwert beträgt 3,009 Å. Der Mittelwert anderer Siebener-Koordinationen des Pb beträgt 3,045 Å (NOWACKI, 1969). Pb(2) von Fülöppit ist analog zu Pb(2) von Plagionit (2,828–3,326 Å).

Die Sb-Atome, in allgemeiner Lage, besitzen die übliche trigonalpyramidale Koordination mit mittleren (Sb—S)-Abständen von 2,467 bis 2,583 Å. Sie sind in recht guter Übereinstimmung mit dem (Sb—S)-Abstand für kovalente Bindung von 2,45 Å. Sb(4) ist noch von einem vierten S-Atom im Abstand von 2,864 Å umgeben. Alle anderen (Sb—S)-Abstände sind größer als 3,0 Å. Die mittleren Bindungswinkel für die Sb-Pyramiden liegen zwischen 88,92° und 92,92°.

Die Koordinationspolyeder um die acht S-Atome sind in Fig.3 dargestellt. S(1) ist von zwei Metallatomen umgeben. Die Bindung ist stark gewinkelt (98,74°). S(2), S(3) und S(4) sind dreifach koordiniert.

Pb(1)		Pb(2)
$2,830 \pm 0,003$ Å	S(1)	2.766 ± 0.003 Å
2,830 + 0.003	S(1)s S(7)	$2,100 \pm 0,000 \Pi$ 2,905 ± 0.003
2.939 + 0.002	S(2)	$2,000 \pm 0,000$ 2 917 ± 0.003
2.939 ± 0.002	S(2)8 S(5)	$2,317 \pm 0,003$
3323 ± 0.003	$S(0)_1$	$2,901 \pm 0,003$
3323 ± 0.003	$S(0)_1$	$3,021 \pm 0,003$
$3,525 \pm 0,005$ 3,670 + 0,003	S(3)1	$3,182 \pm 0,003$
$3,079 \pm 0,003$	$S(8)_{5}$	$3,314 \pm 0,002$
$3,079 \pm 0,003$	Mittel	3.009
3,193	mitter	0,000
	}	Sb(2)
Sb(1)	~	
9 490 1 0 009	S(5)7	$2,477 \pm 0,003$
$2,420 \pm 0,003$	$S(1)_2$	2,524 \pm 0,003
$2,474 \pm 0,003$	$S(4)_6$	$2,567 \pm 0,002$
$2,507 \pm 0,003$	NC44.1	9 799
9 467	MITTEL	2,323
2,407		Sh(4)
Sb(3)	ł	SD(4)
	S(6)7	$2,\!460\pm0,\!003$
$2,\!482\pm0,\!003$	$S(7)_4$	$2,620\pm0,003$
$2,485\pm0,003$	$S(5)_{1}$	$2,669 \pm 0,003$
$2,\!491\pm0,\!003$	$\mathbf{S}(6)_5$	$2,864 \pm 0,003$
2,486	Mittel für	
	Koordinati	onszahl 3 2,583 Å
	Koordinati	${ m onszahl}$ 4 2,653 Å
	$\begin{array}{c} {\rm Pb}(1)\\ 2,830\pm 0,003\ {\rm \AA}\\ 2,830\pm 0,003\\ 2,939\pm 0,002\\ 2,939\pm 0,002\\ 3,323\pm 0,003\\ 3,323\pm 0,003\\ 3,679\pm 0,003\\ 3,679\pm 0,003\\ 3,679\pm 0,003\\ 3,679\pm 0,003\\ 3,679\pm 0,003\\ 2,420\pm 0,003\\ 2,474\pm 0,003\\ 2,507\pm 0,003\\ 2,467\\ {\rm Sb}(3)\\ 2,482\pm 0,003\\ 2,485\pm 0,003\\ 2,485\pm 0,003\\ 2,485\pm 0,003\\ 2,481\pm 0,003\\ 2,486\\ \end{array}$	$\begin{array}{c cccccc} Pb(1) \\ 2,830 \pm 0,003 \ \mathring{A} \\ 2,830 \pm 0,003 \\ 2,939 \pm 0,002 \\ 3,323 \pm 0,003 \\ 3,323 \pm 0,003 \\ 3,679 \pm 0,003 \\ 2,420 \pm 0,003 \\ 2,474 \pm 0,003 \\ 2,507 \pm 0,003 \\ 2,485 \pm 0,003 \\ 2,485 \pm 0,003 \\ 2,486 \\ \end{array} \begin{array}{c} S(5)_7 \\ $

Tabelle 5. Atomabstände in Fülöppit

208

_

	S(1)		S(2)
$Sh(2)_{2}$	2.524 ± 0.003 Å	Sh(1)	2.420 ± 0.003 Å
Pb(2)	$2,766 \pm 0.003$	$Pb(1)_5$	$2,830 \pm 0.003$
2 (-)8	_,	$Pb(2)_8$	2.917 ± 0.003
		/8	
	S(3)		S(4)
$Sb(1)_1$	2.474 ± 0.003	$Sb(3)_1$	2.491 ± 0.003
$Sb(3)_1$	2.482 ± 0.003	$Sb(2)_6$	2.567 ± 0.002
$Pb(2)_1$	3,182 + 0,003	$Pb(1)_1$	2,939 + 0,002
()-	, <u> </u>		, <u> </u>
	S(5)		S(6)
$Sb(2)_{7}$	$2,477 \pm 0,003$	$Sb(4)_7$	$2,460 \pm 0,003$
$Sb(4)_1$	$2,669 \pm 0,003$	$Pb(2)_1$	$3,021 \pm 0,003$
$Pb(2)_1$	$2,961 \pm 0,003$		
$Pb(1)_1$	$3,679 \pm 0,003$	$Sb(4)_5$	$2,864\pm0,003$
	S(7)	1	S(8)
$Sb(3)_1$	$2,485 \pm 0,003$	$Sb(1)_8$	$2,507 \pm 0,003$
$Sb(4)_4$	$2,620 \pm 0,003$	$Sb(1)_5$	$2,507 \pm 0,003$
$Pb(2)_8$	$2,905 \pm 0,003$	$Pb(2)_8$	$3,306 \pm 0,002$
$Pb(1)_1$	$3,323\pm0,003$	$Pb(2)_5$	$\textbf{3,306} \pm \textbf{0.002}$
		•	

Tabelle 5. (Fortsetzung)

Die trigonalen Pyramiden sind mehr oder weniger flach. So betragen die mittleren Bindungswinkel für S(2) 100,28°, für S(3) 117,12° und für S(4) 102,95°. Die Koordination von S(6) ist 2 + 1. Sb(4)₇ und Pb(2)₁ bilden die unter 105,47° gewinkelte Zweier-Koordination. Nimmt man den Abstand Sb(4)₅—S(6) von 2,864 Å noch als Bindung hinzu, so entsteht eine trigonale Pyramide mit einem mittleren Bindungswinkel von 97,93°. S(5) und S(7) besitzen Vierer-Koordination. Die Bindungen Sb(4)—S(5)—Pb(2) (163,35°) und Pb(2)—S(7)—Pb(1) (150,05°) sind nur schwach gewinkelt. Alle anderen Winkel liegen nahe bei 90°, so daß sich diese Koordination als verzerrtes, unvollständiges Oktaeder beschreiben läßt. S(8), in spezieller Lage auf der 2zähligen Achse, ist deformiert tetraedrisch von Sb(1) und Pb(2) umgeben. Der mittlere Tetraederwinkel beträgt 108,8°.

Der neben den Pb-Atomen strukturbestimmende Baustein des Fülöppits ist die Sb₈S₁₅-Gruppe, die in Fig. 4 dargestellt ist. Sie besteht aus zwei Sb₃S₆-Ringen, die über ein digyrisch-symmetrisches Sb₂S₃-Kettenstück miteinander zu einer endlichen Sb₈S₁₅-Gruppe verknüpft sind. Der Sb₃S₆-Ring wird von Sb(2), Sb(3) und Sb(4) mit

Z. Kristallogr. Bd. 142, 3/4

S(4), S(7), S(5) und S(1), S(6), S(3) aufgebaut. Das Sb₂S₃-Kettenstück besteht aus zwei Sb(1), zwei S(2) und dem digyrischen S(8). Ring und Kettenstück sind über das S(3) untereinander verbunden. Diese Sb₈S₁₅-Gruppen werden über die Pb-Atome eng miteinander verknüpft. So verbindet Pb(1) zwei Ringe und ein Kettenstück und Pb(2) drei Ringe und zwei Kettenstücke miteinander. Die enge Verknüpfung gestattet Hohlräume im Gitter und Andeutungen von Schichten-

PD(1) $PD(2)$	
$S(2)_{\circ} - Pb(1) - S(2)_{\circ} = 85.87 \pm 0.09^{\circ}$ $S(1)_{\circ} - Pb(2) - S(2)_{\circ} = 84$	$44 \pm 0.08^{\circ}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	47 ± 0.09
$-S(5)_1$ 83.75 ± 0.07 $-S(5)_1$ 76	$.22 \pm 0.08$
$S(2)_5 - Pb(1) - S(4)_4 = 71.96 + 0.07 = S(2)_8 - Pb(2) - S(3)_1 = 71$	$.08 \pm 0.09$
$-S(5)_1$ 134.15 + 0.11 $-S(7)_8$ 91	$.06 \pm 0.08$
$S(4)_4 - Pb(1) - S(7)_4 = 70.54 + 0.07$ $S(3)_1 - Pb(2) - S(5)_1 = 90$	$.12 \pm 0.08$
$-S(5)_1 = 64,06 \pm 0.07$ $-S(6)_1 = 127$	$.51 \pm 0.10$
$S(4)_1 - Pb(1) - S(5)_1 = 125,72 + 0.08 - S(7)_8 = 112$.81 + 0.06
$-S(7)_1$ 70,54 \pm 0,08 $-S(8)_5$ 61	,15 + 0,05
$S(7)_4 - Pb(1) - S(5)_1 = 64,38 \pm 0,08$ $S(5)_1 - Pb(2) - S(6)_1 = 86$	$,30 \pm 0,08$
$-S(5)_4$ 75,92 \pm 0,06 $S(6)_1$ -Pb(2)-S(8) ₅ 71	,16 + 0,04
$S(7)_1 - Pb(1) - S(5)_4 = 64,38 \pm 0,06$ $S(7)_8 - Pb(2) - S(8)_5 = 82$	$.80 \pm 0.09$
$-S(5)_1$ 75,92 \pm 0,07	
$S_{(5)_4}$ -Pb(1)- $S_{(5)_1}$ 132,68 \pm 0,08	
Sb(1) Sb(2)	
$S(2)_1 - Sb(1) - S(3)_1 = 98.69 + 0.10$ $S(5)_7 - Sb(2) - S(1)_2 = 90$	0.07 ± 0.10
$S(2)_1 - Sb(1) - S(8)_5 = 96,91 \pm 0,09$ $S(5)_7 - Sb(2) - S(4)_6 = 89$	9.94 ± 0.09
$S(3)_1 - Sb(1) - S(8)_5 = 83,17 \pm 0,09$ $S(1)_2 - Sb(2) - S(4)_6 = 96$,44 ± 0,08
Mittel 92,92 Mittel 92	,15
Sb(3) Sb(4)	
$S(3)_1 - Sb(3) - S(7)_1 = 89.53 + 0.09$ $S(6)_7 - Sb(4) - S(7)_4 = 90$	0.09 + 0.09
$S(3)_1 - Sb(3) - S(4)_1 = 92,30 \pm 0,09 - S(5)_1 = 86$,61 + 0,10
$S(7)_1 - Sb(3) - S(4)_1$ 93,66 \pm 0,09 $S(7)_4 - Sb(4) - S(5)_1$ 90	$0,05 \pm 0,09$
Mittel 91,83 S(6) ₇ -Sb(4)-S(6) ₅ 82	2.05 ± 0.09
$S(7)_4 - Sb(4) - S(6)_5 = 87$	7.72 + 0.08
$S(5)_1 - Sb(4) - S(6)_5 = 168$	3,43 + 0,39
Mittel für	
$\begin{array}{c c} Sb(3) & Sb(4) \\ \hline S(3)_1 - Sb(3) - S(7)_1 & 89,53 \pm 0,09 \\ \hline S(2)_2 - Sb(2) - S(4)_2 - S(4)_2 - S(5)_2 & 86 \\ \hline S(3)_2 - Sb(3) - S(4)_2 - S(5)_2 & 86 \\ \hline S(3)_2 - S(5)_2 & 8$),09 <u>-</u>

Tabelle 6. Bindungswinkel in Fülöppit

Koordinationszahl 3 88,92° Koordinationszahl 4 100,52°

Tabelle 6. (Fortsetzung)

S(1) Sb(2) ₂ -S(1)-Pb(2) ₈ 98,74 \pm 0,09 $^{\circ}$	$\begin{array}{c} {\rm S(2)}\\ {\rm Sb(1)_1-S(2)-Pb(1)_5} \ 102,29 \pm 0,09 \\ {\rm Sb(1)_1-S(2)-Pb(2)_8} \ 101,63 \pm 0,08 \\ {\rm Pb(1)_5-S(2)-Pb(2)_8} \ 96,92 \pm 0,10 \end{array}$
$\begin{array}{c} {\rm S(3)}\\ {\rm Sb(1)_1-S(3)-Sb(3)_1\ 104,63\pm 0,12}\\ {\rm Sb(1)_1-S(3)-Pb(2)_1\ 103,72\pm 0,08}\\ {\rm Sb(3)_1-S(3)-Pb(2)_1\ 143,01\pm 0,12}\end{array}$	$\begin{array}{c} {\rm S(4)}\\ {\rm Sb(3)_1-S(4)-Sb(2)_6} \ 101,01 \pm 0,10\\ {\rm Sb(3)_1-S(4)-Pb(1)_1} \ 97,77 \pm 0,08\\ {\rm Sb(2)_6-S(4)-Pb(1)_1} \ 110,08 \pm 0,09 \end{array}$
$\begin{array}{c} {\rm S(5)}\\ {\rm Sb(2)_7 {} S(5) {} Sb(4)_1 \ 101,63 \pm 0,10}\\ { {\rm Pb}(2)_1 \ 94,84 \pm 0,10}\\ { {\rm Pb}(1)_1 \ 92,32 \pm 0,09}\\ {\rm Sb}(4)_1 {} S(5) { {\rm Pb}(2)_1 \ 163,35 \pm 0,34}\\ { {\rm Pb}(1)_1 \ 96,82 \pm 0,09}\\ {\rm Pb}(2)_1 {} S(5) { {\rm Pb}(1)_1 \ 79,96 \pm 0,08}\end{array}$	$\begin{array}{c} {\rm S(6)}\\ {\rm Sb(4)_7-S(6)-Pb(2)_1} \ 105,47 \pm 0,09\\ {\rm Sb(4)_7-S(6)-Sb(4)_5} \ 97,95 \pm 0,10\\ {\rm Sb(4)_5-S(6)-Pb(2)_1} \ 90,36 \pm 0,08 \end{array}$
$\begin{array}{c} {\rm S(7)}\\ {\rm Sb(3)_1S(7)Sb(4)_4} \ 100,24\pm 0,08\\ -{\rm Pb(2)_8} \ 103,10\pm 0,08\\ -{\rm Pb(1)_1} \ 88,63\pm 0,09\\ {\rm Sb(4)_4-S(7)-Pb(2)_8} \ 98,04\pm 0,09\\ -{\rm Pb(1)_1} \ 106,97\pm 0,09\\ {\rm Pb(2)_8-S(7)-Pb(1)_1} \ 150,05\pm 0,05\\ \end{array}$	$\begin{array}{c} {\rm S(8)}\\ {\rm Sb(1)_8-S(8)-Sb(1)_5} \ 100,56 \pm 0,16\\ -{\rm Pb}(2)_8 \ 99,39 \pm 0,02\\ -{\rm Pb}(2)_5 \ 110,21 \pm 0,03\\ {\rm Sb(1)_5-S(8)-Pb}(2)_8 \ 110,21 \pm 0,03\\ -{\rm Pb}(2)_5 \ 99,39 \pm 0,02\\ {\rm Pb}(2)_8-{\rm S(8)-Pb}(2)_5 \ 133,11 \pm 0,14\\ \end{array}$

Fig. 4. Die Sb₈S₁₅-Gruppe im Fülöppit

14*

A. EDENHARTER und W. NOWACKI

Fig. 5. Zwei zentrosymmetrische, halbe Sb₈S₁₅-Gruppen

bildung, hingegen keine ausgezeichnete Spaltbarkeit, wie sie die anderen Sulfosalze der Plagionitgruppe aufweisen. Eine zusätzliche Stabilisierung der Ringe wird vermutlich durch den etwas längeren Abstand [Sb(4)—S(6)] von 2,864 Å erreicht, der in Fig.5 gestrichelt gezeichnet ist. Betrachtet man diesen etwas größeren Abstand noch als Bindung, so werden aus den endlichen Sb₈S₁₅-Baugruppen unendliche Ketten. Der Fülöppit gehört in der Klassifikation der Sulfosalze von NOWACKI (1968, 1969, 1970) mit einem Verhältnis von S:Sb = $\varphi = 1,9$ zur Gruppe V mit $1 < \varphi < 2$. Die Klassifikation unterscheidet zwischen endlichen Gruppen (V.a₁) und unendlichen Ketten (V.a₂). Der Fülöppit läßt sich hier nicht eindeutig einordnen, sondern scheint ein Grenzfall zu sein.

Die Fülöppitstruktur weist PbS-ähnliche Bezirke in Ebenen $||(\overline{1}12)$ auf. Es sind beinahe geradlinige Kettenstücke Pb—S—Sb—S—Sb—S ungefähr parallel [120] vorhanden; die Bezirke bestehen aus 4 + 5 "Würfeln"" (im allgemeinen mit 1 Pb-, 3 Sb- und 4 S-Ecken, außer einem, der 2 Pb, 2 Sb und 4 S-Ecken hat), gemäß folgendem Schema parallel aneinandergelagert

Fig. 6. Die Sb₈S₁₇-Gruppe im Plagionit

wobei die Pb* allerdings *sehr* große Verzerrungen der "Würfel" verursachen, so daß die "PbS-Ähnlichkeit" hier schon etwas gezwungen erscheint.

Die Beschreibung der Strukturen komplizierter Sulfosalze, zur Hauptsache als aus PbS- oder Sb₂S₃-ähnlichen Bereichen bestehend, erscheint uns aber wenig sinnvoll, da diese Konzeption für die Ermittlung neuer Strukturen nicht weiterhilft, im Gegensatz zu unserer allgemeinen Klassifikation, welche Anregungen für die Berücksichtigung der verschiedenen, theoretisch ableitbaren, Verknüpfungsmöglichkeiten von (As-, Sb-, Bi-) Pyramiden gibt.

Ein Vergleich der Struktur des Fülöppits mit derjenigen des Plagionits zeigt, daß auch bei diesem eine dem Fülöppit sehr ähnliche Baugruppe, die Sb₈S₁₇-Gruppe, existiert. Sie ist in Fig.6 dargestellt. Die beiden zusätzlichen S-Atome werden eingeführt, indem je ein Sb₃S₆-Ring aufgebrochen wird. Zwei etwas längere (Sb—S)-Abstände, nämlich Sb(1)—S(7) = 2,92 Å und Sb(4)—S(1) = 3,03 Å, stabilisieren vermutlich die aufgebrochenen Ringe. Das Sb₂S₃-Kettenstück bleibt unverändert. Die mittleren (Sb—S)-Abstände der SbS₃-Pyramiden, welche die Sb₈S₁₇-Gruppe aufbauen, betragen für Sb(1) 2,63 Å, für Sb(2) 2,51 Å, für Sb(3) 2,64 Å und für Sb(4) 2,52 Å.

Ein weitergehender Strukturvergleich der Sulfosalze der Plagionitgruppe kann erst gemacht werden, wenn die verfeinerten Strukturen

von Plagionit und Semseyit vorliegen und wenn die Struktur des Heteromorphits im Detail bekannt ist (vorläufige Mitteilung EDEN-HARTER und NOWACKI, 1975).

Die Berechnungen wurden auf der IBM 370 der BEDAG, Bern, mit Hilfe einer in PL/1 geschriebenen Programmbibliothek von P. ENGEL, Bern, ausgeführt. Das Block-Matrix-Programm für anomale Streuung schrieb T. Ito (vormals Bern).

Wir sind Herrn Dr. GABE (Ottawa) für einen Heteromorphitkristall und Privatdozent Dr. P. ENGEL für verschiedene Hilfe sehr zu Dank verpflichtet. Die Untersuchung wurde vom Schweizerischen Nationalfonds (Projekt Nr. 2.516.71) und von der Stiftung Entwicklungsfonds Seltene Metalle unterstützt, wofür an dieser Stelle bestens gedankt sei.

Anhang

Nach Beendigung dieser Arbeit erschien ein Abstract von NUFFIELD (1974), der die Struktur von Fülöppit ebenfalls bestimmt hat. NUFFIELD teilt die Struktur formal in einen Komplex $Pb_2Sb_4S_6$ und einen anderen $PbSb_4S_9$ auf.

Literatur

- SEUNG-AM CHO and B. J. WUENSCH (1970), Crystal chemistry of the plagionite group. Nature [London] 225, 444-445.
- SEUNG-AM CHO and B. J. WUENSCH (1974), The crystal structure of plagionite, Pb₅Sb₈S₁₇, the second member in the homologous series Pb_{3+2n}Sb₈S_{15+2n}.
 Z. Kristallogr. 139, 351-378.
- A. EDENHARTER und W. NOWACKI (1974), Die Kristallstruktur von Fülöppit. N. Jahrb. Min., Monatsh., 92-94.
- A. EDENHARTER und W. NOWACKI (1975), Die Kristallstruktur von Heteromorphit. N. Jahrb. Min., Monatsh., 193-195.
- I. DE FINALY and S. KOCH (1929), Fülöppite, a new Hungarian mineral of the plagionite group. Min. Mag. 22, 179-184.
- J. L. JAMBOR (1969), Sulphosalts of the plagionite group. Min. Mag. 37, 442-446.
- W. A. KLJACHIN, A. A. GODOWIKOW und E. G. JAGOPHAROWA (1969), [Hydrothermale Synthese von Blei-Antimonsulfosalzen]. Eksper. Issl. Mineralogii (1968-1969). Akad. Nauk SSSR, Sib. Otdel., Inst. Geol., Geofisiki, Nowosibirsk, 50-57.
- J. J. KOHATSU and B. J. WUENSCH (1974), Semseyite (Pb₉Sb₉S₂₁) and the crystal chemistry of the plagionite group, Pb_{3+2n}Sb₈S_{15+2n}. Amer. Crystallogr. Assoc. Spring Meeting, March 24–28, Univ. of California, Program and Abstracts, B6, p. 40.
- W. NOWACKI (1968), Zur Kristallchemie und Klassifikation der Sulfosalze. Z. Kristallogr. 128, 427-428.
- W. NOWACKI (1969), Zur Klassifikation und Kristallchemie der Sulfosalze. Schweiz. Miner. Petrogr. Mitt. 49, 109-156.

- W. NOWACKI (1970), Zur Klassifikation der Sulfosalze. Acta Crystallogr. B26, 286-289.
- E. W. NUFFIELD (1946), Studies of mineral sulpho-salts: XII. Fülöppite and zinckenite. Univ. Toronto Studies, Geol. Ser. 50, 49-62.
- E. W. NUFFIELD (1974), The crystal structure of fülöppite (Pb₃Sb₈S₁₅). Amer. Crystallogr. Assoc., Summer Meeting, August 18-23, Pennsylvania State University, Program and Abstracts, R. 6, p. 270.
- E. W. NUFFIELD and M. A. PEACOCK (1945), Studies of mineral sulpho-salts: VIII. Plagionite and semseyite. Univ. Toronto Studies, Geol. Ser. 49, 17–39.
- L. J. SPENCER (1899), Plagionite, heteromorphite and semseyite as members of natural group of minerals. Min. Mag. 12, 55-68.
- H. STRUNZ (1970), Mineralogische Tabellen. 5. Aufl., S. 148. Akademische Verlagsgesellschaft, Leipzig.