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Abstract. The crystal" chemistry of viridines and kanonaite,
(Al _,_ ,Mn}™ Fe}*), (O]SiO,), has been evaluated with special reference
to the behavior of Mn** in this andalusite type structure. Five natural
samples (from Ultevis: x =0.012, » =0.028; from Yakutia: x = 0.076,
y=0.046; from Tanzania: x = 0.091, y=0.031; from Darmstadt:
x=10.171, y = 0.048; from Kanona: x = 0.340, y = 0.009) and two syn-
thetic viridines (P135: x = 0.173, y = 0.005; P150: x = 0.22, y = 0) have
been studied by means of X-ray powder diffraction, single crystal-structure
refinements, 7 Fe y-resonance spectroscopy, and optical absorption micro-
spectroscopy.

The structure refinements reveal that the transition metal ions substitute
for Al almost exclusively in the distorted octahedral Al(1) site of the
andalusite structure type within the entire mixed crystal series. This is
independently proven by the Mdssbauer results for >’Fe, which show that
only 10 to 159, of total iron is present in the Al(2) trigonal-bipyramidal site.
With increasing substitution, the octahedral (c/a),, ratio increases. This
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result is corroborated by the increasing energy of the Mn®* °B, —°A,,
transition as determined from the optical spectra. The increasing octahedral
elongation leads to a tilting of both the Al(2)O, trigonal bipyramids and SiO,
tetrahedra, and to slight changes of several of the Al(2)—O bond distances.
These changes, although similar to those observed at high temperatures
(Winter and Ghose, 1979), are considerably stronger than those caused by
high temperature (e.g., 4(c/a),/(c/a),, to be extrapolated for x = 0.5 is
approximately 0.1 while at 1000° C this relative change is only 0.035]. In the
optical spectra, spin-allowed and spin-forbidden transitions of Mn** are
identified near 15000 cm ™! [°B,— A4 ,(D)]. 18000cm ' (3B, ,—[*T},(H)]},
19700cm™" {°B,,— [>Ty, (H)]}, 21800cm™" [*B,,— B, (D)}, 23300cm '
[°B,,— °E,(D)] and spin forbidden Fe** transitions near 19700cm™"
{°4,, - [*T,,(G)]}, 20800 cm ™' {°4,, > [*T, (G)]}, 22300 cm ™" {°4,, -
[*4,4 *EJ(G)}, 23300cm™"  {°4,,—[*4,,, *E])(G)}. The crystal-field pa-
rameter 10 Dg for Mn®* decreases in the whole series by approximately
10%,. However, this effect is compensated by increasing groundstate splitt-
ing such that the crystal field stabilazation energy of Mn** is nearly constant,
198 + 2 kJ/g-atom Mn**, in the whole range of solid solutions, 0.0 < x < 0.4,
which were studied.

1. Introduction

The aluminium silicates, andalusite, sillimanite, and kyanite, play a pro-
minent role in metamorphic petrology and in the ceramic and material
sciences. Therefore their crystal chemistry has been studied by numerous
investigators (e.g., Burnham and Buerger, 1961; Burnham 1963a and b;
Holujet al., 1966; Chinner et al., 1969; Strens, 1968 ; Faye and Nickel, 1969;
Faye and Harris, 1969; Smith and Strens, 1976; Langer, 1976, and authors in
the legend of Fig.1). Their work includes 3d transition-metal ion sub-
stitutions for Al, the partition behavior of the 3 d ions between the different
polymorphs, and the influence of such substitutions on the thermodynamic
and physical properties of the respective minerals.

One of the results of the above crystallochemical and geochemical
research was that manganese may be incorporated in the andalusite structure
type in large amounts (Fig. 1), while in natural sillimanites and kyanites only
trace to minor amounts of this element may be present. Furthermore, the
maximum iron contents in manganese-free andalusites (Fig. 1) do not greatly
exceed those of sillimanites and kyanites while, in combination with
manganese, the iron contents may be appreciably higher (Fig. 1). The PT-
stability range of the andalusite-type phase is greatly enlarged by manganese
substitutions compared with the pure Al,[O|SiO,]-polymorph as evident
from experimental work (Abs-Wurmbach et al., 1980).
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Fig. 1. Composition of natural Mn3*, Fe3*-, and synthetic Mn**-bearing andalusite type
minerals (viridines and kanonaites). Localities are designated by different symbols, where closed
and open ones refer to samples studied in the present paper (Table 1) or to literature data,
respectively. Symbols used :7 Vestani/Sweden, AUltevis/Sweden, ¢ Darmstadt/Germany, O or
(O Salm Chiteau/Belgium, ¢ Kiawa Mountain/New Mexico USA, [CJ Hidaka
Mountains/Hokkaido Japan, (0 South Yakutia/Siberia USSR, O Kanona/Zambia, ¥ Central
and Western Australia, <> Mhwana/Tanzania, <2 Steinach/Germany, synthetic viridines.
Numbers beside the symbols refer to the respective literature from which the analytical data were
taken (1. Biackstrom, 1896; 2. Odmann, 1950; 3. Klemm, 1911 ; 4. Abraham and Schreyer, 1975;
5. Kramm, 1973; 6. Kramm, 1979; 7. Heinrich and Corey, 1959; 8. Grapes and Hashimoto,
1977; 9. Serdyuchenko, 1949; 10. Kulish, 1961; 11. K. Abraham, personal communication; 12.
Vranaetal., 1978; 13. S. Hill, personal communication 1977; 14. Prider, 1960 15. Meinhold and
Frisch, 1970; 16. Okrusch and Evans, 1970; 17. Abs-Wurmbach et al., 1979)

A crystallochemical study of andalusites containing Mn and Fe was thus
necessary to elaborate the basis for an explanation of these observations.
Such a study is undertaken in the present paper by means of techniques
including structure refinements and spectroscopy in order to determine the
behavior of manganese and iron in the andalusite structure. The aim is to
evaluat the crystallochemical properties as a function of the degree of the Mn
and Fe substitutions.



84 I. Abs-Wurmbach et al.: (Mn**,Fe®*)-substituted andalusites

Optical spectra of andalusites containing Mn and Fe (viridine ') taken in
the visible range were presented as early as 1934 by Corin and 1948 by
Shabynin. Shabynin (1948) concluded from his spectra that manganese
should be divalent, which would require incorporation of equivalent
amounts of protons for charge balance. This interpretation was rejected
by later spectral work (Abs-Wurmbach et al., 1977; Halenius, 1978),
which permits the conclusion that both 3d elements are present in the
trivalent state. However, this later work has left open questions concerning
the concentration dependence of spectral parameters and the role of Fe® " dd
transitions in the spectra obtained.

This paper presents, therefore, structural and spectroscopic results for a
series of natural andalusite-type minerals containing Mn** and Fe’",
including the new Mn-rich kanonaite, and for synthetic iron-free andalusites
containing Mn?~. The latter synthetic samples provide the possibility to
identify Fe®* bands in the natural Mn3*, Fe** members containing Fe** in
addition to Mn**,

2. Experimental
Samples

The natural and synthetic mineral samples studied are light to deep green,
almost black, and strongly pleochroic with X and Z yellowish green and Y
emerald green. Source, composition, and lattice constants are summarized in
Table 12.

X-ray diffraction

Manganese bearing andalusites (viridines and kanonaite) are orthorhombic,
space group Pnnm, as is the pure aluminum end member, andalusite. Space
group Pnnm had already been used in the first structure determination of
andalusite (Taylor, 1929).
Lattice constants of the synthetic viridines were determined by the
Guinier method using CuKw, radiation (4= 0.154051 nm) and silicon
! Klemm (1911) introduced the name viridine for bright green Mn-bearing andalusites a name
which has been well-established in the litcrature since that time. However, following a proposal
of S. Vrana, who discovered an andalusite-type mineral exceptionally rich in Mn (Vrana et al.,
1978), the Commission on New Minerals and Mineral Names of the IMA has deleted the name
viridine, and suggested the name kanonaite for the end member Mn** Al1[O ] SiO,]. According to
the decision of the Commission, andalusites with x < 0.25 Mn** (less than 50 mole °; kanonaite)
should be called manganian andalusite, those with x > 0.25 Mn** (more than 50 mole %,
kanonaite) aluminous kanonaite

2 Some results on the samples ULT and DAR have recently been published in a short
communication (Abs-Wurmbach et al., 1977). In this paper the locality of the Ultevis viridine
was erroneously called “Laisvall’. Also, due to a typing error, wrong y values were quoted for
ULT and DAR in the paper referred to, and should be replaced by the values given in this paper
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(¢, = 0.54305 nm) as an internal standard. The measurements were indexed
and refined by a program written by Evans et al. (1963). Cell parameters of
natural samples (Table 1) were determined from single crystals and refined by
a least-squares fit to the angular settings of large-angle reflections (0 > 20°)
on an automatic four-circle diffractometer, using MoKa, radiation
(= 0.070926 nm). Lattice constants of some natural samples were also
determined by Guinier and diffractometer techniques.

Intensities were collected on the automated four-circle diffractometer
using monochromatized MoKu radiation (graphite monochromator) and the
w—2 6 step-scan mode with a scan range of Aw = 0.6 + 0.5 tan 0. Conditions
of measurements are summarized in Table 2. The diffracted-beam aperture
was vertically constant and horizontally determined by (4 + 2 tan ) mm.
The scanning speed was adjusted to obtain 5000 counts for each reflection
with a maximum counting time of 180s. The background was measured for
one-quarter of the scan time on both sides of the peak. Possible crystal
decomposition or change of orientation was controlled through three
reference reflections monitored for intensity changes after every 60 measured
reflections and after every 120 reflections for orientation changes. All four
data sets were corrected for Lorentz, polarization and absorption effects;
symmetrically equivalent structure factors were averaged. The crystal
structures were refined by full-matrix least-squares calculations starting from
the positional parameters of andalusite (Burnham and Buerger, 1961).
Atomic scattering factors were obtained from Hamilton and Ibers (1974).
For the M 1 positions, a scattering factor curve was calculated from /4, fyn.
and f¢.. In these calculations, it was assumed that the amount of manganese
and iron determined by microprobe (Table 1) occupies the M 1 position only.
This assumption was based on ionic-radius arguments and Méssbauer results
(section 3), which show a strong concentration of iron in the M 1 position.
The weight of the observed structure factors was w = 1/a2F. The computer
programs used in the course of the work are the same as given by Tillmanns
and Gebert (1973). Final R values are shown in Table2. The low values
obtained confirm the above assumption for the M 1 occupancy. Tables of
observed and calculated structure factors can be obtained from the authors.

Mdéssbauer spectra

The Méssbauer spectra were obtained on an Elscint Spectrometer operating
in the constant acceleration mode using a >’Co source in a rhodium matrix
(activity 20 m Ci). Details of the experimental procedure are given in Seifert
and Olesch (1977). Pure viridine concentrates were finely ground and baked
to pellets, with absorber thicknesses generally ranging from 2 to S mg natural
Fe per cm®. The spectra were recorded with the absorbers held at
temperatures of 77 and 298 K. Peaks of Lorentzian shape were fitted to the
absorption envelope by a least-squares method.
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Optical spectra

Polarized single-crystal spectra in the range 35000 io 9000cm ™' were
measured microspectrometrically (Langer and Abu-Eid, 1977). Data on
crystal sizes and orientations, as well as measurement conditions, are given in
Table 2. Crystal fragments of the Ultevis and Yakutian vindine were large
and transparent and were easily oriented optically in the sample mounts prior
to grinding and polishing. The kanonaite sample, on the other hand, was so
deeply colored that optical orientation prior to grinding and polishing was
impossible. Therefore, in such instances, fragments used for measurements
were chosen according to their conoscopic picture and were close to the
orientations given in Table 2. The synthetic samples were so fine grained that
individual crystals could not be manipulated. In these cases the measure-
ments were taken from grains which were found to be oriented between (100)
and (110) as determined by morphology, character of elongation, and
pleochroism. The spectra obtained were split into component bands of
Gaussian shape by procedures described elsewhere (Abu-Eid et al., 1978).
Several infrared spectra were recorded on powdered samples in order to
check for the presence of OH in amounts larger than trace concentrations and
to prove that no bands occur below 10000 cm ™.

Table 3. Fractional atomic coordinates and thermal parameters (A2) with estimated standard
deviations. The definition of the Debye-Waller temperature factor is exp — § (h2a*? B,
+k2b*2 By, + 12 ¢*? By; + hka* b* By, + hla* c* B 5 + kib* c* B,,;), where B,y and B, arc
zero for all atoms except O(4)

Position  Para- ULT TAN DAR KAN

meter
M1 Al ga0 Alg.7s6 Alg sez Alp 302
Mng g23 Mng 152 Mng 345 Mng 650
Feg 057 Feq 062 Feg o6 Feg o
x/a 0 0 0 0
y'b 0 0 0 0
z/c 0.2420(1) 0.2425(1) 0.2426(1) 0.2429(2)
B, 0.57(3) 0.68(2) 0.73(3) 0.59(2)
B,, 0.30(3) 0.40(2) 0.51(2) 0.41(2)
Bis 0.26(3) 0.32(2) 0.38(2) 0.00(2)
B, 0.12(2) 0.12(1) 0.08(2) 0.12(2)
M2 All.()OO All_ﬂ()() All_()OO All,()ﬂ()
x/a 0.3707(1) 0.3715(1) 0.3724(1) 0.3747(2)
y/b 0.1387(1) 0.1384(1) 0.1379(1) 0.1371(2)
z/c 0.5 0.5 0.5 0.5
By, 0.26 0.36(2) 0.32(3) 0.36(4)
B, 0.20(3) 0.28(2) 0.31(3) 0.40(4)
By, 0.31(3) 0.32(1) 0.30(2) 0.00(3)

B,, 0.00(2) 0.02(1) 0.05(3) 0.05(4)
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Table 3. (Continued)

Position

(1)

02)

O(3)

O(4)

Para- ULT TAN DAR KAN
meter

Siy 00 Siy 000 Siy 000 Si.000
x/a 0.2462(1) 0.2469(1) 0.2476(1) 0.2491(2)
y/b 0.2523(1) 0.2527(1) 0.2534(1) 0.2548(2)
zje 0 [¢] 0 0
By, 0.26(3) 0.41(2) 0.46(3) 0.46(3)
B, 0.17(3) 0.26(2) 0.36(3) 0.38(3)
B 0.30(3) 0.31(1) 0.39(2) 0.05(3)
B, 0.01(2) 0.03(1) 0.08(2) 0.08(3)
x/a 0.4231(3) 0.4238(2) 0.4248(3) 0.4262(3)
yib 0.3624(2) 0.3628(1) 0.3630(3) 0.3624(3)
zje 0.5 0.5 0.5 0.5
By 0.54(6) 0.68(4) 0.83(8) 0.83(9)
B,, 0.28(6) 0.35(4) 0.44(7) 0.53(9)
B3 0.44(6) 0.49(4) 0.55(7) 0.12(9)
By, —0.00(5) 0.00(3) 0.05(7) —0.06(8)
x/a 0.4244(3) 0.4245(2) 0.4242(3) 0.4238(3)
/b 0.3623(2) 0.3624(2) 0.3626(3) 0.3624(3)
zje 0 0 0 0
By, 0.42(6) 0.51(4) 0.54(8) 0.52(9)
B,, 0.42(6) 0.59(4) 0.75(7) 0.79(9)
B 0.44(6) 0.50(3) 0.58(7) 0.15(9)
By, —0.08(5) —0.08(4) —0.02(7) —0.07(8)
x/a 0.1026(2) 0.1032(2) 0.1032(3) 0.1042(3)
v/b 0.3998(2) 0.3996(2) 0.3994(3) 0.3988(3)
z/¢ 0 0 0 0
By, 0.35(6) 0.43(4) 0.39(8) 0.31(8)
B, 0.29(6) 0.29(4) 0.41(7) 0.47(8)
B, 0.95(6) 0.96(3) 0.86(7) 0.54(9)
B, —0.02(5) 0.02(3) —0.07(7) +0.01(8)
X/a 0.2313(2) 0.2339(1) 0.2370(2) 0.2432(2)
vib 0.1348(2) 0.1359(1) 0.1377(2) 0.1411(2)
zje 0.2394(3) 0.2391(2) 0.2387(3) 0.2386(3)
By, 0.53(5) 0.73(3) 0.93(6) 0.90(6)
B, 0.42(5) 0.55(3) 0.63(5) 0.61(6)
By 0.37(5) 0.41(2) 0.49(5) 0.21(6)
B, —0.06(3) —-0.01(2) 0.07(4 —0.02(4)
B3 —0.09(4) —-0.11(2) —0.10(5) —0.11(6)
B, 0.09(4) 0.07(2) 0.03(5) 0.08(6)

3. Experimental results

Results of the structure refinement are summarized in Tables 3 and 4 which
present the site populations, the final atomic coordinates, the thermal
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Fig.2. Lattice constants of natural (closed symbols) and synthetic (open symbols)
(Al _ r,'\.Mni * Fe}*), (O]SiO,)-minerals with andalusite structure as a function of substitutio-
degree (x+ y). Samples of Table 1 are designated. Synthesis conditions of run products other
than P135 and P150 will be published elsewhere (Abs-Wurmbach et al., in preparation). These
synthetic viridiues are either single phase or EMP-analyzed samples. The size of the symbols
refers to the uncertainties in composition and lattice constants, 1s (cf. Table 1). The estimated
standard deviations of the calculated regression curves are given as vertical bars

parameters, and the interatomic distances and angles, respectively. As will be
discussed later, these properties change continuously with the concentration
of Mn and Fe. The continuous changes also include the data obtained for the
new mineral kanonaite. The present structure refinement of kanonaite
confirms the first structural results of Vranaet al. (1977), who found Mn? " to
substitute for Alin the octahedral M 1 position. The continuous change of the
lattice constants within the (Al, _,_ ,Mn]*Fe}*),(0|SiO,)-series studied is
evident from Figure 2. Single crystal data for natural samples and powder
data for synthetic samples could be fitted by linear functions with slightly
different coefficients (r = correlation coefficient):

o omy = 0.0499 (x + y) + 0.7784; r = 0.9969
Qynom = 0.0516 (x  +0.7793;r = 0.9972
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RESONANT ABSORPTION

Fig. 3

Massbauer spectrum of *7Fe in the viridine

. from Yakutsk (Table 1: YAK) at room

temperature. The abscissa gives the velocity

relative to the 7Co in Rh source. For

2 conversion to metallic iron subtract

0.115mm s~ . The deviation of the solid line

0 20 o 20 wo  from the data (divided by the square root of
VELOCITY MM/ SEC the background) is plotted below the spectrum

RESIDUARL

Baeiom) = 0.0456 (x+¥) + 0.7890; r = 0.9963
bynim =0.0319 x  +0.7898: r = 0.9906

Coatom; = 0.0152 (x+y) + 0.5565;r = 0.9880
Connm] = 0.0177 x + 0.5553;r = 0.9889

Viarpm?) = 0.0519 (x +y) + 0.3421;r = 0.9980
Vnmmy = 0.0475  x + 0.3418: 7 = 0.9997.

The slope of a,,,. is less steep than that originally assumed on the basis of
preliminary data on synthetic viridines (Abs-Wurmbach and Langer, 1975),
In the earlier work only diffractometer data were available, whereas here the
Guinier technique permitted inclusion of more reflections at higher 2 0 in the
lattice constants refinement.

A typical Mdssbauer spectrum and the hyperfine parameters obtained are
presented in Figure 3 and Table 5, respectively.

Two doublets, 4 and B, could be fitted under the spectral envelopes for
the viridines from Yakutia and Tanzania. In the case of the Ultevis sample,
there are also indications of the B doublet. This doublet, however, is so weak
that a four-band fit did not improve the value of ¥? significantly in
unconstrained fits. The low isomer shifts 6 of doublets 4 and B (Table?5)
unambiguously demonstrate the trivalent state of iron. The fact that the
quadruple splitting, AE,, does not change with temperature (Table5) is
typical of high spin Fe** (Bancroft et al., 1968). No doublet with param-
eters typical for Fe?* could be fitted. Therefore the Fe®™ content, if any
is present, is below approximately 49, of the total iron.
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Table 5. Hyperfine parameters of *Fe in viridines from Ultevis or Yakutia and Tanzania based
on two or four line fits, respectively

Sample ULT YAK TAN
Absorber Temp. 298K 77K 298 K 298 K
Doublet A:
T, 0.0160 0.0677 0.0486 0.0564
r, 0.357 0.351 0.438 0.392
Ty 0.0109 0.0627 0.0438 0.0481
Iy 0.401 0.400 0.377 0.460
d 0.344 0.464 0.351 0.358
AE, 1.758 1.824 1.825 1.855
Doublet B:
T, 0.0103 0.0068 0.0053
I, 0.551 0.438 0.468
Ty 0.0100 0.0079 0.0059
Iy 0.389 0.357 0.507
1) 0.346 0.269 0.295
AE, 0.994 0.944 0.761
T 2T 0.865 0.863 0.904
F,JIF 0.836 0.851 0.890

The indices H and L refer to the high and low velocity peaks, respectively.
T  Transmission,
I'  fullwidth at half height (in mm-s~ 1),
4E, quadrupole splitting (in mm s~ '); uncertainty + 0.01,
0 isomer shift (in mm-s~!), relative to metallic iron, uncertainty + 0.01,
F  fractional area of the respective doublet

On the basis of recent work on hyperfine parameters of ferric iron in
different coordination in silicate structures (Hafner and Huckenholz, 1971;
Amthauer et al., 1976; Annersten and Hélenius, 1976) the range of isomer
shifts, 5, for Fe" in four-fold coordination is 0.04—0.20 mm s~ ! at 298 K
relative to metallic iron, whereas é for Fe® " in six-fold coordination ranges
from 0.35 to 0.45mm s~ ' at 298 K. Thus, the isomer shift of doublet 4
(Table 5) is typical for octahedral ferric iron, whereas that of doublet B is
certainly larger than that expected for tetrahedral Fe? *, but smaller than that
for octahedral Fe**. Hence doublet B is likely due to Fe®* in the five-
coordinated M 2 sites of the andalusite structure. From Table 5, it is obvious
that 85 to 909, of the Fe** substitutes for Al in the M 1 octahedra of the
andalusite structure, while the trigonal bipyramidal M 2 sites contain only
10 to 15% Fe®**. Expressed in terms of atoms per formula unit,
(Al;_,_,Mn} " Fe} ™), (OISiO,), this means 2y = 0.008 and 0.006 Fe** in
five coordinated sites in samples from Yakutia and Tanzania, respectively.
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Fig. 4. Polarized optical absorption spectra of natural (left) and synthetic (right) Mn? *-bearing
andalusite type minerals (viridines and kanonaite). Spectra were recorded for the orientations
E)lX. Y or Z in the sections: ULT (001), (100) or (100), resp.; YAK (010), (100) or (100),
respectivity ; KAN (001), (001), or ca. (100), respectivity
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Thisinterpretation of doublets 4 and B corresponds to that already proposed
by Hélenius (1978), the hyperfine parameters 6 and AE, for doublet 4 in
both Ultevis viridines being equal within the limits of error. Hilenius (1978),
on the other hand, fitted doublet B (11 9/ of the total resonant absorption) to
the resonant absorption envelope of his Ultevis viridine and, in addition, a
small doublet (7 9, of the total resonant absorption) with parameters typical
of octahedral Fe?®. There were no indications of this doublet in our
Méssbauer-spectra, although half widths of bands are a little smaller than
those obtained by Héilenius (1978) and, hence, doublets 4 and B in the
measured envelopes were more clearly discernable.

Polarized single-crystal spectra of natural and synthetic viridines and
kanonaite are presented in Figure 4. The E|| Y spectra of ULT and the E||Z
spectra of YAK presented in Figure 4 are those taken from the (100) sections
(cf. Table 2). The corresponding spectra taken from the (001) slice of ULT
and the (010) slice of YAK, are not reproduced here, but exhibit the same
shape. Positions and estimated intensities of absorption bands and shoulders,
astaken from the spectra, are compiled in Table 6. Intensities and positions of
the bands observed with the different orientations of the electrical vector £
explain the color and pleochroism of the viridines and kanonaite: the
greenish-yellow color of X and Z is due to the intense absorption band
centered at about 22000cm ™' and to the almost complete transparency
below approximately 19000 cm ™! in the E||X and E||Z spectra (Fig. 4). The
emerald-green color of Y, on the other hand, is due to the minimum at around
19000cm ™! between the two bands centered at around 21700 and
15000 cm 1.

The spectra of the Ultevis viridine in Figure 3 correspond in almost all
details to those measured by Hélenius (1978) on another sample from Ultevis
by means of conventional macroscale methods.

Small shoulders at about 27000, 22300, and 20900 cm ™! (Fig. 3, Table 6)
were not observed by Hilenius (1978), but were confirmed in the present
work by repeated measurements. The band at 23400 cm ! (No. 4) which is
present in all E]|X spectra of natural samples, except kanonaite, was not
found by Hélenius (1978) in his o spectrum. This may be due, at least in part,
to the very high absorbance of the major band at 22000 cm™ !, which is near 2
in the paper cited.

A major difference between spectra of the synthetic andalusites contain-
ingMn*" only and those of the natural samples containing ferric iron as well
as Mn3"*, is that the former lack the fine structure of the strong band centered
atabout 21700 cm ~'. Hence the fine structure in the natural samples should
be due, at least partially, to electronic transitions of Fe** ions.

Examples for the results of the curve resolving procedure are presented in
Figure 5. To resolve the spectra of the synthetic sample P150, two models, 1
and 2, have been applied which use one component band or two component

bands to fit the strong absorption centered at 21700 cm ™1,
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The high-energy component band would correspond to the band or
strong shoulder at about 23400 cm ™' (No. 4, Table 6) in the natural samples.
Itisevident from Figure 5 that both models fit the observed envelope equally
well.

The infrared spectra measured on some of the viridine samples did not
show bands below 10000 cm ™' down to approximately 1200cm ™! and, in
this respect, correspond to andalusite spectra. The lattice vibrations below -
1200cm ! show slight band shifts to lower energies compared to those of
pure andalusite. These spectra will not be discussed further in the present

paper.

4, Discussion

The structure refinements were performed on the assumption that all
manganese and iron occupies the octahedral positions M 1 in the andalusite
structure (cf. Table 3). The low R values obtained on this assumption confirm
this distribution mode!l for the whole series of solid solutions between
andalusite and kanonaite. This is independently confirmed for iron by the
Maossbauer results, indicating a maximum of 10 to 15 %, of total iron is in the
trigonal bipyramidal site M 2. This distribution of transition elements in the
whole mixed crystal series from andalusite to kanonaite confirms the first
single-crystal X-ray data on kanonaite obtained by Vrana et al. (1978).
One half of the unit cell of kanonaite is shown in Figure 6, where the main
structural changes within the solid solution series are also presented. The
most prominent change is the elongation of the M1 octahedra, ie., the
increase of the M 1—-04 distance by 7.7% in going from andalusite to
kanonaite (Fig. 7). This octahedral distortion will play an important role in
the interpretation of the optical spectra. It may be characterized by the
octahedral c/a-ratio (Fig. 7), which demonstrates the type of distortion in this
case more clearly than the bond-angle variance ¢, and mean quadratic
elongation, 4, or similar parameters, which were introduced by Robinson et
al. (1971), Ghose and Tsang (1973), and Fleet (1976). The elongation leads to
atilting of both the M 2 trigonal bipyramids and the Si tetrahedra (cf. Fig. 6).
Concomitantly, the M2 —O1 distances increase by 2.4 9% and the M2—-03
distances by 2.1 %,. The M 2 — 04 distances, on the other hand, decrease by
0.8 %, which compensates partly for the elongations of M2—-0O1and M2—
03, so that the mean M 2—Q distances are nearly constant (+0.7%,). This
again reflects the very low fraction of Mn** and Fe** incorporated into
these sites. The mean M 1 — O distances, on the other hand, increase by 3.6 %;.
These structural changes of the andalusite matrix in response to increasing
manganese substitution may be compared with those obtained in a high-
temperature crystal-chemistry study of the Al,SiO5 polymorphs by Winter
and Ghose (1979). Within the 25 to 1000°C temperature range, the mean
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Fig. 6. Projection parallel [001] of the upper half of the unit cell of Kanonaite tilted clockwise by
10° around the y axis to show the M 1—O-octahedra more clearly. The shifts of oxygen atoms,
coordinating the M 1-position, as compared to their positions in andalusite, and the comcom-
itant changes of angles around O4 are given in 10~ ! pm and degrees, respectively

M1—0 distances in andalusite increase by 1.49, and the mean M2—-0
distances by 0.69,. This means, that the M 1 —O octahedral expansion is
about two times greater than the M 2 — O expansion in the above temperature
range, while this factor is approximately five in case of our mixed crystal
series. As in the case of increasing Mn® " -substitution, increasing tempera-
tures influence most strongly the M 1 — 04 bond. Temperature was found to
have no significant influence on the dimension and shape of the Si—0
tetrahedra (Winter and Ghose, 1979). Increasing substitution, on the other
hand,.slightly changes the tetrahedral shape, as is obvious from the 1.4 9, T—
O3 increase (cf. Table4), due to the tilting and distance changes in the M2
trigonal bipyramids. This observation is in agreement with the concept of
structurally analogous variables (Hazen, 1977): substitution of Al by the
larger Min®" cation leads to similar structural changes as increasing tempera-
ture.

The structural changes discussed above are reflected by the behavior of
the lattice constants. With increasing temperature or Mn** substitution, a, b,
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Fig.7. M1-0O octahedral distances and the octahedral (c/@),e = 2 Rarios/(Ririo2

+ Ry101), in (Mn**, Fe3 *)-substituted andalusites. Note that the definition of (¢/a),,, takes the
M1-octahedra as tetragonal bipyramides, point group D, (cf. Fig. 8). The data characterized by
AUS were obtained from S. Hill (personal communication 1977)

and c increase linearly, the slopes of the graphs decreasing in the order a > b
> ¢. The slightly steeper slope of a compared to b can be interpreted in both
cases by the fact that the O4— M 1 — 04 vector forms an angle of 30° with the
[100] direction. The significantly smaller slope of ¢ with increasing
temperature found by Winter and Ghose (1979) was attributed to chains of
edge-connected M 1 octahedra and fully extended chains of alternating Si
tetrahedra and M 2 trigonal bipyramids (interconnected by common corners
with the octahderal chains) running parallel to [001] (see Fig. 9a of Burnham
and Buerger, 1961). Winter and Ghose (1979) found that the bonds along
[001] involved in the Si— M 2-chain direction vary only slightly with
temperature. The same is true for increasing substitution, because in this case
the M 2 trigonal bipyramids are almost free from Mn*>* and Fe>*. The linear
regressions, given in section3 for the dependence of a and b on the
substitutional degree (Fig. 2), differ for the synthetic and natural minerals
studied in this paper. The data for synthetic viridines converge more strongly
than for the natural samples. The intersections of the curves, i.e., tetragonal
cell metrics, occur at x = 0.53 (synthetic) and (x + y) = 2.47 (natural). The
reason for this difference is not clear, but might be related to the presence of
Fe** in the natural samples.
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Fig.9. (M 10)-octahedra in andalusite, AND, and the kanonaite studied, KAN, viewed along
the octrahedral axis 04— M 1 —O4. Data for andalusite are from Burnham and Buerger (1961).
The point symmetry of the octahedra is C,,. The very small deviation of the O4M 104 angle
from 180° (cf. Table4) is neglected. Dashed lines represent octahedra with undistorted
octahedral planes of the same area as those of the distorted ones, i.e., octahedra with point
symmetry D,,. Note the small deviation of the octahedral planes from the ideal. The orientation
of the refractive index indicatrix with axes X, Y, and Z is also shown

Increasing distortion of the M 1 octahedra with increasing manganese
content of the andalusite mixed crystals (Al, -, Mn3}*Fe}*), (0] SiO,) as
discussed above is also reflected by the behavior of the *’Fe3* quadruple
splitting, AE,, with increasing Mn*>* substitution x. Figure 8 shows that 4E,
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Fig. 10. Schematic energy level diagram for the splitting of the *D ground state of M>*-ions in
spheric and different octahedral fields: symmetry O,, elongated octahedral D,,, which are
approximately realized in the M 1-octahedra of the andalusite type mixed crystals (cf. Fig. 8),
and C2, the true site symmetry of M l-sites in the structures studied (spin orbit coupling is
neglected). Possible transitions are designated by Roman numbers

increases with x. The values of AE, obtained by Halenius (1978) are also
shown and follow the same trend. The extrapolation to x = 0, i.e., andalusite
containing Fe** but no Mn**, gives 4E, = 1.74mm/s, an unusually high
value when compared to other octahedral Fe** values obtained for various
mineral structures (Hafner and Huckenholz, 1971; Amthauer et al., 1976).
This indicates the high degree of M 1 distortion already present in Mn? " -free
andalusite.

In considering the assignment of the absorption bands in the optical
spectra to Mn** and Fe®*" dd transitions the site symmetry of the M1
octahdedral positions (the relevant position according to the structural and
Massbauer results) is of prime importance. This position is the 4e site of space
group Pnnm, with site symmetry of C,. When isolating the octahedra from
the surrounding structural matrix, their point symmetry may be taken as C,,,
as is evident from Figure 9. This figure shows further, that the distortion of
the octahedral plane from a square arrangement is very small and, hence, the
point symmetry may be approximated by D,, for the purpose of band
assignment. The crystal field splitting of the spectroscopic 3D ground state in
isolate Mn3* -centered octahedra with point symmetries O,, D., (elon-
gated) or C, is shown schematically in Figure 10. The splitting of the ’E,
ground state would be expected on the basis of the Jahn-Teller (1937)
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Table 7. Dependence of the absorption coefficients per cm, & = log (1,/1)/z, for the most intense
bands in the E|| Z and £{| Y spectra on the degree of Mn*" substition x. Numbers in brackets are
the errors

Sample ULT YAK TAN DAR  P135 P 150 KAN
X 0012 0.076 0.091 017 0.173 0.22 0.340

Band Pos. Pol.

No.
6 ~22000 E\Z 11(2) 450(150) 800(240) 658(99)  671(168) 1396(457)
10 ~15000 E|Y 35(5) 133(44) 172(52) 231(35) 958(80)

theorem for the 3 d* configurated Mn** ion. For the inferred point symmetry
D, of the elongated Mn**Q, octahedra (cf. Figs. 6 and 7) we expect three
spin-allowed transitions I, I1, and II1. As all transitions of the 34> Fe®* ion
are spin-forbidden and because the Fe** concentration is much lower than
that of Mn?*, except in the Ultevis sample (Table 1), the intensities of the
bands originating from excitation of transitions I, II, and I11in Mn>"* should
be higher by at least two orders of magnitude than those of Fe®*. Further
argument for the interpretation of the spectra is obtained from comparing the
results on synthetic samples almost free of Fe** with natural Fe®*-bearing
ones (Fig. 4). The strongest bands observed in synthetic and natural samples
are those centered at 21800 cm ™ ! and 15000 cm ™! (Nos. 6 and 10 of Table 6)
and are therefore attributed to spin-allowed Mn>" transitions. As there are
no bands below 10000cm ™! down to the lattice-vibrational region, band
No.10 at 15000cm ™' is assigned to transitionl and band No.6 at
21800 cm ™! to transition I1. This assignment is further corroborated by the
increase of the corresponding absorption coefficients, obtained directly from
the spectra, with increasing Mn** concentration (Table 7).

Identification of transiton I is difficult, as there is no third strong band
in the spectra of synthetic viridines. In a preliminary note, Abs-Wurmbach et
al. (1977) proposed two possibilities for the assignement of transition UI:

a) the band or shoulder around 23300cm ™! in natural viridines (band
No. 4 of Table 6),

b) the shoulder around 29000cm ! in natural and synthetic viridines
{(band No. 2 of Table 6).

The ditficulty with model a is that there is no corresponding band or
shoulder in the spectra of synthetic viridines. If the model is correct, the band
in question should then be hidden together with that originating from
transition I under the strong envelope centered at 22000 cm ™', However,
this envelope has no asymmetry indicating such an overlap (Fig. 4). On the
other hand, the envelope could be equally well fitted by either one or two
Gaussian components (Fig. 5). A further difficulty with model a is that two
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Relative integral absorption coefficients A
(cf. Table 9) of band No. 4 at around
23300cm ™', as obtained by curve resolving,
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02 — 7 e Eljz positive correlation for E||X, whereas there is
no correlation for E||Z. Opencircles represent
U Q L L L L F Ayf(Ay+ Ae) = 0 to be expected for iron free
0 02 04 06 08 10 viridine, if band 4 is exclusively due to
—=Fe3Si05/ (Fe;Si0s + Mn;SiOs) Fe® *-transitions (cf. Text)

relatively strong spin-forbidden Fe®* bands, derived from the °4,, > *4,
*E, (G) transition in cubic fields are expected at about 23000 cm ™~ ! according
to spectral results of Faye and Harris (1969) on andalusite, Faye and Nickel
(1969) on kyanite, and Langer and Abu-Eid (1977) on acmite. These -
difficulties with model a forced Abs-Wurmbach et al. (1977) to propose
model 5.

Hilenius (1978), on the other hand, argued that the Fe? * concentrations
are too low to account for the observed absorption coefficients of the
23300 cm ™ ! band and, therefore, he favored model a. This interpretation was
further corroborated by a calculation of the energy levels of the (Mn’*Oy)
cluster by the multiple scattering SCF-X, method (Kai et al., 1980). These
calculations proved the sequence of the crystal field split terms in Figure 10,
and showed further that the energy difference between transitions IT and 111
cannot be as large as required for model b 3.

If the 23300 cm ™! band in question is due to Fe? * transitions, its intensity
should correlate with the Fe®** concentration. Therefore, the integral
absorption coefficient, 4 = 1/dJIn (1,/T) d¥, of band 4 was determined from
curve resolved spectra and plotted, using the corresponding 4 values of band
No. 6 as internal standard, versus the Fe/(Fe + Mn) ratio of the samples.
Figure 11 shows ambiguous results for the FE||Z spectra but a clear
correlation between intensity and iron content for the EJ|X spectra. From

3 The values for transitions I, II, and 111 to be derived from the calculated energy level diagram

cannot simply be regarded as the true absolute energy values of these transitions because of the
necessary limitations in the model underlaying the calculations
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Table 8. Half widths, 4V,,,, absorption coefficients, « = In (I /I)/d, integral absorption coefficients?,
A =1/d [(I,/D/d¥, and assignments of resolved bands in the optical spectra. The individual band posi-
tions as obtained in the resolving procedure occur, within the limits of error, at the same energies as the

Band No. FE|| ULT YAK DAR P135
(approx.
position 4%y, o A4* AV o A* Ay o A? Aﬁl/zl
incm™ 1) [em '] [em™!] 10°* [em™'] [em™]107* [cm™!] [cm~!]10°% [em™ ']
fem™?] [em™?] [em™?]
3(26900) X 800 50 10 — na
Y _ _ -
VA 1000 110 30 1400 650 90 nm
4(23300) X 2100 100 50 2700 200 60 1700 675 110
Y 2300 30 20 2300 155 30 1800 35 55 2600
zZ 1600 120 45 1400 320 45 nm 2200
5(22300) X 800 60 11 na 1500 30 40
Y - _ _ _ _
V4 700 53 10 na nm
6(21800) X 1100 125 35 2100 230 55 1900 1200 220
Y 1300 30 9 1600 135 20 1600 30 50 2800
VA 1400 215 75 2900 780 230 nm 2900
7(20800) X 700 40 8 — -
Y _ _ —
z 1700 55 25 700 135 10 nm
8(19700) X 2600 60 40 - 1500 20 25
Y 1500 20 7 1400 60 15 1000 10 15 1400
zZ 1700 55 20 800 140 8 nm
9(18000) X 200 12 0.2° — 180 52 0.9°
Yy _ — _
VA 300 20 0.6 360 80 3 nm 240
10(15000) X na - na
Y 4400 95 110 5000 410 200 3800 590 300 3700
VA - - nm 3500

? Integral absorption coefficients were derived from planimetrically measured areas of resolved bands
b Calculated: 4 = a- Avy,

this, it can be concluded that there is at least a contribution of the above Fe3*
transitions to the 23300 cm ™! band (No. 4).

Therefore, in order to solve the discrepancies, it is proposed that both the
Mn?** transition 1T and the above Fe®* transition contribute to the band at
23300cm ™' (No. 4). This assumption would also explain why, at relatively
high Fe/(Fe + Mn) values (samples from Ultevis, Tanzania, and Yakutia),
the 23300 cm ™' band appears as a separate maximum (Fig. 4), while at low
Fe/(Fe + Mn) values, at which the contribution of the Fe®* transition is only
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shsorption maxima and shoulders in the measured spectra themselves and, therefore, have been omitted
here. sa and sf are spin-allowed or spin-forbidden transitions, respectively

P150 KAN
1 4 Aoy oA My x A
fm™1 1074 [em™'] [ecm~'11074  fem™ '] [cm™'j107%
[em™7] [em™?] [em™?]
m nm -

- ~ - Fe** dd-sf: °4,, — [*E,(D)]
- - 1400 230 33

m nm — Mn** dd-sa: *B,,— *E/D)
100 25 3100 335 110 — + Fe** dd-sf:
$5 120 3200 790 215 1900 1600 330 °d,, - [*d,,, *E,G)]

nm nm —
_ _ - Fe** dd-sf: °A,,— [*4,,, *E,(Q)]

om nm na

M0 100 1900 110 20 na Mn** dd-sa: *B,,— °B, (D)

1220 340 2600 1010 280 2100 2580 600

nm nm —

- - - Fe>* dd-sf: °Ay, = [*T,,(G)]

m nm na Mn** dd-sf: °B,, — [>T, ,(H)]
60 9 1300 90 12 na in natural samples: plus

- — 1500 190 25 Fe?* dd-sf> ®A,, - [*T, ,(G)]

m nm na

- — na Mn** dd-sf: *B,,— *T, (H)]
35 0.8° 300 38 1® 400 115 5

nm nm na

250 100 5000 360 180 3900 2650 1020 Mn** dd-sa: By, — *A4, (D)
190 70 3200 130 50 3800 220 80

¢ Excited terms in cornered brackets are those for the cubic case
nm = Not measured; na = not analyzed; — = band not present in this orientation and/or sample

small, this band appears as a shoulder (samples from Darmstadt and
Kanona).

In Table 8, an assignment scheme for all resolved bands, Nos. 3 to 10 in
natural and synthetic manganian andalusites is given. This scheme is based
on the assigments of spin-allowed Mn3* transitions I, II, III just deduced,
and on the spin-forbidden Mn*" transitions to be expected on the basis of the
Tanabe-Sugano diagram (1954) for 3 d*-configuration, as well as on Fe3"
spin-forbidden transitions in octahedral position in silicates (Faye and
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Fig. 12. *E,~ground state splitting of Mn** (Jahn-Teller-splitting), 3,, crystal field parameter,
10 Dg, and crystal field stabilization energy of Mn**, CFSE 2+, in the andalusite structure type
in dependence on the degree of the Al » Mn** substitution, x. Simple bars represent data from
Hilenius (1978). For the calculation of 10 Dg, the energies of transitions Il and III (cf. Fig.9)
were taken from the E|| Z-spectra. CFSEy,»+ was calculated on the basis of the band assignment
in Table9. 10 Dg and CFSEy,s- for the synthetic samples, P 135 and P 150, were obtained by
using energies for transitions I and I1I as obtained from curve resolution

Harris, 1969; Faye and Nickel, 1969; Moore and White, 1972; Langer and
Abu-Eid, 1977). The half-height widths, A7, ,, absorption coefficients o, and
integral absorption coefficients A are compatible with these assignements
except for component band No. 8. In this case 47, , is too high for a normal
spin-forbidden band. However, this may be due to difficulties of the curve
resolution procedure (cf. resolved E||Y” spectra of DAR in Fig. 5). The
bands, appearing as strong shoulders at around 33000 and 29000cm™*
(No.1 and No.2 of Table 6) may then be due to O—M charge transfer
transitions, as no dd transitions, additional to those of Table 8, are to be
expected.
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The assignment scheme and band energies of Table 8 have been used to
calculate the crystal-field parameter 10 Dg and the crystal field stabilization
energy of Mn3* in andalusite octahedra. These properties are shown in
Figure 12 as a function of the substitutional degree x in the andalusite solid
solution series, (Al,_,_, Mn} ™ Fe; *) (O SiO,). The values of 10 Dg and of
the crystal-field stabilization energy, 15875cm™' and 16650cm™!, re-
spectively, obtained by Hilenius (1978) for a viridine sample from Ultevis
with x = 0.016 and y = 0.031 are in accordance with those to be expected
from the slopes in Figure 12. In addition to the crystal field parameter and
crystal field stabilization energy, Figure 12 shows the ground-state splitting
8, of Mn3" in the elongated octahedra. The increase of §, is due to the
increasing elongation of the octahedra and compensates for the concomitant
decrease of 10 Dg so that the crystal-field stabilization energy of Mn?" is
nearly independent of the manganese concentration.
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