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Abstract. Using a miniature diamond-anvil pressure cell and by means of
single-crystal four-circle diffractometry, the crystal structure of synthetic
forsterite has been studied up to 149 kb. The results are: (1) the distortion
of the oxygen lattice from that of an ideal hexagonal closest packing (hcp)
decreases with an increase of pressure, the extrapolation of the variation
mode showing that the oxygen lattice would be ideally of the hcp type at
around 160 kb. (2) While the mean Mg(2)—O bond shows a linear decrease
with an increase of pressure, the mean Mg(1) — O distance ceases decreasing
at around 80 kb, The value at this pressure is kept constant up to the
experimental limit of 149 kb. At this extreme pressure both mean values
are 2.05 A. (3) The bulk modulus for the mean Si—O bond shows a value
of 1.9 Mb.

Introduction

The effect of pressure on the crystal structure of forsterite up to 50 kb
was studied by Hazen (1976) by means of the four-circle single-crystal
diffractometry, using a diamond anvil cell of the Merrill-Bassett type (Merrill
and Bassett, 1974). He observed that the mean Si—O bond length was
essentially unchanged up to 50 kb within the tolerance of experimental error
and that the mean Mg(1)—O and Mg(2)—O bond lengths monotonously
decreased with an increase of pressure.

Hazen and Finger (1980) later reinvestigated the structure of forsterite
at 40 kb using the same specimen which had been used by Hazen (1576),
confirming the previously obtained result for the pressure (Hazen, 1976).
In order to elucidate, however, more details on the compressibilities of the
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Si—O and Mg—O bonds, it is evidently desirable to carry out the study in
a wider range of pressure.

As discovered by Ringwood and Major (1966) and later studied by
Akimoto, Matsui and Syono (1976) in detail, forsterite is transformed,
under high pressures and temperatures, into the p-phase having the
structure of the so-called modified-spinel type (Morimoto, Akimoto, Koto
and Tokonami, 1969). According to Akimoto et al. (1976), the transforma-
tion takes place at a pressure of about 125 kb approximately at 1000°C.

The structure of forsterite at such an extreme pressure is thought to be
of particular interest even the temperature is not raised but kept at room
temperature. The present paper reports the result of our single-crystal
structural study of forsterite carried out at pressures up to about 150 kb.
A brief account on the effect of pressure on forsterite up to 79 kb has
already appeared (Kudoh and Takéuchi, 1983).

Experimental

Pieces of crystals for the present study were obtained from a large single
crystal of forsterite Mg,SiO,, about 5cm Jong having a circular cross
section with a radius of about 5 mm. The crystal was grown by means of
the Czochralski method by Takei and Kobayashi (1974). Details of the
growth and properties of the crystals they obtained are reviewed by Takei,
Hosoya and Kojima (1984).

In Table 1 we give the dimensions of the crystal pieces used for our
high-pressure single-crystal study which was carried out at pressures of 31,
47, 53,79, 86, 111, and 149 kb. In each case, a crystal piece was mounted
in a miniature diamond-anvil cell of the Merrill-Bassett type together with
a ruby crystal piece, having the size of approximately 0.05 mm in diameter,
as pressure indicator. As gasket material, an Inconel 750X plate 0.25 mm
thick, was used; the diameter of the hole opened in the plate to mount the
crystal was 0.20 mm. The fluid pressure medium used was a 4:1 mixture
of methanol and ethanol.

The unit-cell dimensions were obtained with a least-squares procedure
applied to sin2 0 values of 13 ~ 15 reflections measured on a Syntex P2
four-circle single-crystal diffractometer, using graphite monochromated
MoKux radiation (A = 0.71068 A). Those at specific pressures, under
which the structure refinement was made, were calculated with the con-
straint o = B = y = 90° (Table 2). Even if the constraint was released, the
deviation from 90° was not significant.

Each set of the X-ray diffraction intensities was measured with the
above-mentioned single-crystal diffractometer and radiation. The fixed-¢
scan mode (Finger and King, 1978) was adopted for the intensity collections
except the case at 31 kb in which the y-scan mode (Denner et al., 1978)
was used. In the particular cases of intensity measurements at 47 kb and
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Table 1. The mode of data collection for forsterite

Pressure (kb) 31 47 53 79 86 11 149

Specimen No. #1 #2 4+ #3 #4 #5
Size of the 100x 50%x 50 75x75x 50 (#2) 75x50x50  50x25x40
specimen (pm) 100 x 100 x 50( 4 3)
No. of independent
reflections
measured 116 135 149 121 114 107 66
No. of reflections
used 97 126 114 100 83 84 50
R(%) 6.2 3.6 33 47 38 7.1 9.1
R (%) 52 43 4.0 28 23 4.0 54

Table 2. Unit cell parameters used for structure refinement

P(kb) a(A) b(A) ) V(AY)

31 4.724(1) 10.077(4) 5.942(3) 282.9(3)
47 4.716(1) 10.031(3) 5.901(5) 279.1(3)
53 4.709(1) 10.010(3) 5.896(7) 277.93)
79 4.688(1) 9.933(4) 5.861(5) 272.9(2)
86 4.685(1) 9.913(5) 5.845(6) 271.4(4)

111 4.668(2) 9.852(2) 5.836(9) 268.4(6)

149 4.651(9) 9.770(12) 5.744(13) 261.0(8)

52 kb, an attempt was made of simultaneously putting two crystal pieces,
having different orientations, in the same gasket hole. This procedure
for intensity collection, which we call multiple-specimen method (or MS
method) (Kudoh and Takéuchi, 1982), has been proved to be useful to
ixpprove the number of measurable diffraction intensities (Table 1) at a
given pressure.

For structure refinement, those reflections were omitted whose in-
tensities were smaller than twice the standard deviations. For intensities of
symmetrically equivalent reflections, the one which showed a least standard
deviation was selected. The reflections, which were affected by overlapping
with those of the diamonds or powder lines of the Be support-disk of the
pressure cell, were detected using the procedure given by Denner et al.
(1978) and rejected. The number of the set of reflections thus obtained in
each case of pressure is summerized in Table 1. After correcting for Lorenz
and polarization factors, the correction for absorption was made using the
method provided by Finger and King (1978). The pressure calibration was
made with the ruby fluorescence method (Barnett et al., 1973) using an
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Fig. 1. A: A plot of cell dimensions versus pressure. B: A plot of cell volume versus
pressure
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Table 4. Equation of state parameters of forsterite

Method Ko(Mb)  Kj Data source

X-ray diffraction 1.226 4.3 This work
1.20 5.6 Olinger (1977)

Shock data combined

with static data 1.318 34 Syono and Goto (1982)
Ultrasonic 1.275 5.39 Kumazawa and Anderson (1969)
1.281 4.99 Graham and Barsch (1969)
160} Vobs,
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Fig. 2. A plot of the ratio of observed cell volume, Vs, to calculated cell volume, Vi,
versus pressure

Noting the fact that the oxygen atoms of the forsterite structure is
arranged in the fashion of a hexagonal closest packing, hep, with a perpen-
dicular to the layers of the oxygen atoms, we expect an axial ratio a:b:c
to be 1:3/1/5:]/372, if the arrangement were ideally of the hcp type. In
such an ideal case, the cell volume of forsterite, Vyep, can be given by
Viep = 3l/§ a’/2.

Then the ratio between the observed cell volume, Vo, and Vi, may be
used as a measure of structural distortion from hep; for the ideal case the
ratio is unity.

In Fig. 2, which shows a plot of the ratio versus pressure, we observe
that the ratio decreases with an increas of pressure. This trend may be
approximated by a straight line that crosses with a broken line, showing
the value of unity, at around 160 kb (Fig. 2), suggesting that forsterite
would become ideally of the hep type at this particular pressure according
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to the above definition. Under the pressures 150 kb ~ 160 kb, at which the
structure would be unstable, the cell volume is compressed by about 8%
(Table 2) relative to the value at 1b.
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variation of bond lengths and angles

The bond lengths and angles at each pressure are listed in Table 5.
The modes of variations of the mean Mg(1)—O bond length and mean
Mg(2)—O are notable (Fig. 3). While the variation of the former with an
increase of pressure may be approximated by a straight line, the latter
ceases decreasing at around 80 kb and almost constantly keeps the value
at 80 kb up to around 150 kb. At this pressure both mean values show the
same value within the experimental errors. The volume of the octahedron
formed by the oxygen atoms about Mg(2) is likewise the same as that about
Mg(1). At 149 kb the amount of compression of the octahedron about
Mg(2) is as large as about 10% (Table 5). The bulk modulus of Mg(1)O¢
up to 80 Kb is calculated to be 1.4 Mb and that of Mg(2)Os up to 149 kb
1.3 Mb. These are to be compared with the corresponding values 1.2 Mb
and 1.0 Mb reported by Hazen (1976), respectively.

We give in Fig. 4 a plot of mean Si—O bond length versus pressure,
showing that the value is not constant but varies with an increase of
pressure. The calculated bulk modulus for the volume of silicate tetrahedra
up to 149 kb is found to be 1.9 Mb. Even if the tetrahedral volumes at
111 kb and 149 kb are not taken into account, the value is nearly the same.

The silicate tetrahedra are in general reported to have a larger bulk
modulus of around 2.2 Mb (Hazen and Finger, 1978). Through the study
on alpha-quartz D’Amour et al. (1979) in fact showed that the Si—O
bond length is almost invariable up to 80 kb. In such a particular case of
framework structure, however, the increased energy owing to compression
may be amended to some extent by the change of Si—O—Si angles. In
contrast to alpha-quartz, in the orthosilicates such as forsterite the silicate
tetrahedra have no such a freedom but they are directly subjected to
compression through the surrounding medium consisting of the links of
Mg—O bonds.

It would then be not surprising that the Si—O bonds in forsterite
show a significant compression. Further study, however, would perhaps be
desirable to refine the above value for the compressibility of Si—O in
forsterite.
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