Crystal structure of FePO₄ at 294 and 20 K

H. Arnold

Institut für Kristallographie der RWTH, Templergraben 55, D-5100 Aachen, Federal Republic of Germany

Received: August 13, 1986

Crystal structure | Quartz-type structure | Distortion of tetrahedra

Abstract. FePO₄ was obtained by reaction of Fe_2O_3 with H_3PO_4 at 5 kP, and 520 K, and subsequent dehydration at 750 K. The structure is isotype to AlPO₄-quartz (berlinite). The structure was investigated by neutron scattering of a powder sample.

1. Introduction

It was well-known that $FePO_4$ has a quartz-type structure. However, the structure was not yet determined [1]. The interest arose owing to the large difference of the size of the cations and the few structures with FeO_4 tetrahedra.

2. Experimental

An amorphous powder of FePO₄ \cdot H₂O was obtained by the reaction of Fe₃O₄ with highly concentrated H₃PO₄ in a teflon vessel at 520 K and 5 kP for a few days. The amorphous powder obtained was dehydrated at 750 K and a powder of FePO₄ quartz-type structure was obtained. The powder was investigated by using a powder diffractometer at the reactor FR2 of the Kernforschungszentrum Karlsruhe. Several measurements were performed at room temperature and at 20 K. The refinement of the structure was performed with the help of a Rietveld program modified by Hewat [2]. The following scattering factors of the elements were used: Fe 0.916; P 0.513; and O 0.0583 × 10⁻¹² cm as given by Koester et al. [3]. The experimental details are summarized in Table 1.

Temperature [K]	294	20
Space group	P3 ₁ 21	P3 ₁ 21
Formula units per unit cell	3	3
Lattice constants [Å]	a = 5.028(1)	a = 5.019(1)
(Standard deviations)	c = 11.235(2)	c = 11.226(2)
$d_{(calc)} [g \cdot cm^{-2}]$	1.841	1.850
Wavelength [Å]	1.0156	1.0156
2θ range [°]	10 - 104	10 - 82.8
Number of independent reflections	420	252
$R_{iso}(I)^{a}[\%]$	12.03	11.35
$R_{\rm iso}({\rm Y})^{\rm b}$	15.63	15.69
$R_{\rm iso}(WY)^{\rm c}$ [%]	17.85	20.24

Table 1. Crystal data and details of structure determination.

^a $R_{iso}(I)$ *R*-value for the individual reflections using isotropic temperature factors.

^b $R_{iso}(Y)$ *R*-value for the total intensity distribution.

 c $R_{iso}(wY)$ *R*-value for the intensity distribution using weighted intensities. The weight is determined by the counting statistics and the errors occurring with the correction of the background.

Temperature	[K]	294	20	
Fe (3a)	x	0.449(1)	0.452(2)	
, í	у	0	0	
	Z	1/3	1/3	
	В	0.51(7)	0.5(1)	
P (3b)	x	0.478(2)	0.464(3)	
	у	0	0	
	z	5/6	5/6	
	В	0.3(1)	0.02(2)	
O(1) 6(c)	х	0.423(3)	0.418(3)	
	У	0.311(2)	0.317(2)	
	Z	0.3975(6)	0.3955(6)	
	В	1.8(1)	0.2(1)	
O(2) 6(c)	х	0.409(3)	0.403(3)	
. , . ,	y	0.267(2)	0.364(2)	
	Z	0.8756(7)	0.8727(9)	
	В	1.4(1)	0.4(2)	

Table 2. Atomic coordinates and thermal parameter. (Standard deviations are given in parentheses).

Origin of space group as in International Tables for X-ray Crystallography since 1952.

3. Discussion

The structure determination confirmed the isotypy of $FePO_4$ to $AlPO_4$ quartz which was recently refined by Ngo Thong et al. [4]. The final parameters are given in Table 2. The interatomic distances and angles are

Temperature [K]	294	20	Temperature [K]	294	20
FeO ₄ -tetrahedron			PO ₄ -tetrahedron		
$Fe-O(1) 2 \times$	1.793(3)	1.821(3)	$P - O(1) 2 \times$	1.469(5)	1.517(4)
$Fe - O(2) 2 \times$	1.866(5)	1.889(6)	$P-O(2) 2 \times$	1.606(5)	1.559(3)
O(1) - O(1)	3.08(1)	3.419(3)	0(1) - 0(1)	2.492(3)	2.507(3)
$O(1) - O(2) 2 \times$	2.993(9)	3.048(9)	$O(1) - O(2) 2 \times$	2.508(9)	2.529(8)
$O(1) - O(2) 2 \times$	2.890(2)	2.938(4)	$0(1) - 0(2) 2 \times$	2.514(2)	2.519(3)
O(2) - O(2)	3.067(3)	3.05(1)	0(2) - 0(2)	2.507(9)	2.458(9)
O(1) - Fw - O(1)	118.1(6)	116.0(6)	O(1) - P - O(1)	116.0(2)	111.4(2)
$O(1) - Fe - O(2) 2 \times$	109.8(5)	110.5(5)	$O(1) - P - O(2) 2 \times$	109.1(6)	110.6(5)
$O(1) - Fe - O(2) 2 \times$	104.4(3)	104.7(3)	$O(1) - P - O(2) 2 \times$	109.6(3)	109.9(4)
O(2) - Fe - O(2)	110.5(3)	110.5(2)	O(2) - P - O(2)	102.6(9)	104.1(7)
Rotation angle of tetrah	gle of tetrahedra against basis plane	plane	Intertetrahedral bonds		
FeO ₄	18(3)	20(3)	Fe - O(1) - P	142.7(2)	139.4(2)
PO4	22(3)	25(3)	Fe - O(2) - P	134.9(3)	133.7(3)

given in Table 3. At low temperatures the tilt of the tetrahedra with respect to the (001)-plane is increased, i.e. the difference to the high-temperature phase above 980 K is enlarged. By lowering the temperature the Fe-O-Pbond angles are reduced. At low temperatures the tetrahedra, especially the FeO_4 one, become more and more regular. Indications of a magnetic structure have not been found. Similar structures have been recently investigated by Goiffon et al. [5].

Acknowledgement. The author is indebted to Dr. Brüggemann for preparing the sample, the Kernforschungszentrum Karlsruhe for providing their installations, Dr. Müllner, University of Frankfurt, for the measurements, and the Bundesminister für Forschung und Technologie for financial support.

References

- 1. Kosten, K., Arnold, H.: Die III–V-Analoga des SiO₂. Z. Kristallogr. **152** (1980) 119-133.
- Hewat, A. W.: Profile refinement of neutron powder diffraction patterns crystal and magnetic structures. Harwell report 73/239 (1973).
- 3. Koester, L., Yelon, W. B.: Summary of low energy scattering lengths and cross sections. Private communication (Neutron diffraction newsletters).
- Ngo Thong, Schwarzenbach, D.: The use of electric field gradient calculations in charge density refinements. II. Charge density refinement of the low-quartz structure of aluminium phosphate. Acta Crystallogr. A35 (1979) 658-664.
- Goiffon, A., Jumas, J.-C., Maurin, M., Philippot, E.: Etude comparée à diverses températures (173, 293 et 373 K) des structures de type quartz α des phases M^{III} X^V O₄. (M^{III} = Al, Ga et X^V = P, As). J. Solid State Chem. **61** (1986) 384-396.