MoAlP₂O₉ molybdenum(V) aluminophosphate isostructural with VSiP₂O₉

A. Leclaire, M. M. Borel, A. Grandin and B. Raveau

Laboratoire de Cristallographie et Sciences des Materiaux CRISMAT – ISMRa Université de Caen Campus II. Boulevard du Maréchal Juin 14032 Caen, France

Received: July 25, 1989

Molybdenum(V) | Aluminophosphate | Molybdenyl group

Abstract. A new molybdenum aluminophosphate MoAlP₂O₉ has been isolated and its structure determined from X-Ray single crystal study. This tetragonal phase (a = 8.803 Å, c = 8.697 Å), space group P4/ncc is isostructural with VSiP₂O₉. Its structure can be described in a very simple way by the assemblage of ReO₃-type rows [MoO₃]_{∞} with [AlP₂O₆]_{∞} tetrahedral columns. The MoO₆ octahedron exhibits one very short Mo-O distance (1.654 Å) characteristic of Mo(V), to be compared with other molybdenyl phosphates and silicophosphates.

Introduction

Pentavalent molybdenum is characterized by a particular behaviour with respect to other ions with an electronic d¹ configuration such as Ti(III) or W(V). Mo(V) tends to take indeed an octahedral coordination in which one Mo(V)-O distance is very small with respect to the five other ones (~1.6 Å), so that the MoO group is often called the molybdenyl group. Nevertheless the stabilisation of Mo(V) in oxides is not currently observed; it necessitates the presence of a rather covalent matrix in which the MoO₆ octahedra can be isolated one from the other. This is the case in several phosphates and silicophosphates such as MoPO₅ (Kierkegaard and Westerlund, 1964), K₄Mo₈P₁₂O₅₂ (Leclaire, Monier and Raveau, 1983), various forms of the phases KMo₂P₃O₁₃ (Lii and Haushalter, 1987; Leclaire et al., 1989), CsMo₂P₃O₁₃ (Lii and Haushalter, 1987). In this respect Mo(V) exhibits some similarities with vanadium for which the vanadyl group

Crystal structure of MoAIP2O9

A. Leclaire, M. M. Borel, A. Grandin and B. Raveau

1. Crystal data	
Space group	P4/ncc
Cell dimensions	a = 8.8030(8) Å
	b = 8.8030(8)
	c = 8.6970(6)
Volume	$V = 674.0(2) Å^3$
Z	4
Molecular weight	328.86
Dx	3.24
2. Intensity measurement	
2 (MoKa)	0.71073 Å
Scan mode	$\omega = 4i3 \theta$
Scan width (°)	$1.00 \pm 0.35 \tan\theta$
Slit aperture (mm)	$1.00 + \tan\theta$
$\max \theta$ (°)	45
Standard reflections	3 measured every 2000 s (no decay)
Reflections with $l > 2.5 \sigma$	578
$\mu (mm^{-1})$	2.52
3. Structure solution and refineme	nt
Parameters refined	32
Agreement factors	$R = 0.027, R_w = 0.031$

is stabilized in several vanadium phosphates such as α - and β -VP Φ_5 (Gopal et al., 1972; Jordan et al., 1973), V₂P₂O₉ (Gorbunova et al., 1979) and in the silicophosphate VSiP₂O₉ (Middelmiss et al., 1976). Among the different elements susceptible to participate in a tetrahedral matrix aluminium is a good candidate. For this reason the system Mo-AI-P-O was investigated. We report here on the structure of a new molybdenum(V) aluminophosphate MoAlP₂O₉.

Sample preparation and crystal growth

The molybdenum(V) aluminophosphate MoAiP₂O₉ was prepared in the form of powder in two steps. In the first step, a mixture of $H(NH_4)_2P\Phi_4$, Al₂O₃ and MoO₃, was heated up to 673 K in air, in order to eliminate H₂O, CO₂ and NH₃. In a second step, the resulting finely ground powder was mixed with the appropriate amount of molybdenum and sealed in an evacuated silica ampoulc. This sample was heated up to 1273 K for 18 hours and quenched at room temperature.

Single crystals of this phase were obtained in the preparation of the phase $KMo_3P_8O_{28}$. This preparation was performed in two steps. $H(NH_4)_2PO_4$, K_2CO_3 and MoO_3 , were heated up to 673 K in air, in order to eliminate H_2O , CO_2 and NH_3 . In a second step, the resulting powder was mixed with the appropriate amount of molybdenum; this sample put

Table 2. Positional parameters and their estimated standard deviations.

.х	у	Z	$B[Å^2]$
0.750	0.250	0.000	0.56(1)
0.250	0.250	0.17748(6)	1 .445(3)
0.56514(9)	0.435	0.250	0.460(8)
0.3929(2)	0.4141(2)	0.2332(3)	0.83(3)
0.250	0.250	-0.0126(6)	1.22(4)
•.6472(3)	0.3779(4)	0.1084(4)	1.38(4)
	x 0.750 0.250 0.56514(9) 0.3929(2) 0.250 0.6472(3)	x y 0.750 0.250 0.250 0.250 0.56514(9) 0.435 0.3929(2) 0.4141(2) 0.250 0.250 0.417(3) 0.3779(4)	x y z 0.750 0.250 0.000 0.250 0.250 0.17748(6) 0.56514(9) 0.435 0.250 0.3929(2) 0.4141(2) 0.2332(3) 0.250 0.250 -0.0126(6) 0.6472(3) 0.3779(4) 0.1084(4)

Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as: $(4/3) \{a^2 B_{11} + b^2 B_{22} + \dots bc \cos \alpha B_{23}\}$.

in an alumina tube was sealed in an evacuated silica ampoule, heated up to 1125 K for three days, and quenched at room temperature. In the heterogeneous mixture, some blue crystals were isolated on the alumina tube. The chemical composition $AIMOP_2O_9$ of these crystals was determined by microprobe analysis.

Structure determination

A blue crystal of $0.072 \times 0.072 \times 0.060 \text{ mm}^3$ has been chosen for the structure determination. The Lauc patterns showed the symmetry 4/mmm. The cell parameters reported in Table 1 were determined and refined by diffractometric techniques at 294 K with a least-squares refinement based on 25 reflections with $18 < \theta < 22^\circ$. The data were collected on a CAD-4 Enraf-Nonius diffractometer. The reflections were corrected for Lorentz and polarization effects, no absorption corrections were performed. The atomic coordinates of the molybdenum, aluminium and phosphorus atoms were located by subsequent Fourier syntheses. A full-matrix least-squares refinement with a weighting scheme $w = f(\sin\theta/2)$ adjusted using the program POND (Leclaire, unpublished) of the atomic coordinates and the anisotropic thermal factors lead to R = 0.027, $R_w = 0.031$ and to the coordinates listed in Table 2¹.

Description of the structure and discussion

These results show that this new phase MoAlP₂O₉ is isostructural with VSiP₂O₉ (Middelmiss and Calvo, 1976). However the replacement of silicon by aluminium leads to a much more open structure. The projections of the structure along \dot{c} (Fig. 1) and along \ddot{a} (Fig. 2) allow a simple description of

¹Additional material to this paper can be ordered from the Fachinformationszentrum Energie-Physik-Mathematik, D-7514 Eggenstein-Leopoldshafen 2, FRG. Please quote reference no. CSD 53522, the names of the authors and the title of the paper.

Fig. 3. The square windows in the $[AIP_2O_6]_{\alpha}$ columns.

the structure to be proposed. One indeed observes infinite rows of MOG₆ octahedra running along \vec{c} (Fig. 2); such ReO₃-type rows, which can be formulated [MOO₃]_e, are similar to those observed in MOPO₅ (Kierkegaard 1964) and α -VPO₅ (Jorden et al., 1973); another striking similarity with those compounds concerns the existence of [MOPO₅]_e rows running along $\langle 110 \rangle$, in which one PO₄ tetrahedron alternates with one MOO₆ octahedron (Fig. 1). The second original feature of this structure deals with the existence of infinite columns of corner-sharing AlO₄ and PO₄ tetrahedra running along \vec{c} (Fig. 1). Such columns which can be formulated [AlP₂O₆]_e are built from one AlO₄ tetrahedron surrounded by four PO₄ tetrahedra and forming square windows (Fig. 3); along \vec{c} the successive square windows are turned by 90° alternatively. Thus, the structure of MoAlP₂O₉ can be described as the assemblage of [MOO₃]_e octahedra and PO₄ octahedra and PO₄ tetrahedra the structure described as the assemblage to [MOO₃]_e octahedra (AlP₂O₆).

The geometry of the MoO₆ octahedra is characteristic of that generally observed for molybdenum (V), i.e. very similar to those of Mo(V) in the α -KMo₂P₃O₁₃ (Leclaire, Monier and Raveau, 1983), β -CsMo₂P₃O₁₃ (Li and Haushalter, 1987), γ -CsMo₂P₃O₁₃ (Chen et al., 1988) δ -KMo₂P₃O₁₃ (Leclaire et al., in the press) or AgMo₅P₈O₃₃ (Lii, Johnston, Goshorn and Haushalter, 1987) and Mo₂P₄Si₄O₂₃ (Leclaire et al., 1989). One observes a

a a

Fig. 1. Projection of the MoAlP₂O₉ structure along \tilde{c} .

A. Leclaire, M. M. Borel, A. Grandin and B. Ravea

Fig. 2. Projection of the MoAlP₂O₉ structure along d.

Table 5. Distances (Å) and angles (°) in the PO4 tetrahedron. Symmetry code see Table 3.

Mo		O(1)	O(1 ⁱ)	●(1 ⁱⁱ)	O(1 ⁱⁱⁱ)	O(2)	
D(1))	1.976(2)	3.831(3)	2.709(3)	2.709(3)	2.870(5)	2.925(5)
D(1 ¹)	151.6(2)	1.976(2)	2.709(3)	2.709(3)	2.870(5)	2.925(5)
) (1 ⁱ	ⁱ)	86.6(1)	86.6(1)	1.976(2)	3.31(3)	2.870(5)	2.925(5)
)(1 ⁱ	"")	86.6(1)	86.6(1)	151.6(2)	1.976(2)	2.870(5)	2.925(5)
D(2))	104.2(1)	104.2(1)	104.2(1)	104.2(1)	1.654(5)	4.349(5)
)(2	~)	75.8(1)	75.8(1)	75.8(1)	75.8(1)	180.00	2.695(5)
Sym	metry c	ode:					
	i:	1/2 x;	1/2-y;	2			
6	ii:	1/2 - y;	x;	Z			
	iii:	<i>y</i> ;	1/2-x;	z			
	iv:	1/ 2- <i>x</i> ;	y;	1/2 + z			
	V :	3/2-x;	1/2-y;	z			
	vi:	y + 1/2;	1-x;	-2			
	vii:	1-y;	x-1/2;	- z			
	viii:	1-y;	1-x;	1/2-z			
	ix:	1/2-x;	; 1/2,	1/2 + z			
	x :	1-x;	1- <i>Y</i> ;	1-2			
	xi:	1-x;	; 1/2;	1 <i>-2</i>			
	xii:	x + 1/2;	у;	1/2-z			

Table 3. Distances (Å) and angles (°) in the MoO₆ octahedron.

Table 4. Distances (Å) and angles (°) in the Al \bullet_4 tetrahedron. Symmetry code see Table 3.

Al	O(3)	O(3 ^v)	O(3 ^{vi})	O(3 ^{vii})
O(3)	1,725(3)	2.888(6)	2.779(5)	2.779(5)
O(3 ^v)	113.8(2)	1.725(3)	2.779(5)	2.779(5)
O(3 ^{vi})	107.4(1)	107.4(1)	1.725(3)	2,888(6)
O(3 ^{vii})	107.4(1)	107.4(1)	113.8(2)	1.725(3)

very short Mo-O bond (1.654 Å) corresponding to a molybdenyl group, four medium ones (1.976 Å) and a very long one (2.695 Å) (Table 3). The "O₆" octahedron is almost regular (Table 3) but the O-Mo-O angles range from 75.8 to 104.2° due to the fact that the molybdenum atom is strongly off-centered by about 0.48 Å from the plane of the four oxygen atoms giving the medium Mo-O bonds. So one may also consider the molybdenum atom in a square pyramidal coordination. The stacking of these pyramids leads to a string of corner-sharing octahedra.

The AlO₄ tetrahedron is a little distorded in spite of its four identical Al-O bonds (Table 4). The PO₄ tetrahedron has the classical geometry observed in monophosphates (Table 5). One observes that the P-O bonds involving an oxygen atom common to Mo and P are a little longer than those involving oxygen atoms bridging aluminium and phosphorus atoms.

P	O(1)	O(1 ^{viii})	O(3)	O(3 ^{viii})
0(1)	1.534(3)	2.420(4)	2,508(4)	2.502(4)
O(1 ^{viii})	104.2(2)	1.534(3)	2.502(4)	2.508(4)
0(3)	110.8(2)	110.4(2)	1.514(3)	2.483(7)
O(3'''')	110.4(2)	110.8(2)	110.2(3)	1.514(3)

Table of relined displacement parameter expressions - Beta's.

Name	B (1.1)	B(2.2)	B(3,3)	B(1.2)	B(1,3)	B (2,3)
Al	0.00195(8)	B(1,1)	0.0015(1)	0	0	0
Mo	0.00092(1)	B(1,1)	0.00252(3)	0	0	0
Р	0.00121(4)	B(1,1)	0.00208(8)	-0.0001(1)	-0.0003(1)	B(1,3)
O (1)	0.0015(2)	●.● ● 18(2)	0.0050(2)	-0.0002(3)	-0.0010(4)	-0.0002(4)
$\vec{O}(2)$	0.0045(3)	B(1,1)	0.0029(4)	0	0	0
O (3)	0.0039(2)	0.0048(3)	0.0048(3)	0.0011(4)	0.0028(5)	-0.0038(5)

The form of the anisotropic displacement parameter is: $\exp[-(B(1,1)*h2 + B(2,2)*k2 + B(3,3)*12 + B(1,2)*hk + B(1,3)*hl + B(2,3)*kl)].$

As a conclusion, the synthesis of this new molybdenum aluminophosphate shows the ability of aluminium to participate in the formation of mixed frameworks built up from octahedra and tetrahedra. The fact that aluminium takes a tetrahedral coordination is of great importance for the edification of more open structures in this lield.

References

- Chen, J. J., Lii, K. H., Wang, S. L.: Λ new Mo⁵⁺ phosphate with a tunnel structure: γCsMo₂P₃O₁₃. J. Solid State Chem. 76 (1988) 204-209.
- Gopal, R., Calvo, C.: Crystal structure of βVPΦ₅. J. Solid State Chem. 5 (1972) 432-435.
- Gorbunova, Y. E., Linde, S. A.: Structure of crystals of vanadyl pyrophosphate (VO)₂P₂O₇. Dokl. Akad. Nauk SSSR 245 (1979) 584-588.
- Jordan, B., Calvo, C.: Crystal structure of α-vanadium holophosphate. Can. J. Chem. 51 (1973) 2621-2625.
- Kierkegaard, P., Westerlund, M.: The crystal structure of MoOPO₄. Acta Chem. Scand. 18 (1964) 2217 – 2225.
- Leclaire, A., Borel, M. M., Grandin, A., Raveau, B.: Mo₂P₄Si₄Φ₂₃, a molybdenum V silicophosphate related to the β cristobalite. J. Solid State Chem. 80 (1989) 250-255.
- Leclaire, A., Borel, M. M., Grandin, A., Raveau, B.: Crystal structure of a molybdcnum V phosphate: $\beta K Mo_2 P_3 O_{13}$. Acta Crystallogr., in press.
- Leclaire, A., Borel, M. M., Grandin, A., Raveau, B.: A novel form of molybdenum V phosphate: δKMo₂P₃●₁₃. Z. Kristallogr. 188 (1989) 77-83.

- Leclaire, A., Monier, J. C., Raveau, B.: K₄Mo^v₈P₁₂O₅₂. A tunnel structure characterized by an unusual valence of molybdenum. J. Solid State Chem. **48** (1983) 147-153.
- Lii, K. H., Johnston, D. C., Goshorn, D. P., Haushalter, R. C.: Crystal structure and magnetic properties of a new molybdenophosphate: AgMo₅P₈O₃₃. J. Solid State Chem. 71 (1987) 131-138.
- Lii, K. H., Haushalter, R. C.: Layer and tunnel structures is new molybdenophosphates: $Cs_2Mo_4P_6O_{26}$ and $M_4Mo_8P_{12}O_{52}$ (M = Cs, Rb, K, Tl). J. Solid State Chem. 69 (1987) 320-328.
- Middelmiss, N., Calvo, C.: Oxovanadium (IV) diphosphatomonosilicate. Acta Crystallogr. **B32** (1976) 2826-2898.

3