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Abstract. The computer program EXCALIBR (Bloss and Riess, 1973;
Bloss, 1981, p. 202) has been rewritten and markedly improved. Like
EXCALIBR, EXCALIBR II solves optical extinction data, as determined
with a spindle stage, and determines the optic axial angle 2V and the
orientation of the crystal's optical indicatrix. EXCALIBR II uses a modifi-
cation to Joel's equation as a means of obtaining the optic axes of a crystal.
The new algorithm eliminates the need to solve the extinction data, quartet
by quartet, as the first step towards finding a solution, as required by
EXCALIBR. Furthermore, EXCALIBR II successfully solves extinction
data where one optic axis of a biaxial crystal is 90° to the spindle axis, an
orientation that had thwarted its predecessor. EXCALIBR II also accu-
rately determines the optical indicatrix orientation for uniaxial crystals.
The new program runs 10 times faster than EXCALIBR. In addition,
creating data files is simplified by free-formatted input.

After solving extinction data for several different wavelengths and/or
temperatures, EXCALIBR II calculates the angular change of each optic
direction with wavelength and/or temperature along with the error on the
angle. Using a simple t-test, it then computes a p-value to aid in the decision
as to whether the optical direction truly exhibits dispersion. This is a
more valid and sensitive procedure than the X2 test used by EXCALIBR,
particularly because the covariance in each optic vector's coefficients are
taken into consideration and the results are invariant to the vector's orien-
tation.
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Introduction

Optical properties are a fundamental physical property of a mineral. Since
its development in 1959, the spindle stage method for determining the
refractive indices of crystals has led to a significant improvement in the
measurement of optical data (Wilcox, 1959; Bloss, 1978; Bloss, 1981).
Basically, the method involves first mounting a crystal on the needle tip of
a spindle stage. Next, the spindle stage is mounted on the stage of a
polarizing microscope where the crystal is submerged in an immersion oil.
Using polarized monochromatic light, the crystal is then systematically
rotated around the spindle axis and around the microscope axis until the
crystal becomes extinct. These two degrees of rotation plus an analysis
of a wide range of extinction positions permit the determination of the
orientation of the optical indicatrix (Bloss and Riess, 1973; Bloss, 1981,
p.63).

The program EXCALIBR was developed to computationally analyze
these extinction data and determine the coordinates of a biaxial optical
indicatrix (Bloss and Riess, 1973; Bloss, 1981, p. 202). These coordinates,
in turn, indicate the precise orientation at which to measure the crystal's
principle refractive indices a, f3 and y. The combination of spindle stage
methods and EXCALIBR has been used to solve and discover numerous
problems in optical mineralogy (Armbruster and Bloss, 1982; Gunter and
Bloss, 1982; Su et aI., 1984; Greiner and Bloss, 1987). However, the compu-
tational procedure used by EXCALIBR placed various restrictions on both
extinction data accuracy and crystal orientation (Bloss and Riess, 1973;
Bloss, 1981, p. 217). In addition, there were problems with the estimated
standard deviations of the coordinates and the statistical methods used for
dispersion analysis (Bloss, 1981, p. 308).

Consequently, a new version of EXCALIBR has been written by two
of us (K. L. B. and R. T. D.) in collaboration with the others (F. D. B.
and J. B. B.). Like EXCALIBR, the new program temporarily called
EXCALIBR II, but eventually to assume the name of its predecessor, uses
the equation

(1)

introduced by Joel (Joel, 1965) in determining estimates (") for the two
normalized optic axes, ill and il2. This algorithm, as used by EXCALIBR,
solves for six variables subject to the constraint that the two optic axes are
normalized (Bloss and Riess, 1973). Using six variables leads to an ill-
conditioned problem that requires accurate starting estimates. This was
accomplished by organizing the data into groups of four whose spindle axis
settings (S values) differed by at least 40°. For each group, EXCALIBR
determines estimates for ill and il2 and uses their average as starting values
for the least-squares problem (Bloss and Riess, 1973). The new algorithm
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(described below) used by EXCALIBR II only involves four variables
which has significantly improved the conditioning of the problem. As a
consequence, the new program eliminates the need to organize the data
into groups. This constitutes a major advantage. Now, even if optical
extinctions can only be measured over a limited range of spindle settings,
the optic axial angle 2V and the orientation of the indicatrix can be deter-
mined. In addition, the number of lines of code involved are about two
thirds the original number and the run-time is reduced. EXCALIBR's
computation time, operating at 10 megahertz for the Tiburon albite data
(presented as an example), was approximately 1 minute, 37 seconds; EX-
CALIBR II's was 10 seconds. EXCALIBR II thus provides an approximate
90% reduction in computation time. The physical storage space required
for EXCALIBR II has also been reduced by 40% to approximately 1 K.
In addition, data input has been significantly simplified over that of EX-
CALIBR primarily because of free format input.

Copies of EXCALIBR II may be obtained by sending a check for
$20.00 made out to the Virginia Tech Foundation - Geology Fund, along
with the disk type specification to K. L. B. or R. T. D. The source code,
executable file, example data, and input instructions will be included on a
returned disk. The source code is written in double precision standard
Fortran 77 and should compile on any operating system. The program can
be copied and distributed freely.

Program procedure

A complete description of the data input is provided with the program. An
example input data file, for the Tiburon albite discussed in the paper, is
shown in Figure 1 to illustrate the simplicity of the input data structure. In
general, the input file contains the spindle setting, S, followed by the
microscope stage settings, M" that provided crystal extinction. Note that
input of the reference azimuth, M" is now optional. Mr is the microscope
stage setting that aligns the spindle axis precisely east-west (Bloss, 1981,
p.19).

Provided no Mr value was input, EXCALIBR II first calculates the
average reference azimuth, M" from all supplied Ms data whose S values
differ by 180°. For example, if extinction data are supplied for S values
from 0°, 10°,..., 350°, as in the so-called 360° option of EXCALIBR,
EXCALIBR II calculates Mr for each of the 18 pairs of data. It then uses

M" the average of these 18 values of Mr in its calculations.
Next, the program uses the input Mr or the computed Mr to calculate,

for all S settings, a corrected extinction angle E" where

Es = Ms - Mr.
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* * *
top of file

* * *
Tiburon Albite - Wolfe
433 500 600 666/
/
o
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180

217.9 218
218.5 218.3
219.1 219.3
219.6 219.7

219.4 219.6
218.6 218.6

217.3 217.3

213.6 213.6
205.9 205.9

189.9 189.9

171.7 171.7

159.2 159.2

153 153
149.8 149.8
147.1 147.4
145.8 145.7
144.4 144.6
143.5 143.4
142.4 142.3

*
end of file

218.1
218.3
219.2
219.5
219.3
218.9
216.8
213.8
206.4
191.3
172.8
159.5
153.6
149.7
147.7
145.9
144.6
143.4
142.2

218.2
218.6
219.5
219.3
219.2
219
216.9
213.7
206.4
191.6
172.5
159.8
154
150.4
147.8
146.1
144.5
143.5
142.1

* * * * *

Fig. 1. Example input data file showing extinction data for the Tiburon Albite measured
at wavelengths of 433, 500, 600 and 666 nm (Bloss, 1981, p. 210). A line by line description
of the input data file is provided with the program.

Two equivibration directions p and q are then calculated by adding and
subtracting 45° from each Es angle, respectively. The angular coordinates
for p and q are then converted to a Cartesian coordinate system (C = {i, j,
k}) defined relative to the microscope where [p]~ = [PIpz P3] and
[q]~ = [ql qz q3]. The x-axis is defined to be east-west, the y-axis north-
south, and the z-axis is defined to be perpendicular to the microscope stage.

After rewriting Joel's equation (Equation 1) in term of four variables,
a, b, c and d,

[(qlqz - PIPZ) + (qi - pi)c + (qZq3 - pZp3)dja

+ [(qlq3 - PIP3) + (q~ - pnd + (qZq3- pzP3)c]b

+ [(qlqz - PIPZ)]c + [(qlq3 -PIP3)]d

= -(qi - pi),

the program employs the Gauss-Newton algorithm (GN) (Seber and Wild,
1989) to obtain unbiased, minimum variance estimates: Ii = sir, G= llr, C=
via and d = wla. The program is considered to converge when the parameter
shifts, ~Ii, ~G, ~c and ~d, are less than 1.0 x 10-14. Estimated final coordi-
nates for 31 and 3z, where [3& = [r s ~and [3& = [a v w], are obtained
from the normalization condition. Given the optic axes, computation of



EXCALIBR II 189

estimates for the acute and obtuse bisectrix and the optic normal vectors
is obtained by adding, subtracting, and forming the cross product, respec-
tively.

In the case where the program is unable to converge to a set of parameter
estimates after 100 iterations, it is likely that one of the optic axes is located
in the yz plane, in other words, 90° from the spindle axis. This will cause
the estimates of the regression parameters to increase to infinity since either
f or fl would equal zero. To obviate this difficulty, all p and q data are
rotated 120° about the vector [111]~. If convergence is again not achieved
after 100 iterations (implying that s or v equal zero), then the optic axis
must coincide with the z-axis, that is, it is located in xz and yz planes. This
requires all p and q data to be rotated another 120° about the vector
[111]~. Once convergence has been reached, the estimated optic axes are
then transformed back to the original orientation.

Estimates for a single optic axis, G, (uniaxial crystals) where
[;;]~ = [elg], are determined by rewriting Joel's Equation (Equation 1) in
the following form

[2(q1qZ - P1PZ) + (q~ - pDa + (qzq3 - pzp3)b]a

+ [2(q1q3- P1P3) + (q~ - pDb + (QZQ3- pzP3)a]b = -(Qi - pi) .

Minimum variance estimates of a and b using the ON method (Seber and
Wild, 1989) are computed where d = lie, b = g/e. The program is considered
to converge when the parameter shifts, LIdand LIbare less than 1.0 x 10-14.
Final coordinates for;; are again obtained from the normalization con-
dition.

An estimate of the covariance matrix, V., for the optic axes is obtained
from the propagation of error equation (Kendal and Stuart, 1987)

(2)

where Pm is the estimated covariance matrix of the four (or two) estimated
regression parameters (Milton and Arnold, 1990) and V is the transpose
of the matrix L:

[

or/aa as/aa at/oa ou/aa av/aa aw/aa

ar/ab os/ab at/ob au/ab av/ab aw/ob
L- - ar/ac as/ac at/oc aulae av/ac aw/oc

ar/ad as/ad at/ad au/ad av/ad ow/ad

The estimated standard errors, given in the output for f, S, i, and fl, v, IV
are the square roots of the diagonal elements of V., respectively. Similarly,



S Ms Es CALC(Es) Es-CALC(Es)
.00 217.90 37.15 37.74 .01

10.00 218.50 38.35 38.49 -.14
20.00 219.10 38.95 39.04 -.09
30.00 219.60 39.45 39.31 .14
40.00 219.40 39.25 39.19 .06
50.00 218.60 38.45 38.50 -.05
60.00 217.30 37.15 36.85 .30
70.00 213.60 33.45 33.39 .06
80.00 205.90 25.75 26.01 -.26
90.00 189.90 9.75 10.56 -.81

100.00 171.70 171.55 170.77 .78
110.00 159.20 159.05 158.86 .19
120.00 153.00 152.85 152.93 -.08
130.00 149.80 149.65 149.55 .10
140.00 147.10 146.95 147.31 -.36
150.00 145.80 145.65 145.65 .00
160.00 144.40 144.25 144.31 -.06
170.00 143.50 143.35 143.20 .15
180.00 142.40 142.25 142.26 -.01

Optic Axial Angle, 2V (ese) = 77.567 .368)

Computed Cartesian Coordinates
x (ese) y (ese) z (ese)

OAI .9875 .0006) -.0205 .0038) .1565 .0040)
OA2 .2304 .0027) .9719 .0007) .0494 .0035)
AB .7811 .0006) .6102 .0008) .1321 .0019)
OB .6044 .0010) -.7921 .0006) .0855 .0055)
ON -.1568 .0039) -.0131 .0043) .9875 .0006)

Spindle Stage Coordinates to measure refractive indices.
S (ese) Es (ese) Ms

OA1 97.45 ( 1.40) 9.08 ( .23)
OA2 2.91 ( .21) 76.68 ( .16) (e-w polr.)
AB 12.21 ( .17) 38.64 ( .06) 218.79
OB 173.84 ( .39) 52.82 ( .07) 232.97
ON 90.76 ( .25) 99.02 ( .23) 279.17
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Tiburon Albite - Wolfe

Experimental Treatment 1D number
Average Reference Azimuth, Mr (esd)
based on 4 observations.

433.000
180.15 ( .00)

Biaxial Model
number of iterations (100 max.) 7
R-squared .99956
m.s.e. .000425

(n-s polr.)

128.79
142.97
189.17

Fig. 2. Select portion of EXCALIBR II output file showing solution of the 433 nm data
provided in Figure 1. For comparison with EXCALIBR, see Bloss (1981, p. 210).

estimated standard errors of other quantities are obtained by propagation
of error from Vs.

Bloss (1981, p. 210) presents EXCALIBR's solutions of extinction data
determined at wavelengths 433, 500, 600 and 666 nm for an albite from
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Tiburon, California. The solutions for all wavelengths closely compare to
the new solutions determined for the data by EXCALIBR II. For compari-
son Figure 2 shows the results for EXCALIBR II's 433 nm solution. The
most significant differences occur in calculations of the estimated standard
errors. Those calculated by EXCALIBR II are slightly larger than those
calculated by EXCALIBR. It has been suspected that the estimated stan-
dard errors provided by EXCALIBR were too small (Bloss, 1981, p. 308).

Combined optical and X-ray studies

Following the determination of all solutions, the program calculates the
upper and lower arc settings for the goniometer that will align a given optic
vector along either the spindle axis (x-axis) or the light axis (z-axis). Arc
settings are provided for both Type I and Type II goniometer heads (Bloss,
1981, p. 233). Of course not all arc settings will be attainable because of
the limited rotation range of most goniometer arcs. If an optic direction
that coincides with a crystallographic axis can be brought parallel to x,
the crystal becomes oriented for a Weissenberg, oscillation, or rotation
photograph. If it can be brought parallel to z, the crystal will be oriented
for a precession photograph with the optic direction as the precessing axis.
For triclinic crystals, a spindle stage study will not help orient the crystal
for an X-ray photograph unless the angles between the optic vectors and
the crystallographic axes are, at least, approximately known.

When a spindle stage study is followed by an X-ray study of the crystal,
EXCALIBR II uses the before and after goniometer arc settings to calculate
the coordinates that the optic vectors assume after the goniometer arcs
were re-set for the X-ray study. This is accomplished by computing a
transformation matrix

T = McC[OlO](ldMcC[OOl](lU)

where Me represents a general Cartesian rotation matrix (Boisen and Gibbs,
1985) and (h and (Iv are the turn angles about the y- and z-axes, respectively.
These new optic vector coordinates permit the user to continue the optical
study at the current goniometer arc settings. In addition, these new coordi-
nates permit the calculation of the precise angles between the estimated
optical vectors and the estimated crystallographic axes determined from
the X-ray study.

Statistical study of optical dispersion

Even with a simple detent spindle stage, the dispersion of the optical vectors
or their change with temperature may be determined for a crystal. One
simply needs to make careful spindle stage studies at two or more different
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conditions such as wavelengths or temperatures. For example, the wave-
lengths for which extinction positions were measured for the Tiburon albite
sample are entered on line 2 (Fig. 1). Measurement of a crystal's optical
dispersion can provide additional insight into structural features such as
phase transitions or even possibly petrogenetic histories (Bloss, 1978). Sta-
tistics are necessary to help indicate whether the solutions determined
for one treatment are really different from those solutions obtained from
another treatment. By using a t-test to test the null hypothesis, Ho, of
non-dispersion, EXCALIBR II provides an analysis of dispersion that is
superior to that of its predecessor EXCALIBR.

When comparing two vectors, vIand vz, for possible dispersion, the
angle between the vectors, namely 8, is a natural parameter of interest. If
8 equals zero, then obviously no dispersion occurred. However, because we
can only estimate the optic vectors, '\, we can only estimate the angle
between vectors, 8. Thus, a finite estimated angle between estimated vectors
does not necessarily indicate dispersion. Of equal importance is the esti-
mated standard error of this angle, &e. Through propagation of error,
EXCALIBR II computes a 3 x 3 estimated covariance matrix, VYi,for the
coordinates of each estimated optic vector '\. By combining VYifor the two
vectors under consideration, &~is computed according to Equation 2 as

(3)

where

-x2/sin8

- Y2/sin8

-22/sin8

-xdsin8

- Ydsin8

- 2dsin8

o is a 3 x 3 matrix of zeros, [v& = [Xl Y1 2d, [V2]~= [X2Y2 22], and 8 =
cOS-1(X1X2 + Y1Y2 + 2122)'

EXCALIBR II uses the t-value (t = 8/&e) to determine a p-value from
the appropriate t-distribution for the two vectors under consideration (Press
et aI., 1986). The p-value represents the probability of obtaining a statistic
greater than or equal to the observed value, assuming the null hypothesis,
Ho : 8 = 0, is true. Small p-values (:-:;0.10) suggest rejection of the null
hypothesis of non-dispersion. In other words, small p-values imply disper-
SlOn.

L=
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An equally valid test for indicating statistical differences resulting from
experimental treatments can be found by utilizing the estimated differences
in coefficients of the compared vectors. If viand v2 are the vectors under
consideration, then we define Av as

Multivariate theory suggests that a modified form of the Hotelling's r2
statistic (Johnson and Wichern, 1982) be used to test the null hypothesis of
nondispersion, Ho : Av = O. The test statistic, r2, is computed according
to

(4)

where Sp = (t\, + Vv,)/2 is the pooled estimate of the covariance matrix
for AV. The null hypothesis is rejected if the p-value for r2, determined
from the appropriate F-distribution, is less than or equal to 0.10. As the
number of observations or experimental measurements become very large
(N) 200), then r2 approximately follows a X2 distribution (Johnson and
Wichern, 1982).

Assuming a X2distribution with 2 degrees of freedom corresponding to
the number of independent parameters, EXCALIBR used a x2-test statistic
to test Ho : Av = O. Computationally, the x2-test statistic is analogous to
r2 given in Equation 4 except it assumes all off-diagonal covariance terms
in Sp are zero, a situation often not true in practice. EXCALIBR's use of
a x2-test statistic is inappropriate for several reasons. First the x2-test only
follows a X2distribution when the standard errors of compared parameters
(O"Lli'O"Lljiand O"Ll,)are known. In reality, however, these standard errors are
unknown and we can only obtain estimates of them (o-Lli'o-Llyand o-Lli)'
Second, by using a x2-test statistic, EXCALIBR incorrectly ignored the
inherent covariance between Ax, Ay and Ai. Recall that along with Joel's
equation (Equation 1) are the constraints that 31 and 32 are normalized.
Consequently, this constraint introduces correlation within the coefficients
for each optic axis, and therefore because these coefficients are correlated,
any vector computed using 31 and 32 must inherently have covariance
between coefficients.

Ignoring the covariance between Ax, Ay and Ai leads to a dependence
of EXCALIBR's x2-test value on the orientation of Av. EXCALIBR ac-
counted for this orientation dependence essentially by rotating Av and
computing a new x2-test. It then reported the harmonic mean of p-values
determined from these various x2-test values (Bloss, 1981, p. 310). However
like T2, a true x2-test random variable (i.e. zero covariance) should have
no orientation dependence.

-_..- --.--



Table 1. Comparison of dispersion analysis provided by EXCALIBR II and EXCALIBR. The dispersion analysis is computed for wavelengths
between 433 and 666 nm. The analysis provided by EXCALIBR II is listed first and includes the angle between optic vectors (Ang) along with
its estimated standard error (ese) and the p-value (p). The analysis provided by EXCALIBR is listed below.

Treatments Optic axis 1 Optic axis 2 Acute bisectrix Obtuse bisectrix Optic normal

Ang ese p Ang ese p Ang ese p Ang ese p Ang ese p f"i

r
433 500 0.327 0.347 0.354 0.144 0.297 0.632 0.114 0.153 0.464 0.356 0.479 0.462 0.369 0.471 0.439 t:a

0.315 0.364 0.139 0.787 0.112 0.493 0.459 0.371 0.368
po

0.356 ::1-rI)

433 600 0.324 0.336 0.341 0.654 0.294 0.033 0.325 0.166 0.059 0.439 0.485 0.372 0.544 0.385 0.166
S-
ri)

0.205 0.744 0.626 0.002 0.337 0.004 0.434 0.265 0.541 0.016 ::r"
.'"

433 666 0.948 0.352 0.011 0.852 0.275 0.004 0.522 0.168 0.004 0.055 0.331 0.870 0.522 0.178 0.006 :-'1

0.831 0.008 0.799 0.000 0.529 0.000 0.042 0.990 0.530 0.005 >::J
t:a

500 600 0.380 0.366 0.307 0.753 0.320 0.025 0.231 0.172 0.188 0.795 0.516 0.132 0.820 0.491 0.104 0-
'"0.343 0.258 0.740 0.000 0.243 0.069 0.789 0.Q15 0.814 0.001 .'"
?'

500 666 0.735 0.369 0.054 0.895 0.304 0.006 0.415 0.180 0.027 0.320 0.538 0.555 0.525 0.333 0.124 :-'
0.647 0.055 0.865 0.000 0.421 0.000 0.314 0.493 0.524 0.003 c;I

0

600 666 0.688 0.379 0.078 0.392 0.268 0.153 0.212 0.166 0.209 0.477 0.539 0.382 0.510 0.518 0.331 :;;
::

0.673 0.020 0.382 0.067 0.212 0.027 0.476 0.244 0.510 0.126 '"p;
::p.

~~t:a
::;.
(')
::r"
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To illustrate the invariance of r2 on the orientation of Av, let Me
represent a Cartesian rotation matrix, then according to Equation 4

r2 = [Av]~Sp 1 [AVJc= [AV,]~Sp/ [Av,Jc, (5)

where MeAv = Av, and Sp = MeSpMc
1is the estimated covariance matrix

of Av" the rotated vector. When computing the x2-test value, EXCALIBR
uses only the diagonal elements of S;; 1. By recomputing the x2-test value
for AV, again using only the diagonal elements of SPrl, the equality in
Equation 5 is violated.

Our studies indicate that the simple t-test provides a better measure of
dispersion than use of the Rotelling's r2 for the current application. In
addition, use of the t-value as a test statistic has several advantages over
the x2-test statistic used by EXCALIBR. First of all, the t random variable
directly employs the notion that we are only estimating the standard error,
(;0'of e. The degrees of freedom used in the t-distribution now utilizes both
the number of independent parameters under consideration and the number
of experimental data used to compute e.The degrees of freedom for the X2
distribution used by EXCALIBR was always two regardless of data size.
Furthermore, the estimated covariance of the vector coefficients is incorpor-
ated into (;0according to Equation 3. In addition, the t random variable is
independent of orientation because eand aliis invariant under any rotation,
Me.

Table 1 shows the results of the dispersion analysis provided by both
EXCALIBR and EXCALIBR II using the data from Figure 1. The proba-
bility values given by EXCALIBR have been converted to p-values for
comparison with p-values from EXCALIBR II. By accepting p-values less
than or equal to 0.10 as evidence for rejection of either null hypothesis
of non-dispersion, Ho : e = 0 for EXCALIBR II or Ho : Av = 0 for
EXCALIBR, inspection of Table 1 shows that EXCALIBR may provide
evidence for wrongly rejecting Ho. The p-values provided by EXCALIBR
II are statistically valid and thus provide a better measure of dispersion.
The results of EXCALIBR II more clearly indicate that wavelength differ-
ences of 100 nm or less are insufficient to produce verifiable changes in
optic vector positions for the Tiburon albite (Bloss, 1978). Furthermore,
EXCALIBR's erroneous rejection of Ho for the obtuse bisectrix between
wavelengths 500 and 600 is absent from the dispersion analysis provided
by EXCALIBR II. Thus, EXCALIBR II's dispersion analysis suggesting
horizontal dispersion for the Tiburon albite supports the observations
reported by Winchell and Winchell (1951).
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