Crystal structure of manganese chlorine boracite, Mn₃B₇O₁₃Cl

F. Kubel

University of Geneva, Department of Physical Chemistry, Quai Ernest Ansermet 30, CH-1211 Geneva 4, Switzerland

and O. Crottaz

University of Geneva, Department of Applied Chemistry, Quai Ernest Ansermet 30, CH-1211 Geneva 4, Switzerland

Received January 19, 1996, transferred to 1st update of ICSD database in 1997, CSD-No. 402906

Source of material: The compound is synthesized from a mixture of MnO, MnCl₂. B₂O₃ and H₂O traces in a sealed quartz ampoule at 1200 K. The three crucible method described in ref. I was used. Data collection on an optically controlled ferroelectric single domain crystal. The figure shows the difference between the two metal-halogen distances as a function of the halogen ionic radii for the three orthorombic manganese boracites. A linear behavior is found as for others boracites (see ref. 2).

B₇ClMn₃O₁₃, orthorhombic, $Pca2_1$ (No. 29), a = 8.678(1) Å, b = 8.688(1) Å, c = 12.290(1) Å, V = 926.6 Å³, Z = 4, R(F) = 0.028, $R_w(F) = 0.023$.

References

- Schmid, H: Die Synthese von Boraziten mit Hilfe chemischer Transportreaktionen. J. Phys. Chem. Solids 26 (1965) 973-988.
- Kubel, F.: Janner, A.-M.: Structure of the Fully Ferroelectric/Fully Ferro-elastic Orthorhombic Room-Temperature Phase of Iron Iodine Boracite, Fe₃B₇O₁₃I. Acta Crystallogr. C49 (1993) 657-659.

Table 3. Final atomic coordinates and displacement parameters (in $Å^2$)

Table 1. Parameters used for the X-ray data collection

platelet. size 0.23 x 0.15 x 0.03 mm
Mo K_{α} radiation (0.71070 Å)
-44.00 cm^{-1}
Stoe
ω/2θ
293 K
49°
1734
$F_0 > 3 \sigma(F_0)$
118
Xtal3.2

Table 2. Final atomic coordinates and displacement parameters (in \dot{A}^2)

Atom	Site	х у		÷	Uiso	
B(1)	40	0.503(1)	().496(2)	0.249(1)	0.01(1)	
B(2)	4a	0.2561(7)	0.249(2)	0.4958(7)	0.009(9)	
B(3)	40	0.002(1)	-0.005(2)	0.2495(9)	0.009(9)	
B(4)	4a	0.4561(8)	0.249(1)	0.3506(7)	0.01(1)	
B(5)	4a	0.2474(9)	0.401(2)	0.169(1)	0.008(8)	
B(6)	4a	0.9045(7)	0.751(1)	0.8209(6)	0.01(1)	
B(7)	4a	0.7528(9)	0.902(2)	0.669(1)	0.007(7)	
O(1)	4a	0.2283(5)	0.250(1)	0.236(5)	0.009(9)	
O(2)	$+\alpha$	0.5401(5)	0.3317(6)	0.2758(5)	0.009(9)	
O(3)	4a	0.3827(5)	0.3241(5)	0.4343(4)	0.009(9)	
O(4)	4a	0.9717(5)	0.1599(6)	0.2744(5)	0.009(9)	
O(5)	4a	0.3171(6)	0.3629(6)	0.0653(5)	0.008(8)	
O(6)	40	0.1657(6)	0.9750(6)	0.2254(5)	0.009(9)	
O(7)	40	0.1432(5)	0.1810(6)	0.4222(4)	0.01(1)	
O(8)	4a	0.3390(6)	0.5136(6)	0.2275(5)	0.009(9)	
O(9)	4a	0.1765(6)	0.1243(5)	0.0639(5)	0.01(1)	
O(10)	4a	0.9515(6)	0.5933(6)	0.8395(4)	0.009(9)	
O(11)	4a	0.5347(5)	0.9088(5)	0.8513(5)	0.007(7)	
O(12)	4a	0.9081(6)	0.5365(5)	0.6528(4)	0.008(8)	
O(13)	4a	0.5897(6)	0.9429(5)	0.6588(5)	0.008(8)	

Atom	Site	<u>X</u>	<u>y</u>		U11	U22	U33	U12	U_{13}	U ₂₃
Cl(1)	4 a	0.7691(2)	0.2504(4)	0.50870^{c}	0.0164(7)	0.0151(7)	0.016(1)	0.000(1)	0.0014(9)	0.002(2)
Mn(1)	4a	0.7617(1)	0.2520(3)	0.2211(2)	0.0077(4)	0.0081(4)	0.0159(7)	0.0004(5)	0.0015(5)	0.000(1)
Mn(2)	40	0.4823(2)	0.5333(2)	0.4994(2)	0.0137(6)	0.0129(5)	0.0083(8)	-0.0045(6)	-0.0001(7)	-0.0003(6)
Mn(3)	4a	-0.0162(2)	0.0334(2)	0.5028(2)	0.0153(6)	0.0126(5)	0.0074(8)	0.0042(6)	-0.0002(7)	-0.0001(6)

a: arbitrarily fixed for definition of the origin.