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Abstract. The structure of thc new disilicate kristianse-
nite, Ca2ScSn(Si207)(Si2060H), has been solved and re-
fined from a crystal poly synthetically twinned by metric
merohedry. The Bravais lattice is 1I1e. with parameters (I =
IO.028( I), h = 8A08( I), c = 13.339(2) A, U = 90.0 I (I ),

f) = 109.10(1), Y = 90,00(1 yo, but the space-group type is
CI (Z = 4), The twin law is 111',and the two components

of the twin have nearly identical volumes: as a conse-
quence, the Laue group of the twin is practically 2/111.By
taking into account the twinning, an anisotropic reline-
ment of the structure in C I converged to R I = 0.0242 for
259 refined parameters and 4862 observed reflections. The
effects of the twinning by metric merohedry and of the
volume ratio of the components on the symmetry of the
diffraction pattern are discussed, The triclinic structure ap-
proximates within about 0, I A the monoclinic symmetry,
the lower symmetry resulting mainly from cation ordering,
Kristiansenite represents a new type of silicate structure
and the first known case with the presence of protonated
and normal disilicate groups at the same time. The disili-
cate groups and the other polyhedra centred on cations lie
on different alternating (10 I) planes,

Introduction

Buerger (1954) emphasised that "it is vital that one should
not obtain experimental data for a crystal structure investi-
gation from a twin under the supposition that he is using a
single crystaL If one is so unfortunate as to make this
error, sooner of later the investigation is bound to come
against a barrier beyond which there is no proceeding un-
til it is recognised that twinned material has been used".
Nowadays, most structures can be solved and refined by
using crystal X-ray diffraction data collected on twins (cf.
Herbst-Inner and Sheldrick, 1998). However, recognition
of twins is still needed and recent papers have attracted
the attention on new aspects of twinning which require
particular care by the investigator: (i) allotwinning: or-
iented crystal association of polytypes (Nespolo et (II"
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1999a); (ii) plesiotwinning: oriented crystal associations
based on a large coincidence-site lattice (Nespolo et a!.,
1999b); (iii) twinning hy selective merohedry, in which the
twin operation produces a violation of the non-space-
group absences typical of OD structures (Nespolo et (II.,
1999c); (iv) twinning hy metric merohedry (Nespolo and
Ferraris, 2(00), which is the case appearing in the struc-
ture here reported, and is thus described in some details.

Twinning by merohedry

Twinning by merohedry is the oriented association of two
or more merohedrall individuals (components) of the same
crystalline compound, in which pairs of individuals are
related by a twin operation belonging to the holohedral
geometric crystal class of the individual (Friedel, 1904;
1926), In Table I. twinning by merohedry has been subdi-

vided on the basis of the point groups of the Bravais type
of lattice, of the Bravais flock of the space-group, of the
individual, and, for OD structures, of the family structure
(terms according to the International Tables for Crvstallo-

graph\" voL A, section 8; and VoL C, section 9.2,2), The
kind of merohedry that the French school implicitly dealt
with is that in which the Bravais type of lattice and the
Bravais flock of the space group correspond to the same
point group, and it is now termed s,vngollic lI1erohedry
(see below; Nespolo and Ferraris, 20(0), In some crystals,
however, the point group of the Bravais type of lattice is
accidentally higher than that of the Bravais flock of the
space group. These crystals may undergo two kinds of
twinning by merohedry: one is again a syngonic merohe-
dry (the twin operations belong to the point group of the
Bravais t1ock); the other is termed metric I'nerohedl)' (the
twin operations belong to the point group of the Bravais

I The term "ll1erohedral twin". sometimes appearing in the litera-
ture. is misleading. "Merohedral", in contrast to "holohedral". is an
adjective identifying a crystal whose point group is a subgroup of the
point group of its lattice (Friedel. 1926). A merohedral crystal may
undergo twinning by merohedry, in which the twin operation belongs
to the lattice of the individual; the corresponding adjective is "mero-
hedric" (see also Catti and Ferraris, 1976).
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Table 1. Classilication of twinning by merohcdry. TLPG = Twin Lattice Point Group; SPGT = Shubnikov Point Group of the Twin; BFPG = Bra-
vais Flock Point Group; LaPG = Laue Point Group of the individual: FSPG= Family Structure Point Group (modified after Nespolo eI at.,
1999c; Nespolo and Ferraris, lOOO).

TLPG = BFSG = SPGT = LaPG TLPG = BFSG 2' SPGT > LaPG TLPG 2' SPGT > BFSG 2' LaPG

Syngonic Merohedry Class I Syngonic Merohedry class lIA
SPGT "S FSPG SPGT> FSPG

Metric Merohedry class lIB
SPGT S; FSPG SPGT > FSPG

Syngonic Complete

Merohedry
Metric Selective
Merohedry

Syngonic Selective
Merohcdry

Metric Complete
Merohedry

type of lattice but not to the point group of the Bravais
flock) and corresponds to the degeneration to zero obli-
quity of the pseudo-merohedry, or to twin index I of the
reticular merohedry (Nespolo and Ferraris, 2(00)2.

The symmetry of merohedric twins

The twin laws by merohedry and by reticular merohedry
are usefully denoted by the symbols for black-and-white
point groups after Shubnikov (Curien and Le Corre,
1958): the Hermann-Mauguin symbol for the point group
of the individual is modified by adding the twin ele-
mentes) marked with primes. The symbol built in this way
describes the twin law and represents the maximal ditlrac-
tional symmetry. The real diffractional symmetry of a twin
corresponds to the common symmetry of the individuals,
augmented by the operation of the twin law only when the
components have equal volume. The symmetry elements
of the individuals are retained in the symmetry of the twin
only if these elements are parallel; the symmetry of the
twin can thus be lower than, equal to, or higher than the
symmetry of the individual; when equal, the space orienta-
tion of the symmetry elements of the twin can be ditlerent
from that of the symmetry elements of the individual
(Buerger, 1954). Therefore, the Shubnikov symbols for the
twin laws describe the diffractional symmetry of the whole
twin edifice only when all the symmetry elements of the
individuals are parallel and the components have (nearly)
equal volume.

From the viewpoint of the diffractional behaviour, the
twinning by merohedry was divided into classes I and II,
depending on whether the twin operation does or does not
belong to the Laue group of the individual (Catti and Fer-
raris, 1976). In class I merohedric twins the diffraction

2 In the two-dimensional space. ""point group of the Bravais
flock" is tantamount to "point group of the syngony" (syngony =
crystal system). since there is a I : I correspondence between crystal
family, syngony and Bravais system: for this reason the term ""syn-
gonic merohedry" has been introduced. In the three-dimensional
space this correspondence is lost; to the hexagonal crystal family two
syngonies (trigonal and hexagonal) and two Bravais types of lattices
(hR and hP) cOlTespond. A trigonal crystal with lattice hR twinned
within the same crystal family (h) may have two kinds of twinning:
syngonic merohedry, with twin elements belonging to the hR lattice
(only merohedral crystals) and reticular merohedry. with twin ele-
ments belonging to the hP sublattice of the hR lattice (twin index 3).
Instead, a trigonal crystal with lattice hP twinned within the same
crystal family (h) has only one kind of twinning and the twin cle-
ments belong to the hP lattice. This twinning corresponds to syngo-
nic merohedry, because the Bravais /lock of the trigonal syngony is
6/mmmP.

pattern does not ditler from that of a single (untwinned)
crystal, unless anomalous scattering is substantial. The in-
version centre can always be chosen as twin operation and
the set of intensities collected from a twin is indistinguish-
able from that collected from a single crystal. Instead, in
class II merohedric twins, which correspond to the case in
which the Laue symmetry of the crystaJ is lower than the
symmetry of the twin, the twin operation overlaps recipro-
cal Jattice nodes that are not equivaJent under the Laue
symmetry; consequentJy, the presence of twinning may
hinder a correct derivation of the symmetry from the dif-
fraction pattern.

CJass II has been recentJy subdivided into class IIA
(syngonic merohedry) and class lIB (metric merohedry)
(Nespolo and Ferraris, 2000). In class IIA, the Laue point
group of the twin at most coincides with the point group
of the Bravais flock, which in its turn coincides with the
point group of the Bravais class. In class IIB, the point
group of the Bravais flock is a subgroup of the point
group of the Bravais class, and the situation is thus more
complicated. Assuming that Friedel's law is vaJid, the fol-
Jowing cases can be reaJised. (I) The Shubnikov point
group of the twin is lower than the acentric subgroup of
the Bravais class: the Laue point group of the twin at
most coincides with the point group of the Bravais flock,
as for class IIA; (2) the Shubnikov point group of the twin
is equal to or higher than the acentric subgroup of the
Bravais class: the Laue point group of the twin coincides
with the point group of the Bravais flock (2a) or with the
point group of the Bravais class (2b) depending on
whether the components do (2a) or do not (2b) signifi-
cantly differ in volume. In the case (2b) the symmetry of
the diffraction pattern coincides with the Jattice metric
symmetry (LMS): a wrong space-group type can thus be
assumed. In the cases (I) and (2a) the symmetry of the
diffraction pattern remains instead within the Bravais flock
of the individual, resulting thus in a LMS higher than the
Laue symmetry obtained from the intensity distribution
(Catti and Ferraris, 1976; Nespolo and Ferraris, 2(00).
Particularly in the presence of poJysynthetic twinning the
case (2b) with components of (almost) identicaJ volume is
not rare.

Experimental

Kristiansenite, ideally Ca2ScSn(Si207)(Si2060H), is a new
disiJicate mineral occurring in an amazonite pegmatite at
Heftetjern, T0rdal, Telemark (Norway). It has been ap-
proved by IMA (code 20000-51) and its full description
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Table 2. Experimental data and results of the structure rctinemcnt for
kristianscnite.

Diffractometer
Radiation
Scan mode

Number of rellections
for cc II parameters

([ (A)

/J(A)

c (A)

un
fi ()

y ( )

V(A')

Space-group type

Size of thc prismatic crystal
Absorption con'ection

./1 (mm-l)

Formula weight
Z
D, (Mg mm-1)

Range for data collection
Limiting indices

Collected retlections
Unique retlections

Observed retlections [/ > 2u(f)]
Standard retlections
Intensity monitoring interval

Rint (on F2)
Refinement method
Refined parameters
GooF (5) (on F2)

RI [/>2u(f)]

H'R2 [/ > 2u(nJ
RI (all data)

H'R2 (all data)
Absolute structure parameter
L),Qmax

~QlHin

Siemens P4

MoK"()
- 20

24

10.028(1)
8.408( I )

13.3.19(2)
90.01( I)
109.1O( I )

90.00( I)
1062.7(3)
CI
0.03 x 0.02 x 0.0 I mm
Psi-scan
4.51
552.49
4
3.64
1.62 < 11< 35.00
-16 < h < O. -13 < k <13,
-20 < 1<21
4921
4915
4862
2
100 retlections
0.0051
Full-matrix least-squares on p2

259
1.007
0.0242
0.065
0.025
0.066
0.03(2)
0.93
-1.26

shall be published elsewhere (Raade et al., 200 I). Single-
crystal X-ray diffraction data have been collected on a
Siemens P4 four-circle diffractometer (Table 2). Kristian-
senite is structurally triclinic but revealed an mC Bravais
lattice with parameters a = I0.028( I), b = 8.408( I), C =
13.339(2) A, (J.= 90.01(1), (3 = /09.10(1), Y = 90.00(1)8,
and is thus metrically monoclinic within experimental er-
ror (Z = 4). The Laue group 21m was indicated within ex-
perimental error by the value of Rmergc= 0.023 obtained
by merging, according to monoclinic symmetry, the
diffraction intensities collected for half reciprocal lattice
(Table 2).

Results

Structure solution and refinement

The statistical analysis (SHELX97 package: Sheldrick,
1997) of the X-ray diffraction intensities showed con-
trasting results on the presence of the centre, giving
(1£2 - II) = 0.854 Ihalf-way between the values typical
of centric (0.968) and acentric (0.736) structures (Viterbo,
1992) I and on the space-group type. being C2 slightly pre-
ferred to Cm. The structure has been solved by direct
methods in the C2 space-group type, but the refinement
was not satisfying, the final RI value being 0.092; be-

sides, the polari ty (Flack, 1983) was uncertain (Table 2).
Taking into account the uncertainties of the statistical ana-
lysis, the possibility of triclinic structural symmetry was
considered. A triclinic structure is compatible with a 21m
Laue symmetry of the diffraction pattern only under two
conditions (i) the crystal is metrically monoclinic and the
triclinic structure is strongly pseudo-monoclinic; (ii) the
monoclinic Laue symmetry is introduced by the twinning
of components with nearly identical volumes.

According to hypothesis (i), a structure solution and
refinement in the space-group type CI (the unconventional
C-centred cell was adopted for a triclinic space group in
agreement with the metrically mC lattice) converged, with-
out considering twinning, to R I = 0.07 with still unsatis-
factory Flack Factor. The next step was, according to hy-
pothesis (ii), the consideration of the possible twin laws.
Following the arguments reported above, for a tricIinic
merohedral (acentric) structure with monoclinic Bravais
type of lattice, the following specific kinds of twinning
can be expected: (I) Twinning by syngonic merohedry,
class I, twin operation T: the twin operation belongs to the
Laue group of the structure, and overlaps equivalent dif-
fractions; apart from the case of substantial anomalous
scattering, the structure can be solved and refined even
without taking twinning into account (Catti and Ferraris,
1976). (2) Twinning by metric merohedry, class lIB (the
twin operation belongs to the metrically monoclinic Bra-
vais type of lattice). Three cases can occur: (2a) Shubni-
kov point group 2' (the twin operation is 2); (2b) Shubni-
kov point group m' (the twin operation is m); (2c)
Shubnikov point group 2'lm" (the twin operations are two
of 2, m, and I). The twin consists of two individuals in
the cases (2a) and (2b), of four individuals in the case
(2c). In the cases (2) the structure cannot be solved or at

least satisfactorily refined, except when also the structure
itself has a strong pseudo-symmetry consistent with the
LMS.

The various hypotheses were tested following Herbst-
lrmer and Sheldrick (1998). The case (I) is already ex-
cluded by the unsatisfactory refinement in CI under hy-
pothesis (i), which would also not account for the mono-
clinic symmetry of the intensities, but could occur as
implicit component of the case (2c). The cases (2a) and
(2b) gave close values of R, but consideration of the polar-
ity (Flack Factor) shows (Table 2) that the correct twin
operation is m, and the twin consists of two components
of nearly equal volume. A test of case (2c) (Shubnikov
point group 2' Iml') resulted in zero volume for the two
components which should be originated by the two-fold
twin axis, confirming thus that the twin operation is m.
Note that a distinction between (2a) and (2b) is possible
only if a substantial contribution from the anomalous scat-
tering is present. otherwise the polarity cannot be deter-
mined.

A first refinement test on the occupancy of the M sites
was performed by using the Sn scattering curve. It clear
resulted that the heavy cation Sn fills Ml and, subordi-
nately, enters M2 and to a lesser degree M3 and M4; in-
stead the lighter cations Sc and Fe are prevalently present
in M4 and M3 and, subordinately, M2. Subsequently the
following step consisted in the refinement of the electron
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Table 3. Atomic coordinates and equivalent isotropic displacement
parameters C;\C) for kristiansenite. Vk'l) is detined as one third of the

trace of the orthogonalised VI! tensor.

Atom x v - Ve'l.

Ml(Sn) 0.14016 0.5338 0.38844 0.0062( 1)

M2 -0.3590(2) 0.5633( I ) -0.1118(2) 0.0072( I )

M3 0.3550(1 ) 0.5631 (3) 0.10884(7) 0.0073(2)

M4 -0.1457(2) 0.5363(5) -0.3911 (I ) 0.0094(3 )

Cal 0.3993(2) 0.1523(3) 0.1310(2) 0.0151(3)

Ca2 -0.3994(2) 0.1491(3) -0.1386(2) 0.0159(3)
Ca3 0.10]2(2) 0.9484(3) 0.3627(2) 0.0169(3)
Ca4 -0.0995(2) 0.9453(3 ) -0.3660(2) 0.0162(4)
Sil 0.3735(2) 0.7670(4) 0.3197(2) 0.0078(4)

Si2 0.1653(2) 0.8759(4) 0.1162(2) 0.0068(4)

Si3 -0.3715(3) 0.7676(4) -0.3209(2) 0.0087(4)

Si4 -0.1673(2) 0.8767(3) -O.118l(2) 0.0070(3 )

Si5 0.3320(2) 0.2209( 4) 0.3811(2) 0.0070(3 )

Si6 0.1285(3 ) 0.3321(4) 0.1774(2) 0.0069(4)

Si7 -0.3348(3 ) 0.2245(4) -0.3848(2) 0.0069(4)
Si8 -0.1290(2) 0.3311(4) -0.1815(2) 0.0077(4)

01 0.4153(5 ) 0.6096(7) 0.2681(4) 0.010(1)

02 0.5109(5) 0.8532(7) 0.4011 (4) O.005( I )

03 0.2492(6) 0.7342(8) 0.3694(4) 0.0 I0(1 )
04 0.3008(5) 0.8948(8) 0.2250(4) 0.011(1 )

05 0.1863(5) 1.022(1 ) 0.0449(4) 0.011(1 )

06 0.]724(6) 0.7036(8) 0.0651(4) 0.013(1)

07 0.0256(5) 0.8987(7) 0.1531(4) 0.0 I0(1 )
08 -0.2517(6) 0.7378(7) -0.3723(4) 0.012(1 )
09 -0.4172(6) 0.6] 14(8) -0.2702( 4) 0.0 II (I)
010 -0.3054(5) 0.8965(8) -0.2261(4) 0.01l( I)
01] -0.5127(5) 0.8474(8) -0.4071(4) 0.010(1 )

012 -0.1864(4) 1.025(1 ) -0.0464(3) 0.010(1 )

0]3 -0.1757(6) 0.7016(9) -0.0685(5) 0.011(1)

014 -0.0264(6) 0.8947(8) -0.1549(4) 0.010(1)

015 -0.1888(5) 0.579(1 ) -0.5466(4) 0.0 I0(1 )
016 0.4760(6) 0.2049(8) 0.3512(4) 0.010(1 )

017 0.3224(6) 0.3961(9) 0.4316(4) 0.010(1 )

018 0.1963(5) 0.1992(8) 0.2701(4) 0.010(1)

019 0.2403(5) 0.3700(6) 0.1169(4) O.006(])

020 0.0892(6) 0.4928(8) 0.2305(4) 0.009(1 )

02] -0.0158(6) 0.2581 (8) 0.0925(4) 0.013(1)

022 0.1914(6) 0.5804(9) 0.5431(4) 0.008(1)

023 -0.3297(6) 0.3974(8) -0.4377(4) 0.010(1)

024 -0.4796(5) 0.2063(6) -0.3571(4) 0.007(1)
025 -0.1983(5) 0.1983(8) -0.2758(4) 0.01 0(1 )
026 -0.0871(5) 0.4885(7) -0.2335(4) 0.010(1 )

027 -0.2429(6) 0.3684(8 ) -0.1227(4) 0.010(1 )

028 0.0140(7) 0.2568(8) -0.0960(5) 0.015(1)
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contents for the three sites M where cations Sn4+, Sc3+
and Fe3-+-isomorphically substitute (Table 3). This refine-
ment was performed by using mixed scattering curves
calculated for the following approximate atomic com-
positions: 0.5 Sc + 0.2 Fe + 0.3 Sn for M3 and M4;
0.35 Sc + 0.65 Sn for M2. The resulting electron contents
were: MI = 49.5, M2 = 38.6, M3 = 30.7 and M4 = 26.9

for a total of 145.7 electrons to be compared with 149.3
electrons expected according to the M cation total from
the chemical analysis (Raade et af., 2001) normalised to
4 apfu (2.20 Sn + 1.40 Sc + 0.28 Fe + 0.08 Al + 0.04 Zr).
Taking into account the chemical analysis (minor AI and
Zr are ignored), the following compositions best match
the refined electron contents of the M sites: MI =
0.99 Sn + 0.01 Fe; M2 = 0.6] Sn + 0.39 Sc; M3 = 0.30 Sn +
0.50 Sc + 0.20 Fe; M4 = 0.17 Sn + 0.63 Sc + 0.20 Fe. Thus
in the M sites a cation ordering is realised which could
not be possible either in a triclinic holohedral or in a

monoclinic structure. The positions of the hydrogen atoms
belonging to the protonated oxoanions were not detected
in the electron density difference map, but the presence
of two OH groups per formula unit (pfu) is clearly in-
dividuated by crystal-chemical considerations discussed
below. Information on the refinement procedures is given
in Table 2.

The structure

Table 4 reports selected bond lengths and angles. The
structure of kristiansenite (Fig. I) represents a new type of
silicate structure belonging to the disilicate class of miner-
a]s; to our knowledge, it is the first case where normal

and protonated disi]icate groups are present in the same
structure. Independently from the refinement figures of
merit, the structure is really triclinic because, as men-
tioned above, the resulting cation ordering is possible only
in C]. On the whole, however, the structure is pseudo-
monoclinic, and the maximum difference in the positions
of the atoms with respect to the average monoclinic struc-
ture is about 0.1 A (Table 3). This pseudo-monoclinic
symmetry and the cation order in the M sites explain why
the average structure could be solved but not refined in
the C2 space-group type.

O. . .0 distances show that 0] I . ..02 = 2.645(7) A and
021 . .. 028 = 2.627(9) A must represent hydrogen bonds
(Chiari and Ferraris, 1982) involving the two hydrogen
atoms pfu. Bond valence sums (s; Brown and Altermatt,
]985) indicate 0 I] (s = -1.40) and 021 (s = -1.42) as
donor oxygens while 02 (s = -1.68) and 028
(s = -1.52) are the acceptor oxygens. Each of these oxy-
gens belong to one of the four independent disilicate
groups (Tables 3, 4). Taking into account that (Ferraris
and Ivaldi ]984) in protonated oxoanions Si-OH bonds
are expected to be longer than Si-O bonds (apart from
the bridging oxygens), the bond lengths Si3-0l1
(1.647 A) and Si6-021 (1.640 A) confirm the proposed
hydrogen bonding scheme. In principle, apart from more
exotic mechanisms, the Sn4+ ---+ (FeH, ScH) substitution

can be balanced either by an 02- ---+ (OH)- or a (mono-

valent cation) ---+ Ca2+ substitution. However, the 02- ---+
(OH)- substitution must be excluded because the short

0] ] . . .02 and 021...028 contacts cannot exist without
hydrogen bonding. In the analysed sample (Raade et ai.,
200]), instead, the Na+ ---+Ca2+ substitution is surely ac-

tive. The distribution of the tetravalent Sn4+ cations on all
four M sites, instead of a concentration in practically two
sites only, is a matter of bond valence balance. Note that
both the very close M site sizes and the close octahedral
cation radii (0.55, 0.69 and 0.74 A for FeH, Sn4+ and
Sc3+ respectively) favour the pattern of cation distribution

observed here.
Figure I shows that the disilicate groups and the other

pol)ihedra centred on cations lie on different alternating
(10]) planes. The M octahedra are isolated from each

other and aligned in [10 I] rows. The mentioned hydrogen
bonds connect [10 I] rows of disilicate groups. In first ap-
proximation the four independent Ca cations are seven-
fo]d coordinated_ (Table 4) and connect pairs of octahedral
rows in the (10]) plane. As discussed by Chiari and Fer-
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Table 4. Selected bond lengths (A) for kristiansenite.

Cation Anion Bond Cation Anion Bond Cation Anion Bond

MI 022 1.994(5 ) M2 05 2.018(5) M3 012 1.999(4)
020 2.029(6) 09 2.040(5) 019 2.013(5)
02 2.040(5) 027 2.042(6) 01 2.048(5)
OJ 2.069(6) 013 2.091 (7) 06 2.095(6)
017 2.079(6) 028 2.119(7) 07 2.127(6)
016 2.119(6) 014 2.128(6) 021 2.145(6)(MI-O) 2.055(6) (M2-0) 2.073(6) (M3-0) 2.071(5)

M4 015 2.008(5) Cal 05 2.339(7) Ca2 026 2.326(6)
026 2.028(5) 020 2.352(6) 012 2.331(7)
08 2.059(6) 019 2.394(6) 027 2.385(6)
023 2.098(6) 07 2.396(6) 014 2.398(6)
024 2.128(6) 013 2.552(6) 06 2.613(6)
011 2.130(6) 016 2.817(6) 010 2.735(7)

(M4-0) 2'<J75(6) 04 2.836(7 ) 024 2.800(6)
(Cal-O) 2.527(6) (Ca2-0) 2.513(6)

06 3.166(6) 025 3.164(6)
018 3.196(6) 013 3.223(7)

Ca3 01 2.316(5) Ca4 08 2.302(6)
OJ 2.317(6) 09 2.323(6)
015 2.331(6) 024 2.325(6)
016 2.380(7) 022 2.343(7)
023 2.558(5 ) 017 2.586(6)
07 2.679(5) 014 2.701(5)
018 2.766(6) 025 2.780(7)

(Ca3-0) 2.478(6) (Ca4-0) 2.480(6)
04 3.161(6) 023 3.178(7)
017 3.246(7) 3.229(7)

Sil 01 1.609(6) S''") 05 1.610(9) Si3 08 1.586(6)L
OJ 1.615(6) 06 1.612(7) 09 1.61 1(7)
02 1.620( 6) 04 1.639(5) 010 1.632(6)
04 1.637(6) 07 1.642( 5) 011 1.647(6)(Sil-O) 1.620(6) (Si2-0) 1.626(6) (Si3-0) 1.619(6)

Si4 012 1.624(9) Si5 015 1.592(7) Si6 019 1.613(6)
013 1.626(8) 016 1.625(6) 020 1.632(7)
014 1.647(6) 017 1.636(8) 018 1.640(6)
010 1.648(5) 018 1.660(5) 021 1.640(6)

(Si4-0) 1.636(7) (Si5-0) 1.628(6) (Si6-0) 1.631(6)

Si7 024 1.619(6) Si8 026 1.613(6)
022 1.621(8) 027 1.614(6)
023 1.624(7 ) 028 1.637(6)
025 1.653(5) 025 1.655(6)

(Si7-0) 1.629(6) (Si8-0) 1.630(6)

raris (1990) and Chiari (1990), the coordination environ-
ment of Ca is usually very distorted; in particular the se-
paration between first and second coordination spheres can
be smooth and not sharp as normally occurs for well-be-
haved coordination polyhedra. In kristiansenite a 7 + 2 co-
ordination is more appropriate for the four Ca cations
(Table 4), the tenth neighbour having a distance of 3.502
(021), 3.505 (028), 3.601 (02) and 3.577 A (011) for
Cal, Ca2, Ca3 and Ca4 respectively. The strong distortion
of the Ca polyhedra in kristiansenite is reflected by their
low ('"'-'5.6) ECoN (Effective Coordination Number, Hoppe
et al., 1989).

Discussion

Conditions for twinning are, in order of priority, metric
and structural. The higher the degree of pseudo-symmetry

of the structure, the higher is the probability of getting an
'acceptable' structure solution even with a model corre-
sponding only to the average structure. However, effects
like (i) presence of non-space-group absences, (ii) ambigu-
ous intensity statistics, (iii) R values higher than those ob-
tained for similar cases, (iv) structural disorder, (v) not-
positively-defined anisotropic atomic displacements, (vi)
uncertain polarity (Flack Factor) and (vii) high residues of
electron density (particularly on special positions) are
strong signals which can indicate a lower symmetry possi-
bly (but not necessarily) masked by twinning.

Several cases of structures solved in a space-group type
ditlerent from the correct one, also without concurrence of
twinning, are reported in the literature; even if at first
sight it might appear surprising, unnecessarily low symme-
try have been sometimes assigned to structures (see the
systematic analysis by Marsh, 1995). The presence of
twinning makes the situation more complex. The diffrac-
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Fig. 1. Perspective view of the structure
of kristiansenite along 101OJ. The indepen-
dent cation sites are labelled and the direc-
tions of the two independent 0...0 hydro-
gen bonds are shown by broken lines.

tion symmetry of a twin can differ significantly from that
of the individual, with both reduction (a typical case is
that of quartz twins with inclined axes, of which the most
famous is the Japan law) and augmentation of symmetry
elements, even simultaneously. In fact, symmetry elements
for each individual that are not parallel in the twin are not
retained as symmetry elements for the twin. Besides,
when the components of a twin have nearly identical vol-
umes (a rather common case), the twin operation tends to
be retained as diffraction symmetry operation of the twin.
In this case, a symmetry higher than the structural symme-
try could be adopted in the process of structure solution:
the resulting symmetry constraints may permit to obtain
an average structure, but not the correct one.

When the components llave a relevant difference in vol-
ume, the twin operation clearly does not appear in the
diffractional symmetry of the twin. In this case the dif-
fracted intensities tend to be close to those of the indivi-
dual and a solution of the structure may be obtained, but
the refinement should not reach satisfying convergence.
An instructive case has been recently met in refining the
structure of the twinned monoclinic new mineral hydroxy-
clinohumite, Mg9[Si04MOH,Fh (Ferraris et al., 2000), in
which one component represented 96% of the volume. Be-
cause of the presence of a metrically orthorhombic sublat-
tice, twinning by reticular pseudo-merohedry occurred and
not all the reflections were overlapped. In particular, weak
reflections coming from the smaller component doubled
the c parameter of the monoclinic cell and non-space-
group absences occurred. The latter aspect and the high
value of R (0.12) obtained for an average structure in the
twin cell, prompted to investigate the presence of twin-
ning. The final refinement, performed taking into account
the twin law {OO!}, improved to R = 0.026.
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