# The Crystal Structures of Talc and Pyrophyllite.

By

John W. Gruner, University of Minnesota, Minneapolis, Minn. (With 2 figures.)

#### Introduction.

In 1930, in a preliminary paper Pauling<sup>1</sup>) suggested certain structural units for talc and pyrophyllite. No detailed paper, however, proving these structures has been published so far. The writer in connection with work on the vermiculite group recently investigated the two minerals completely. Since neither talc nor pyrophyllite are ever found with recognizable crystal faces, warped basal pinacoids excepted, only the powder method was available. A talc of light green color with large folia from Harford County, Maryland and a massive yellowish white variety from Vorwald, Styria were used. They gave practically identical diagrams. Two radiated yellowish pyrophyllites from Graves Mountain, Georgia, and Tres Cerritos, Mariposa County, California, respectively gave also identical (within the limit of error) diagrams. The analysis of the Tres Cerritos pyrophyllite,  $Al_2Si_4O_{10}(OH)_2$ , is given by Doelter<sup>2</sup>) as follows.

| $Al_2O_3$             | 28.25                  |
|-----------------------|------------------------|
| $Fe_2O_3$             | 0.48                   |
| $SiO_2$               | 65.96                  |
| $TiO_2$               | $\operatorname{trace}$ |
| $H_2O$                | 5.27                   |
| $H_2O$ at $105^\circ$ | 0.14                   |
|                       | 99.80                  |

Though no analyses are available for the talcs, the Harford tale, at least, cannot be very different from the theoretical formula  $Mg_3Si_4O_{10}(OH)_2$ . It was noticed that the minerals when ground in an agate mortar would give very unsatisfactory diagrams probably due to

<sup>1)</sup> Linus Pauling, The structure of the micas and related minerals. Proc. Nat. Acad. Sci. 16, 123. 1930.

<sup>2)</sup> Handbuch der Mineralchemie. 2, Teil 2, 121. 1917.

slipping and distortion of the layers. If filed with a fine file very good films were obtained. The samples mounted on silk thread were 0.6 to 0.7 mm. in diameter. A circular camera of 57.3 mm. radius was employed. The primary beam was effectively screened out so that spacings of 16 Å (*FeK*<sub> $\alpha$ </sub> radiation) could have been recorded. A gas tube with *Cu* or *Fe* radiation was used, but *Fe* radiation was necessary to resolve some of the closely spaced lines. Exposure times with *Fe* radiation were about 24 hours at 35 KV and 6 MA.

### X-ray data and their Interpretation.

The striking similarity of talc and pyrophyllite is revealed in tables I and II of their powder diagrams. Therefore, the following discussion of talc also applies equally well to pyrophyllite. The basal planes give sharp reflections which on account of their preferential orientation on the thread are 3 to 4 times as strong as the calculated ones in table III. This feature has already been discussed by the writer<sup>1</sup>) in the structure of dickite where other details of structure analyses of this type may be found.

If tale is built of layers as those suggested by Pauling, there will be vertical planes of symmetry in each layer (conventional monoclinic orientation). Such a layer being made up of a network of hexagons of  $Si_4O_{10}$  is base-centered monoclinic and belongs into space group  $C_{2h}^3$  if the layers are stacked in such a way that the planes of symmetry are vertically above one another. Since the  $\beta$  angles of tale and pyrophyllite were unknown, different shifts of the layers in the + and - direction of the *a* axis had to be tried. It was thought at first that this shift might be twice the distance of those of muscovite<sup>2</sup>) and dickite<sup>3</sup>). This value, however, agreed only approximately with the powder diagrams. The exact values were found to be slightly smaller. Expressing the shift in degrees of  $a_0$  it is 112° instead of 60° as in muscovite and dickite. This makes  $\beta = 100^{\circ}00' \pm 5'$  for tale and 99°55'  $\pm 5'$  for pyrophyllite.

The layers can also be stacked in such a fashion, that the individual planes of symmetry intersect at angles of  $420^{\circ}$  as shown in Fig. 4. A glide plane of symmetry bisects this angle. The resulting space group is  $C_{2h}^{6}$ , and the unit cell becomes twice as high (18.81 Å). All the reflections of 20 l, 13 l, 33 l and 06 l (l = even) remain the same as of corresponding

<sup>1)</sup> Z. Krist. 83, 395. 1932, and Z. Krist. 83, 78. 1932.

<sup>2)</sup> W. W. Jackson and J. West, Z. Krist. 76, 221. 1931.

<sup>3)</sup> J. W. Gruner, Z. Krist. 83, 397. 1932.

planes in  $C_{2h}^3$ . Those with l = odd are absent. Striking differences occur in the 14 l (l = odd or even) and in other planes which make space group  $C_{2h}^6$  highly probable. Theoretical and observed intensities for  $C_{2h}^6$  are recorded in table III for all planes with a spacing greater than 3.33 Å.

Table I. Powder diagram of tale from Harford County, Md.  $FeK_{\alpha} = 4.9324$ . Radius of camera 57.3 mm.

| No.          | Θ               | d      | Ι                 | Indices                            |
|--------------|-----------------|--------|-------------------|------------------------------------|
| 4            | 6° 12'          | 8.94 Å | 5                 | 002                                |
| 2            | 11 02           | 5.05   | 1                 | $020\beta, 004\beta$               |
| 3            | 12 12           | 4.57   | 3                 | $020, 004, 11\overline{1}$         |
| <b>3</b> a   | <b>14</b> 40    | 3.82   | 1 very indistinct | 6 planes                           |
|              |                 |        | and broad         | -                                  |
| 4            | 46 39           | 3.37   | 3                 | $006\beta$ , 413                   |
| 5            | 18 24           | 3.060  | 10                | 006                                |
| 6            | 20 57           | 2.702  | 1                 | $20\overline{4}\beta$ , $132\beta$ |
| 7            | 22 10           | 2.560  | 1 broad           | $13\overline{2}, 200, 008\beta$    |
| 8            | $23 \ 14$       | 2.449  | 5                 | $20\overline{4}, 432$              |
| 9            | 24 42           | 2.342  | 1                 | 008                                |
| 40           | $26 \ 12$       | 2.488  | 2 broad           | $20\overline{6}, 134$              |
| 11           | 27 40           | 2.081  | 1 broad           | 436, 204                           |
| 12           | 28 17           | 2.039  | 1                 | 0010 <i>β</i>                      |
| 13           | 30 12           | 1.920  | 0.5               | 136                                |
| 14           | 34 29           | 1.850  | 3                 | 0040                               |
| 15           | 34 36           | 1.704  | 1 broad           | $0042\beta$                        |
| 16           | 35 30           | 1.664  | 3 broad           | 438                                |
| 17           | $35 \ 47$       | 1.652  | 1-2               | $20\overline{4}\overline{0}$       |
| 18           | 36 47           | 1.632  | 4 broad           | several                            |
| 19           | $38 \ 44$       | 1.544  | <b>2</b>          | 0042                               |
| 20           | 39 36           | 1.515  | 4                 | <b>33</b> 2, 060                   |
| 21           | 40 08           | 1.499  | 1                 | <b>33</b> 4, 062, <b>33</b> 0      |
| 22           | 41 23           | 1.461  | 4                 | 4340                               |
| 23           | 41 54           | 1.446  | 0.5               | $20\overline{1}\overline{2}$       |
| <b>24</b>    | 43 27           | 1.405  | 2                 | 2010                               |
| 25           | 44 38           | 1.375  | 3-4 broad         | 4342                               |
| 26           | $46 \ 44$       | 1.327  | 12                | 0044                               |
| 27           | $47 \ 23$       | 1.313  | 1                 | $40\bar{4}, 260$                   |
| 28           | $48 \ 32$       | 1.289  | 2 broad           | $26\overline{4}, 400$              |
| 29           | 49 54           | 1.263  | 0.5               | 3310, 068, 2014                    |
| <b>3</b> 0 · | $51 \ 45$       | 1.230  | 1                 | 1314, 264, 2012                    |
| 34           | 55 04           | 1.179  | 0.5               |                                    |
| 32           | 56 01           | 1.165  | 0.5               | 0016                               |
| 33           | $60 	ext{ } 19$ | 1.112  | 0.5               |                                    |

| Table II. | Powder | diagram o | of pyrophy | llite from | Tres Ce | rritos, |
|-----------|--------|-----------|------------|------------|---------|---------|
|           |        | Maripos   | a County,  | Calif.     |         |         |

| $FeK_{\alpha}$ |  | 1.9321. | Radius | $\mathbf{of}$ | $\operatorname{camera}$ | 57.3 | mm, |
|----------------|--|---------|--------|---------------|-------------------------|------|-----|
|----------------|--|---------|--------|---------------|-------------------------|------|-----|

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$            | 2, $004\beta$<br>004<br>$14\overline{2}$ , $021$ , $14\overline{1}$<br>022<br>2, $143$<br>4, $200\beta$<br>2, $132\beta$<br>2000 |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$             | 2, $004\beta$<br>004<br>$41\overline{2}$ , $021$ , $41\overline{1}$<br>022<br>2, $113$<br>2, $200\beta$<br>3, $132\beta$<br>2000 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$             | 004<br>$41\overline{2}, 024, 41\overline{1}$<br>022<br>, 113<br>, 200 $\beta$<br>, 132 $\beta$<br>200                            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$           | $\begin{array}{c} 44\bar{2}, \ 024, \ 44\bar{4}\\ 022\\ , \ 413\\ , \ 200\beta\\ , \ 432\beta\\ 200\\ \end{array}$               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$            | 022<br>, 113<br>, 200 $\beta$<br>, 132 $\beta$                                                                                   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$            | $\beta$ , 113<br>$\beta$ , 200β<br>$\beta$ , 132β                                                                                |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$            | $\begin{array}{c} 200\beta \\ 132\beta \\ 200 \end{array}$                                                                       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$            | $\begin{array}{c} 200\beta \\ 1, 132\beta \\ 200 \end{array}$                                                                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$            | $132\beta$                                                                                                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$             | 000                                                                                                                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$             | 200                                                                                                                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$             | 132                                                                                                                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$             |                                                                                                                                  |
| 14 27 48 2.071 1 204                                             | 134                                                                                                                              |
|                                                                  |                                                                                                                                  |
| $15$ 28 12 2.044 1 $13\overline{6}$                              |                                                                                                                                  |
| <b>16 28 41 2.013 0.5 0010</b>                                   | β                                                                                                                                |
| <b>1</b> 7 <b>3</b> 0 <b>5</b> 4 <b>1.881 0.5 136</b>            |                                                                                                                                  |
| 18 31 54 1.828 3 0010                                            |                                                                                                                                  |
| 49         32         26         4.801         0.5         438/r | }                                                                                                                                |
| 20 35 05 4.684 0.5-4 0042                                        | $\beta$ , incomplete                                                                                                             |
| 24 36 11 1.636 2-3 138                                           |                                                                                                                                  |
| $22$ 36 35 4.624 4-2 $20\overline{10}$                           | )                                                                                                                                |
| 23 38 03 1.567 0.25 broad 208                                    | incomplete                                                                                                                       |
| 24 39 23 4.522 4 0042                                            | $, 2010\beta$                                                                                                                    |
| <b>25 39 59 4.503 0.5 43</b> 12                                  | β                                                                                                                                |
| 26 40 35 4.485 2-3 060,                                          | $33\overline{2}$                                                                                                                 |
| 27 41 20 1.463 $0.5-1$ 33 $\overline{4}$ ,                       | 062, 330                                                                                                                         |
| 28 42 26 1.432 0.5 1340                                          | j                                                                                                                                |
| $29$ 42 53 1.419 0.5 $20\overline{12}$                           |                                                                                                                                  |
| 30 44 32 1.377 3 2010                                            | )                                                                                                                                |
| 31 45 11 1.362 3 1312                                            | i .                                                                                                                              |
| <b>32 45 56 1.344 0.5 334</b>                                    |                                                                                                                                  |
| $33$ 46 39 4.328 0.5 $33\overline{8}$ ,                          | 066                                                                                                                              |
| 34 47 39 1.307 1-2 0014                                          | :                                                                                                                                |
| $35$ $48$ $54$ $ 1.283$ $4$ $40\overline{4}$ ,                   | $260, \ 26\overline{2}$                                                                                                          |
| 36 49 51 1.264 1-2 1342                                          | $2, 26\overline{4}, 400$                                                                                                         |
| 37 50 24 1.254 0.5-4 2014                                        | , 262                                                                                                                            |
| $38 		54 		23 		4.236 		4 		33\overline{40}$                     | , incomplete                                                                                                                     |
| 39 53 12 1.206 0.5-1 134                                         |                                                                                                                                  |
| 40 57 46 1.142 0.5 0016                                          | ., 264                                                                                                                           |

## Table III.

Theoretical and observed intensities for two molecules of talc and pyrophyllite. In comparing results allowance should be made for the glancing angle.

|                              | Tale  |             |          | Pyroph | yllite          |          |
|------------------------------|-------|-------------|----------|--------|-----------------|----------|
| Indices                      |       | Theoretical | Observed |        | Theoretical     | Observed |
|                              | d     | Ι           | Ι        | d      | Ι               | Ι        |
| 002                          | 9.260 | 31          | 5        | 9.137  | 13              | 3        |
| 004                          | 4.630 | 9 }         |          | 4.569  | 24              | 4        |
| 020                          | 4.550 | 55 }        | 3        | 4.450  | 88 j            | 4        |
| 111                          | 4.531 | 35          |          | 4.432  | 33 )            |          |
| 110                          | 4.498 | 1           |          | 4.401  | 4               |          |
| 021                          | 4.418 | 57 )        |          | 4.324  | 53              | <b>2</b> |
| $11\overline{2}$             | 4.310 | 24          |          | 4.219  | 58              |          |
| 111                          | 4.227 | 14          |          | 4.140  | 13              |          |
| 022                          | 4.084 | - 5         | 1        | 4.001  | 22 )            | 0~ 1     |
| 113                          | 3.929 | 68          |          | 3.851  | 64              | 0.5-1    |
| 112                          | 3.825 | 17          |          | 3.752  | 2               |          |
| 023                          | 3.663 | 2           |          | 3.593  | 1               |          |
| 114                          | 3.501 | 5           |          | 3.437  | 0               |          |
| 113                          | 3.399 | 65          |          | 3.338  | 60              | 23       |
| 006                          | 3.086 | 202         | 40       | 3.046  | 156             | 8        |
| <b>13</b> 0                  | 2.617 | 16          |          | 2.560  | 3               |          |
| $20\overline{2}$             | 2.643 | 9           |          | 2.555  | 2               |          |
| 200                          | 2.588 | 44)         |          | 2.532  | 70 ]            | 0        |
| $43\overline{2}$             | 2.578 | 89          | 1        | 2.522  | 141             | 2        |
| 132                          | 2.462 | 401 Ĵ       | 2        | 2.441  | 312             | 0        |
| $20\overline{4}$             | 2.447 | 200 Ì       | 5        | 2.396  | 456 Ì           | ა        |
| 202                          | 2.387 | 5´          |          | 2.338  | 45 <sup>´</sup> |          |
| $13\overline{4}$             | 2.369 | 10          |          | 2.321  | 29              |          |
| 008                          | 2.315 | 27          | 1        | 2.284  | 48              | <b>2</b> |
| 134                          | 2.497 | 218         | 2        | 2.454  | 174 ]           | 4 9      |
| $20\overline{6}$             | 2.478 | 149         | 2        | 2.436  | 87              | 1-2      |
| 222                          | 2.114 | 13 Ì        |          | 2.070  | 37 )            | ,        |
| 204                          | 2.408 | 46          | 1        | 2.068  | 28              | 1        |
| <b>436</b>                   | 2.089 | - 90        |          | 2.049  | 56              | 1        |
| 136                          | 1.915 | 43          | 0.5      | 1.880  | <b>20</b>       | 0.5      |
| $20\overline{8}$             | 1.897 | 21          |          | 1.863  | 40              |          |
| 0010                         | 1.852 | 44          | 3        | 1.829  | 65              | 3        |
| 206                          | 1.833 | 3           |          | 1.800  | 0               |          |
| 138 了                        | 1.845 | 5           |          | 1.783  | 0               |          |
| 138                          | 1.663 | 298         | 3        | 1.635  | 235             | 3        |
| $20\overline{1}\overline{0}$ | 1.647 | 150         | 1-2      | 1.619  | 118             | 1        |
| 208                          | 1.593 | 10          |          | 1.567  | 4               | 0.25     |
| <b>13</b> 10                 | 1.579 | 21          |          | 1.553  | 8               |          |
| 0042                         | 1.544 | 35          | <b>2</b> | 1.523  | 22              | 1        |

**41**6

|                              | Tale  |                 |          |       | Pyroph      | yllite   |
|------------------------------|-------|-----------------|----------|-------|-------------|----------|
| Indices                      |       | Theoretical     | Observed |       | Theoretical | Observed |
|                              | d     | I               | Ι        | d     | Ι           | Ι        |
| 060                          | 1.517 | 205             |          | 1.484 | 167 ]       |          |
| $33\overline{2}$             | 1.547 | 400             | 4        | 1.483 | 334         | 2-3      |
| 330                          | 1.499 | 113 j           |          | 1.467 | 79 Ĵ        |          |
| 062                          | 1.497 | 110 }           | 1        | 1.464 | 76 }        | 0.5 - 1  |
| $33\overline{4}$             | 1.494 | 409             |          | 1.462 | 78          |          |
| 4340                         | 1.453 | 94              | 1        | 1.429 | 65          | 0.5      |
| $20\overline{1}\overline{2}$ | 1.440 | -45             | 0.5      | 1.417 | 31          | 0.5      |
| 2010                         | 1.396 | 224             | 2        | 1.374 | 192         | 3        |
| $43\overline{1}\overline{2}$ | 1.384 | 449             | 3-4      | 1.362 | 386         | 3        |
| 334                          | 1.367 | 30              |          | 1.340 | 16          | 0.5      |
| <b>066</b>                   | 1.361 | 30              |          | 1.334 | 16 ]        | 0 5      |
| $33\overline{8}$             | 4.355 | 31              |          | 1.328 | 17          | 0.5      |
| 0014                         | 1.323 | 50              | 1-2      | 1.305 | 42          | 1 - 2    |
| $26\overline{2}$             | 1.311 | 40 ]            |          | 1.283 | 25 )        |          |
| 260                          | 4.309 | 186             | 1        | 1.280 | 230         | 1        |
| $40\overline{4}$             | 1.307 | 79              |          | 1.278 | 99 J        |          |
| 400                          | 1.294 | 243 j           | 2        | 1.266 | 184         |          |
| $26\overline{4}$             | 1.289 | 370             | 2        | 1.261 | 316 }       | 1-2      |
| 1312                         | 1.281 | 80 <sup>´</sup> |          | 1.261 | 108         |          |
| 262                          | 1.280 | 65              |          | 1.253 | 45          | 051      |
| $20\bar{1}\bar{4}$           | 1.271 | 40 }            |          | 1.251 | 54          | 0.5-1    |
| 068                          | 4.269 | 45              | 0.5      | 1.244 | 28 )        |          |
| <b>33</b> 10                 | 1.262 | 35              |          | 1.238 | 26 j        | 1        |
| 2012                         | 1.234 | 55 )            |          | 1.216 | 42          |          |
| 264                          | 1.231 | 78 }            | 1        | 1.206 | 56 ]        | 054      |
| $13\overline{1}\overline{4}$ | 4.225 | 108             |          | 1.206 | 94          | 0.0-1    |
| 0016                         | 1.160 | 40 '            | 0.5      | 1.142 | 29          | 0.5      |

Table III (continuation).

Below this spacing only those considered important are listed though others were calculated<sup>1</sup>).

It will be observed that probably due to preferred orientation the 20 l planes often reflect with almost the same intensity as corresponding 43 l planes. Also, the 44 l planes are relatively very weak. This peculiarity is observed in all powder diagrams of layer silicates, whether

<sup>1)</sup> The intensities were computed with the structure factor formula  $I' \propto j(F')^2 \propto j(A^2 + B^2)$  of R. W. G. Wyckoff. The F values were taken from Pauling's and Sherman's table of scattering factors for ions (Z. Krist. 81, 27, 1932). j = 4 for 00l, h00, 0k0, h0l, and j = 2 for all other planes. The I' values were arbitrarily divided by 100. The I' values were calculated for shifts of 120° and are, therefore, slightly different from those for shifts of 142° parallel the *a* axis.

J. W. Gruner

of micas, chlorites, kaolinites, or vermiculites. If  $C_{2h}^3$  were the correct space group tale should show a distinct reflection at d = 4.31 Å for 111 with I' = 100, and pyrophyllite at d = 3.75 Å for 111 with I' = 122and at d = 3.437 for 112 with I' = 78. Even with 11 planes very weakly reflecting these lines should not be absent in the films.

Table IV. Atomic coordinates for  $C_{2h}^6$ . Four equivalent atomas for each position.

| Atom               | x   | <u>y</u>    | z     |
|--------------------|-----|-------------|-------|
| $Mg_1$             | 0°  | 0°          | 0°    |
| $Mg_2$ or $Al_1$   | 0   | <b>12</b> 0 | 0     |
| $Mg_3$ or $Al_2$   | 0   | - 420       | 0     |
| $O_1$              | 73  | 180         | 21    |
| $O_2$              | 73  | 60          | 21    |
| $OH_1$             | 73  | 60          | 21    |
| $O_3$              | 9   | 30          | 63.5  |
| $O_4$              | 171 | 30          | 63.5  |
| $O_5$              | 99  | 120         | 63.5  |
| $O_6$              | -9  | 30          | 116.5 |
| $O_7$              | 171 | 30          | 116.5 |
| , O <sub>8</sub>   | 99  | 420         | 116.5 |
| $O_{\mathfrak{g}}$ | -73 | 480         | 159   |
| $O_{10}$           | -73 | 60          | 159   |
| $OH_2$             | -73 | 60          | 159   |
| $Si_1$             | 86  | 0           | 51.5  |
| $Si_2$             | 94  | 60          | 51.5  |
| $Si_3$             | 86  | 0           | 128.5 |
| $Si_4$             | 94  | 60          | 128.5 |

The atomic positions for  $C_{2h}^6$  are given in table IV. The origin is placed in the center of symmetry in the principal glide plane of symmetry. A Mg position occupies this point. In pyrophyllite this position is vacant. Fig. 2 shows the unit cell of talc projected on the principal glide plane 040.

#### Summary.

Two tales (Harford County and Vorwald) and two pyrophyllites (Graves Mountain and Mariposa County) were investigated with the powder method. The powder diagrams of the two specimens of each mineral are alike within the limits of error. The structures of the individual layers of tale and pyrophyllite agree with those predicted by Pauling. The stacking of the layers, however, is such that the two minerals belong to the monoclinic holohedral space group  $C_{2\hbar}^6$  instead of  $C_{2\hbar}^3$ .



Fig. 4. Shifts of layers in tale and pyrophyllite. Dotted lines are principal glide planes of  $C_{2h}^6$ . Arrows indicate planes of symmetry in individual sheets.

Fig. 2. Unit cell of tale. The plane of the paper is the principal glide plane. y coordinates given in degrees.

Four molecules of  $Mg_3Si_4O_{10}(OH)_2$  and  $Al_2Si_4O_{10}(OH)_2$  respectively are combined in the unit cell. Other constants found are

| Tale                               | Pyrophyllite            |
|------------------------------------|-------------------------|
| $a_0 = 5.26 \pm .02 \text{ Å}$     | $5.14~\pm .02~{ m \AA}$ |
| $b_0 = 9.40 \pm .02$               | $8.90~\pm .02$          |
| $c_0 = 48.81 \pm .03$              | $18.55~\pm .03$         |
| $\beta~=100^\circ 00\pm5^\prime$   | $99^\circ 55 \pm 5'$    |
| axial ratio 0.578 : 1.000 : 2.067  | 0.577: 1.000: 2.084     |
| theoretical density $2.824^{\sim}$ | 2.844                   |
|                                    |                         |

Received 3<sup>rd</sup> April 1934.