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A LEAST-SQUARES REFINEMENT OF THE CRYSTAL LATTICE

CONSTANTS AND EVALUATION OF THEIR ERRORS, USING
THE DIRECT UNIT-CELL

ABSTRACT. — A Least-Square refinement procedure allowing a straightforward estimation
of the crystal lattice constants and of their associated variances is described. The Least-Squares
Principle has been used on a truncated Taylor’s series expansions of the function which involves
the Qua’s, the reflection indexes hkl and the constants ao, bo, Co, &, Bs, Yo in the triclinic di-
rect unit-cell. This procedure simplifies the calculation of the direct unit-cell constants and saves
most complications connected with an estimate of their joined variances.

Riassunto. — L'uso del metodo dei Minimi Quadrati applicato ad espressioni delle
costanti reticolari espresse in termini di reticolo reciproco conducono a procedlmenn di affina-
mento delle costanti stesse in modo abbastanza agevole. Tuttavia, qual::ra si vogliano valutare
dalle varianze associate alle costanti reticolari reciproche le corrispondenti varianze nei parametri
stimati della cella unitaria diretta, il procedimento di calcolo diventa molto laborioso. Nel
presente lavoro viene discussa una utilizzazione del metodo dei Minimi Quadrati che, applicato
a funzioni espresse unicamente in termini di reticolo diretto, richiede — in sostanza — soltanto
la soluzione del sistema delle equazioni normali.

Introduction

In the practice of crystal lattice constants refinement the Least-Square procedure
is widely used. In most cases the expression to be minimized contains essentially
two kinds ‘of terms: i) the observations and the unit-cell constants; ii) other terms,
which are up to the Researcher’s option, relate to the geometrical and physical
factors affecting the observations.

The present work deals with the i) subject only, neglecting the treatment of
the systematic errors.

A standard statistical treatment, as suggested by Jerre and Foore (1935), can
be applied estimating the errors in the unit-cell parameters and now this course has
been adopted by many Authors.

For crystal symmetries lower than orthorombic the use of the reciprocal lattice
yields an expression for the normal equations simple enough even in the triclinic
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system. When the normal equations are solved by the inverse-matrix method, the
reciprocal unitcell parameters are calculated and their variances estimated from
the variance-covariance matrix ('). Classic formulas (BuErcer, 1962) are used to
obtain the direct unit-cell constants from the reciprocal ones. At the same time,
if the variances in the refined reciprocal parameters are to be transformed into
corresponding direct . unitcell constants variances, complications arise (BUurNHaM,
1962; KeLsey, 1963; Lancrorp, 1973).

The present paper describes a Least-Square treatment based on direct unit-cell
constants, which allows a more immediate estimation of the parameters and their
associated -variances.

1 - Theoretical Approach

From X-ray diffraction experiments concerning the Bragg’s law the quantities
«actually measured » are lenghts on films or on paper of chart-recorders or angles
on wheels, according to X-ray apparatus. These quantities are the «observations »
which, strictly speaking, should be used in the minimization procedure of the
Least-Squares Principle, as Hess (1951) has reminded in his discussion on the
Conen’s (1935) method. The use of the duw’s obtained from the quantities actually
measured may result chiefly in an understimation of the precision in the estimated
lattice constants, but not in all the cases as Lancrorn (1973) has pointed out.
However the dua’s are retained here as «observations» owing to the following
discussion is greatly simplified and because the precision may be improved by
appropriate weighting functions. Thus we write the «observation equations» in
the form:

Qugp, * F (Mys Ko 145 20, Bay Coy 8y Bay va)
m

Opgp. * F (Nps ko 1 30y bau Cou 0o Bos o)

where the symbol = means «observed equal to..» and Qub. = 1/d%hkilsuns
Qrov. = 1/d%h k.1, In egs. (1) the ao,...., Yo are the unknown direct unit-cell constants
and hy, ki, It (i = L.,y r) are the exactly known reflection indexes.

The function f in egs. (1) for the i-th observation may be expressed in the
triclinic system (Wargren, 1969) as

Uop. * l(m:" h m:h K+ j]"!i 1§+ = kily + et hyly + vt "1“1) (2
R\ & be L+ becs 2eCs aebs
where
Ro= (1 - costas - COS%Bs - COS7ye + 200500C05BeCOSTS) (3a)
m = (COSEeCUSYs, = COSas) (3b)
n = (COSyeCOSae - COSBs) (3c)
p = (c0SaeCOSBa - COSYs) (3d)

(') For a different procedure see f.e. Taupin (1973).
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Also note that

Ve l.li.:.ii (%)

where V is the unit<cell volume.
A suitable linear form for eq. (2) can be achieved if appropriate approximations
a,.., Y are available for the aq,.., Yo, so that the differences

b2y = 2 - 2 (5a)
dby = be - b (5b)
6y = Ca - C (5¢)
bay = 0e - & (54)
bfs = Bs - 8 (5e)
e ®" Vo= 7 (51)

become small numbers. Then, by Taylor’s theorem, it is possible to approximate
the right hand member in eq. (2) expanding it in a truncated power series. Calling
Qi the right hand member in eq. (2), we have thus
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where the terms with powers higher than 1 are neglected. In the expression (6)
vertical lines emphasize that the function Qi and its partial derivatives must be
numerically evaluated in the points a, = a,..., Yo =Y. The quantity Qila,..,vis a
numerical value matching the corresponding observation Qi if a,..., ¥ have been
intelligently chosen and if the observations are consistent (Pucn and Winsrow,

1966). Thus the differences

....................... (7)

are small numerical quantities with the same Qim.’s residuals, (i = l,..., r).
Considering the AQ’s as new observations, the observation equations are now:
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and they are all linear in the unknowns Aao,..., AYo. If there are more observation
equations than unknowns and if the reflection indexes set is appropriate, a Least-
Squares solution can be applied,

In order to achieve such solution on statistical grounds, the «Model>»
underlying the observation equations (8) must be specified.



490

R. FARINATO, L. LORETO

Using matrix algebra notation, we can write:

80y

e s a0

101

(%¢)
(s8) (%)

,
where Y is a (rx1) vector of random observable variables, X is a (rx6) matrix
of variables without errors (r>6), and B is a (6x1) vector of unknown parameters.

The variance of Y is 6%, where 6® does not depend on the elements of X and B.
Thus the «Model » for egs. (8) is assumed to be

Y -Xpee (10)

where

is an (rx1) vector of unobservable random perturbations for which we assume:

E(E) =0 (12a)

E(eg') 0?1, (120)
where E is the expectation operator and r the order of the unit-matrix I, while
the apex means the matrix transposition operation. The quantity ¢* is the unkonwn
variance of the perturbations & (i = 1,..., r).

Beside the eqs. (122) and (12b) we also assume (%) that:

the rank of X 1s 6. (12c)

The elements of B have to be first estimated.

Calling n

i,
in
by

B~

(13)

the (6x1) vector of estimate ffor B we can write:

Y:-Xfj-e (14)

(2) cf. NosLe (1969).

B e
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where e is the (rx1) vector of the r residuals Y— XB) The Least-Squares
estimate of P is then the value of ﬁ which minimizes the following sum of square
of the residuals SS:
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The minimum for eq. (15) is reached setting to zero the partial derivatives
a(e’e)/ aﬁ. This, Drarer and Smrta (1966), yields the normal equations

X'X§j=-X'Y 116)
If the normal equations system (16) is solved by the inverse-matrix method,
the vector B estimating B in eq. (10) is given by

f-(X'X)'X'Y a7)

In order to obtain an estimate of the variances in the elements of ﬁ, further
developments are needed, Jomnston (1963). From egs. (10) and (17) we have

- (X'X) 'X'(Xp+e)
from which ()
(B-p) = [x'x)"x's (19)

(3) Proof: from eq. (18) we have
- (X'X) X%+ (X'X)X'e
- (x'x) " (xX'%)8+(X'X)X'e
=]
-Ip+(X'X) X'e f8a
namely

f=p+(X'X) X'e 18b

We have also, taking the expectations in eq. (15"
e(f)-e(p)+e[(X'X) ]

.Ig_,,[x'x]"x'g(g) 8¢

and with eq. (12a)
e(f)- i8d

ie. ﬁ is, as it's well known, an unbiased estimate of p By « Gauss Theorem » the Least-Squares
linear estimators are also the minimum variance estimators (JoHNSTON, 1966).
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then the variance of ﬁ, called var (ii), is
var(§) = [(8-8) (8-8)']

-E [(x‘x]”' X'ee' X(X'X) ']
(201
o [x'x)"x'nise'}x[x'x}"

Using now eq. (124), eq. (20) becomes
var(§) = {X'X}-TX'oQI,.X[x'X}J 121)
From eq. (21) we obtain the important result:

w(f) (XX (22)

-~
The var (B) is called «variance-covariance » matrix.

The variance of the perturbations, 6% in eq. (21), can be estimated with the
expression -

- e'e
o

(23)
r=§

Consequently the variance of each element Al,,..., A¥, of ﬁ is obtained from
the diagonal terms of (X’X)7%, multiplied by 2. If the model is correct the variances
in Alo,..., A% are the same as the variances in the corresponding 4o,...., To, since a,
- Y are constants (SiciLiano, 1969).

When the initial parameters a,..., ¥ are not appropriate, then from eqs. (5a),
s (5f) the revised estimates of ao,..... Yo are obtained. A better approximation set
is gained if these revised estimates are now applied to play the same role as the
previous set a,., Y in the procedure just described. The whole process should be
repeated until convergence is reached, ie. when the differences between two
succeeding « correction » cycles are lower than a fixed value.

If the observations are of unequal precision (?), we cannot consider them as
coming from the same infinite parent distribution of perturbations. In this case

to improve the « Model », instead of (126) we use the statement EEE’) = o®V,
where

s | i (28)

Y

the off-diagonal terms all being zero.

(4) cf. Cuavyes and Mackenzie (1957).
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With appropriate weights () for each observation equation, the same foregoing
«Model » can then be recovered (Drarer and Swmurrn, 1966).

Interval estimation for each refined parameter can be attained, for instance,
on the basis of an error’s Normal distribution law for the & (i = ..., r), namely
changing the statement (122) into E(E) = (N,0).

2 . Some practical considerations

For the normal equations (16) it is necessary to build an expression for the
partial derivatives appearing as elements in the matrix X. For this purpose, according
to the crystal system, expressions as those listed in Table 1 may be used.

In each refinement cycle the numerical value of all derivatives involved in the
Jacobian (9&) are computed putting in the proper expression of Table 1, the set
a,.., ¥ available at the present refinement stage. The same set, of course, must be
used evaluating the elements of Y, by egs. (7).

Provided a careful choice of the reflection indexes has been made to warrant
a solution, the normal equations system is solved by the inverse-matrix method.
Thus the quantities A,,..., AY, are the solution for that refinement stage and the
relative estimated parameters 4o,...., §o are obtained from eqs. (5a),..., (5f). At the
end of this iterative procedure the final refined parameters come out. The sum of
the residuals is given by eq. (15) putting into them the final refined solutions
Ado,uy Afo.

The unknown variance ¢* is estimated from eq. (23) and the variances o,
wey Oy, in the refined unitcell constants ao,...., Yo are estimated from

oy = [ (k= 1,.....6) (25)

where 6,* = 6%a,,...., 06> = 0y, and the cxx are the corresponding diagonal elements
of (XX)™,

If an estimate 3%y of the variance ¢y in the unit-cell volume V is required,
then the problem of interdipendence of the errors in the unitcell constants arises.
Apart from other considerations (¢), these errors cannot be considered independent
because general hkl reflection indexes are employed throughout the method. Thus,
disregarding special cases, the general expression for the error’s propagation law
accounting the covariances between the parameters must be used (Eape et Al,

(5) Warrtaker and Rosinson (1946); Hap (1952), Hamirton (1964).
(¢) See Hey (1954).
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TasLe 1

The partial derivatives of the function Q in the crystal systems

An? -] in
.'_.'f.'.'_.'.f.""_';'.ﬂ1'+_u-—m¢£» (2"
R\ a? b c? ac ab
where

R = (1 - cos?a - cos?s - cos’y + 2eosacosacosy)
m = (cospcosy - cosa)
n = (cosycoss - coss)
p = (cosecoss - cosy)

TRICLIMIC [ eq. (2') with afdbdciadpdyy50°)

w2
N h[B(besinta) + 1{abn) + k(acp)]
N -2

-'; - o k[k(acsin?g) + 1(abm) + hibep))
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e abelR ) £ oy
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1971). In the triclinic system we have thus

—_— cov (a4, ) (26)

where q, = a0y, Qg = Yo. The covariances cov(qsq;) are, of course, the elements
of the variance-covariance matrix ¢*(X'X)™* (’).
In the case of independent errors the expression (26) is simpler:

6 av

. ISk LR
Bayeenle

(27)

The partial derivatives 8V /3ao,.., 3V /3Yo needed for each crystal system
in eq. (26) and (27) are listed in Table 2.

Incidentally it is to be noted that uncorrelated variables are not necessarily
independent (Cramer, 1974; Wonnacorr and Wonnacorr, 1970). The analysis of
this problem is, however, beyond the scope of the present paper.

Concerning the use of a weighting scheme, the considerations of Lancrorp and
Wison (1973) are recommended.

TasLE 2

The partial derivatives of the unit-cell volume V required in estimating its variance

V = aberd
where
R =1 - cos?a - cos?p - cosly + 2cosacospcosy
(my n, p as in Table 1)

v v E a¥ W av

2 b c 3a a8 a
TRICLINIC berl acal abal -abeR ¥sina | -abenr sing | -abcprEsiny
MONOCLINIC besing acsins absing abccoss
ORTHORHOMBIC be ac ab
TETRAGONAL 2ac a?
ISOMETRIC 3a3
EXAGONAL Bacsin 60° 3a2sin 60°
RHOMBOHEDRAL a2l -3a%R }sina

(7) In the calculation of 8%e, 8%, 8%, 8" it must be remembered that in the elements
of (X’X)"* radian measure are involved.
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Discussion

The method proposed in this paper will be now evaluated considering alter-
native procedures such as those developed, for instance, by Burxuam (1962) and
Lancrorp (1973). For simplicity, the three methods will be referred in this section
as FL (Farinato-Loreto), B (Burnham), L (Langford). The original notations of
the latter Authors have been slightly modified and their correction terms not
considered.

The starting point of the B procedure is the same as in FL, but his curtailed
expansion Taylor’s series is applied in the reciprocal lattice expression for the Q's.

In B, for the i-th observation Qiu., the corresponding Qicare. is

2 42 2 .2 2
Qeate, = Ma* # kd® # 15c* ¢ nika*tcosy® + hyl ateteoss® ¢ kil bctcosat (28)

and the procedure minimizes the following sum of squares, called here BSS:

2
.t 'ill o :" (€
" . -

r a0, 0 ay 0y 1
m-EJ““*"'[—l i e | el L
! ” Attt alt. " T b

oY seea?¥

ity

being a™,..., " the trial parameters, and (AQi)s = Qiob. — Qicate.. The B and FL
methods differ in the type of function to be minimized though sharing the first
step of the procedure which brings in the normal equations. The expressions of
the derivatives are simpler in eq. (29) of B than in eq. (15) of FL, but once the
normal equations system have been solved by the inverse-matrix method, in B only
the estimated variances 8%,..., 8%, #are easily available whilst the corresponding

estimates &%, ,...., &2T. have to be reached by further elaborations.
In fact if

(30)

where the fi’s are the six functions each relating the direct to the reciprocal lattice
constants, six expressions as

by W P | (3

must be still evaluated, where &> =82 ..., G¢* = %y, s p1* = a*,..., pe* = v* and
by’s are the elements of the variance-covariance matrix. Thus a new table of partial
derivatives for the fi's with respect to the variables a*,.., Y* is needed now.
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For the unitcell volume variance estimation, the covariances among the direct
unit-cell constants are required. Following Eapie et Al. (1971) and using a notation
appropriate for case B, the covariance between two functions, say fi(a¥,.., Y*) and
f2(a*,..., Y*) is given by

L] 'f‘

b
cov (fy, fp) = ;l }1_“‘1 ;;f

if.‘,
e
reery®

by (32)

2% ar?

and consequently the variance &*y of the unit<cell volume by

v v

%y

LT O

. 6 &
B - cov(fys Fy) (33)
v ?l ?’ ¥y 1=d

BayeeaTe

where the partial derivatives in eq. (33) are the same as in eq. (27).

The entire process is condensed by Burnham in an elegant compact matrix
formulation.

The L method differs from B and FL, because no use is made of Taylor’s
approximate formulas, but the linearization is attained by another way. For the i-th
observation Qun. the corresponding function is written as

2

2 z
Qia'lt. - n‘l + til + I|C + k‘11a + I-“I‘[ + h‘i|l‘ (34)

where

ar

b*2

c*2

R*ccosa® (35)
2%c*coss®

2a*b%cosy®

Mmoo o0O >

LI R I N

The following expression, called here LSS, is minimized:
r
55 = )1:‘ | wa), - [n:n + k{88 + 1380+ k108D + hy10E + a|t|w]" (36)

where (AQi). = Qiob. — Qicate., AA = A—A',..., AF = F—F and A’,..., F’ (°) are
the trial parameters according to expressions (35). In the L mathematical development
no explicit matrix-inversion appears and the following differences with the B
and FL cases may be pointed out: i) only a simple summation over the appropriate
product among the h, k, 1 and the Qio’s is required to perform the normal
equations; the derivatives present at this stage in the B and FL procedures are
lacking here; ii) once the normal equations system is solved, the variances and
covariances concern quantities as A,..., F. The variances directly available in L are

(]) When A’ =0O,..F' = O (but in this situation see DEMING, 1938) the eq. (36) is
the widely used one, cf. SmrTn (1956), Lo Grupice (1971), and the « refinement » is attained
changing only the hkl’s set.
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thus &24,..., &%. In order to calculate the variances &% ,..., &%y, expressions si-
milar to (30) are needed, namely

e = Fy (AaeaiF)
H H (an)

Yo = Fg (Aueeaif)

but, of course, the form of the functions Fx is now different from the fi's.
Consequently the new relationship for the estimated variances 8% = &%, ,..,
6% = 6%, in the refined direct unitcell parameters becomes

b 6 aF
- k
8 };‘ Eli g |y

R

Rossof

aF,
bl ] 1y (k= Tyeasnab) (38)

where x1 = A,..., xe = F and the ly's are, after all, the elements of an actual
variance-covariance matrix. As in B — but for the Fi’s in respect the A,..., F —a
table of partial derivatives is necessary at this calculation stage (Table 1 in LaNcForo,
1973 (%)). Subsequently the procedure follows the same pattern as in B.

Incidentally we can note that in FL the parameters to be refined play a separate
role in each term of the observation equations.

Conclusions

The minimization by the Least-Squares method, of an expression such as

. ]I’ (s)

LTI g
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Byaasy
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in terms of direct unit-cell constants, instead of expressions like

r ) 0 x 0 % :
Bss = lem.}.- [-'i'- a® ‘T"' »* ':E‘ et e | w® e—g| wt e | &t (29)
: gi alt. 't [H N alt. ' L1 O B [T LI A
or
- ] 2 H 2
s« 3 Lo, - [n|n+t|na. 12C + k(180 + byl o€ ‘h‘uiar] (36)
1

(the latter two equations in terms of reciprocal lattice constants) makes it
possible to perform a crystal lattice constants refinement and an estimate of the
variance in these refined parameters in a more direct way.

(%) See also Kersey (1963), Visser (1969).
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The method explained in the present work, requires a shortened calculation
procedure and therefore can be carried out by even a small computer. If such a
computer system is able to automatically invert a matrix ('), the procedure itself
is very straightforward. The «convergence» is rapid, as proved by a computer
program prepared by the Authors wich will be described in detail in a paper now
under preparation.

Roma, may 1975, Istituto di Mineralogia e Petrografia dell’Universita
Centro Studio del C.N.R. per la Mineralogia e Petrologia delle Formazioni Ignee
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