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A LEAST-SQUARES REFINEMENT OF THE CRYSTAL LA1TICE 
CONSTANTS AND EVALUATION OF THEIR ERRORS, USING 

THE DIRECT UNIT-CELL 

ABSTItACT. - A Least-Square refinc:ment procedure Illowing a straightforward estimation 
of the crystal lattice constants and of their associated varilnces is described. The Least-Squares 
Principle has been used on a truncated Taylor's series expansions of the function which involves 
the Q .. I'S, the reflection indexes hkl and the constants a., b., c., (1.., ~ ., y. in the triclinic di· 
rect unit<ell. This procedure simplifies the calculation of tbe direct unit<ell constants and saves 
most complications oonnected with an estimate of their tained variances. 

RIASSUNTO. - L'uso dd metodo dei Minimi Quldrati appliCllfO ad espressioni delle 
oostanti reticolari espresse in termini di reticolo reciproco conducono a procedimenti di a£!ina· 
mento delle costand stesse in modo abbastanza agevole. Tuttavia, qua(orl si vogliano valutare 
dalle varllltlU associate alle costanti reticolari reciproche le corrisponcimti vaOanze nei parametri 
stimati della cdla unitaria direttl, il procedimento di calcolo divent. molto laboriO$O. Nc:l 
presente Iavoro viene discuss. unl utilizzazione dd metodo dei Minimi Quadrati chc:, applicato 
a funrioni espressc: unicamente in termini di retioolo diretto, richiede - in sostanza - soltanto 
la soluzione dd sutero. delle equazioni normlli. 

Introduction 

In the [,ractice of crystal lattice constants refinement the Least-Square procedure 
IS widely used. In most cases the expression to be minimized contains essentially 
two kinds 'of terms: i) the observations and the unit<ell constants; ii) other terms, 
which are up to the Researcher's option, relate to the geometrical and physical 
factors affecting the observations. 

The present work deals with the i) subje<:t only, neglect.ing the treatment of 
the systematic errors. 

A standard statistical treatment, as suggested by JETI'E and FOOTE (1935), can 
be applied estimating the errors in the unit<ell parameters and now this course has 
been adopted by many Authors. 

For crystal symml::tries lower than orthorombic the use of the reciprocal lattice 
yields an expression for the normal equations simple enough eVl::n in the triclinic 
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system. When the llormal equations are solved by the inverse-matrix method, the 
reciprocal unit<ell parameters are calculated and their variances estimated from 
the variance<ovariance matrix n. Classic formulas (BUERGER, 1962) are used to 
obtain the direct unit<ell constants from the reciprocal ones. At the same time, 
if the variances in the refined reciprocal parameters are to be transformed into 
corresponding direct. unit<ell constants variances, complications arise (BURNHAM, 

1962; KELSEY, 1963; LANGfORD, 1973). 
T he present paper describes a Lcast-Square treatment based on direct unit<ell 

CQllstants, which allows a more immediate estimation of the parameters and their 
associated - variances. 

I - Theoretical Approach 

From X-ray diffraction experiments concerning the Bragg's law the quantities 
'" actually measured ,. are lenghts on films or on paper of chart-recorders or angles 
on wheels. according to X-ray apparatus. These quantities are the ~ observations ,. 
which, strictly speaking. should be used in the minimization procedure of the 
Least-Squares Principle. as HESS (1951) has reminded in his discussion on the 
ColoIEN'S (1935) method. The use of the dbkl's obtained from the quantities a.ctually 
measured may result chiefly in an understimation of the precision in the esti mated 
lattice constants, but not in all the cases as L ... NGFORD (1973) has poi9-ted out. 
H owever the dbkl's are retained here as ~ observations ,. owing to the following 
discussion is greatly simplified and because the precision may be improved by 
appropriate weighting functions. Th us we write the ~ observation equations ,. in 
the form: 

p, 

where the symbol ..Q.. means ~ observed equal to ... ,. and QIOb. = l /dzh,k,I, ....• 
Qrob. = l /d2h.k,I,. In egs. (1) the a.., ... ., "(0 are the unknown direct unit<ell constants 
and hI, kl, It (I = I, .... , r) are the exactly known reflection indexes. 

The funct ion f in egs. (1) for the i-th observ~tion may be expressed in the 
triclinic system (W AAREN, 1969) as 

where 
R . (I • "".' .. - <0.' •• - "".' ... 2' . .... <0"0< .... ) 
• • ("" .. .co .... - ""k.) 

" • (CO" • .., .... - "" . .. ) 

p • (..,...."" ... - co ... ) 

(I) For a different procedure: sec: f.c. T A.UPIN (1973). 

'" 

'"' ,., 
(le) ,., 
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Also note that 
,., 

where V is the unit-cell volume. 
A suitable linear form for eq. (2) can be achieved if appropriate approximations 

a, .... , '( are available for the ao •....• ,(0, so that the differences 

... ... -. '"' ..... ~. - ~ 1"' 
&< • • c. - < ,., 
... ' " -. '"' " •• • • - I ,., 
'" . ,.' . ($') 

become small numbers. Then, by Taylor's theorem, it is possible to approximate 
the right hand member in eq. (2) expanding it in a truncated power series_ Calling 
QI the right hand member in eg. (2), we have thus 

. 1 ·'1 ·'1 "' 1 ·'1 ·'1 "' 1 0tob • 0t .- .... - 11>. '- 1<.'- .... - .... - IT' 
. . ~ ~ - . ~ ••••• , I, •• " •• •• • I , .. " I, •• " ', •• " ', •• " 

'" 

where the terms with powers higher than 1 are neglected. In the expression (6) 
venical lines emphasiu that the function QI and its partial derivatives must be 
numerically evaluated in the poi nts ao = a, ... ., '(0 = '(. The quantity Qi l.1., .... , yis a 
numerical value matching the corresponding observation QInb. if a, .... , '( have been 
intelligently chosen and if the observations are consistent (PVGH and WINSLOW, 

1966). Thus the differences 

'" 0 ...... -0·1··, ' .... , 
3re small numerical quantities with the same QIob.'S residuals. (i = I, .... , r). 

Considering the .6.Q's as new observations. the observation equalion~ are now: 

' ~I ~I ~I ~I ~I ~I oQ1 • - .... - ..... - 1<.'_ .... _ ••• ,_ IT. 
~. ~ ~ ~ ~ h • ..... , ..... , ', .. " .,.... . ... ,. ., ...• 

'" 
'·'1 ·'1 ·'1 "'1 ·'1 ·'1 oQ. • ~. .. •• ;: ..... ;: 0<.' -;:; ..... -;;: .... ;:- '" •.... , ...... . .... , .... ,' ...... . ....• 

and they are all linear in the unknowns .6.30, .... , .0. '(0. If there are more observation 
equations than unknowns and if the reflection indexes set is appropriate, a Least· 
Squares solution can be applied, 

In order to achieve such solution on statistical grounds. the c: Modd ) 
underlying the observation equations (8) must be specified. 
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Using matrix algt:bra notation, we C3 0 write: 

Y{] l·' ·'1 ,.[;j lO . ... 

x· : : ,., ,., ,., 
: : ". 

10, 00, ... ;: .... a.: 

where Y is a (e x I) vector of random observable variables, X is a (r X6) matrix 
of variables without errors (r>6), and p is a (6x t) vector of unknown parameters. 

The variance of Y is O'~, where u2 does not depend on the elements of X and p. 
Thus the It Model:t for eqs. (8) is assumed [0 be 

y . X,.t (ID) 

where 

,. U "" 
is an (e X 1) vector of unobservahle random perturbations for which we: assume: 

(I l l . 0 (110) 

where E is the expectation operator and r the order of the unit-matrix I, while 
the apex means the matrix transposition operation. The quantity er is the unkon';n 
variance of the perturbations [I (i = 1, .... , r). 

Ikside the eqs. ( l2a) and (12b) we also assume (l) that: 

"" ... 1 or X I. I. (lte) 

The elements of p have to be first estimated. 

Calling 

/. [fJ] (11) 

• 
the (6 x l) vector of estimat~ l for p we can write: 

y . x j· . (14) 

(1) d. NOBLE (1969). 
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, 
where eo is the (r x l) vector of the r residuals (Y -X P). The Least-Squares 
estimate of p is then the value of ii which minimizes the following sum of square 
of the residuals SS: 

. I ["' I ", I ", I ", I ", I ", I 11 ' n •• ' •• r: <111' - .... - ~.'- 0<;.'- .... - .... - iT. , h. ~ 0<;. _ . ~ ~ 

1 •••••• •••.•• .,.... ...... '''''~ .,. • •• 

PS) 

The !llimmum for eq. (15) is reached setting to uro the partial derivatives 
8(e'e)/ 8 p. This. DAAPER and SMITH (1966). yields the normal equations 

x' x ; - x' Y 11&1 

If the normal equations system (16) is solved by the inverse-matrix method. 
~ 

the vector p estimating p in eq. (to) is given by 

; - (x'xrIX'Y Ill! 

In order to obtain an estimate of the variances in the elements of P. further 
developments are needed. ] OH NSTON (1963). From eqs. (10) and (17) we have 

i -lx'xr'x' lx l" ) ,. 
from which ~) 

,., 

(J) Proof: from eq. (18) we have 

118. ' 

namely 

, .. 
We have also, laking the expecutions in eQ . 11 \;~ 

and with eq. (1u) 

· 1iI-1 , .. 
i.e, ii is, as it's well known, an unbiased estimate of p. By '" Gauss Theorem. the Least.$quares 
linear estimators are also the minimum variance: estimators (jOHNSTON, 1%6). 
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then the variance of ji , called var ( P), is 

... (1) - , [11- , ) IH )'] 

, )- '] • E [(x'xr X'cc' X (X'x 

_ (X'x j_ IX' E(CC'j X (x'xr
1 

Using now eq. (12b), eq. (20) oo:omes 

I') I ' )-' " I ' )-' u ... , - X X X II IrX X X 

From eq. (21) we obtain the important result: 

... (p) •• ' (X'X)-' (l2l 

The var (p) is called c variance<ova riance ) matrix. 

1201 

1211 

The variance of the perturbations, C1~, in eq. (21), can be: estimated with the 
expression 

," 
, -. (U) 

Consequently the': variance of each element .6.5.", .... , 6..y" of P. is obtained from 
the diagonailerms of (X'Xtl, multiplied by &2. If the model is correct the variances 
in 6.5.0, .... , Ayo are the same as the variances in the corresponding s.., .... , 9", since a • 
... , l' are constants (Sl(::ILlANO, 1969). 

When the initial parameters a, ..... l' are not appropriate, then from eqs. (5a), 
.... , (5/) the revised estimates of ao, ..... 1'" are obtained. A better approximation set 
is gained if these revised estimates are now applied to play the same role as the 
previous set a, .... , y in the procedure just described. The whole process should be 
repeated until convergence is reached, i.e. when the differences between two 
succcedi ng .. correction , cycles are lower than a fixed value. 

If the observations are of unequal precision e), we cannot consider them as 
coming from the same infinite parent distribution of perturbations. In this case 
to improve the .. Model " instead of (12b) we use the statement E(££') = C12V, 
where 

the off-diagonal terms all being zero. 
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With appropriate weights e) fo r each observation equation, the same fo regoing 
.. Model . can then be recovered (DRAPER and S~lITH , 1966). 

Interval estimation for each refined parameter can be attained, fo r instance, 
on the basis of an error's Normal distribution law fo r the [ 1 (i = I, .... , r), namely 
changing the statement (12a) into S(E) = (N,O). 

2 • Som e I)ractical considerations 

For the normal equations (16) it is necessary to build an expression for the 
partial derivatives appearing as elements in the matrix X. For this purpose, according 
to the crystal system, expressions as those listed in Table 1 may be used. 

In each refinement cycle the numerical value of all derivatives involved in the 
Jacobian (9b) are computed putting in the proper expression of Table 1, the set 
a, .. ... y available at the present refinement stage. The same set. of course, must be 
used evaluating the elements of Y, by eqs. (7). 

Provided a careful choice of the reRection indexes has been made to warrant 
a solution, the normal equations system is solved by the inverse·matrix method. 
Thus the quantities Aa.., ..... Ay" arc the solution fo r that refinement stage and the 
relative estimated para.meters a.., ... ., Yo arc obtained from eqs. (Sa), ..... (Sf). At the 
end of this ite~ative prOC('clure the final refined parameters come out. The sum of 
the residuals is given by eq. (15) putting into them the final refined solutions 
Aao, .... , .6:90. 

The unknown variance 0-2 is estimated from eq. (23) and the vanances 0-2ao, 

..... cry. in the refined unit-cell constants ao, ..... y" are estimated from 

( t · 1 ...... '1 ,., 

where &12 = a-:a .. ..... , &,2 = &2)'. and the CU are the corresponding diagonal elements 
of (X'Xf'. 

If an estimate a2v of the variance o-~v in the unit-ce11 volume V is required, 
then the problem of interdipendence of the errors in the unit-cell constants arises. 
Apart from other considerations e), these errors cannot be considered independent 
because general hkl reRection indexes are employed throughout the method. Thus. 
disregarding special cases, the general expression for the error's propagation law 
accounti ng the covariances between the parameters must be used (EADIE et Al.. 

(5) WHITT.4.KEI and R081NSON (1946), HAw (19:52), HAMILTON (1964). 
(6) See HEY (1954 ). 
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TABLE 1 

Th~ partial derillatives of the tunc/ion Q In the crystal $)Istems 

, .. --.,._- ,' ,--, .-.,.- ., .- .. '(.,.... _.... "", . loo b "') 

• • '.' c' ...... -· · 1'· ..... ·_·.· ..... ·--.1 "C __ T'<OIo1 .. ,-_ ..... , 
•• (<O.oco,"· ... ,) 

RIQ..", , ... (1') 01 " ./ ., ... I .f".,, ) 

• 
• 

., ,-

.. 1II1 .. 

(1') 
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.. {old) ' 

~I"C , ... W) ...... ,., ,, ••• • .. · '. I 

IQ -, 
_. ___ ",11< ' 1(._.)) 

" ,'",0'. 
• 0 -, - '--- .. .. . ' · ., _ . --- po . 'I_n ,) 
.. 0<"'''' · , _ . ___ 1'1(0« 1 • _'oU ..... , .... . 1"')1 

" .',,".'. 
OOI~IC' ... (I') o1 ... , . ,,, • • • • , . ... , 
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· ., -,-( .. .. ') 

" " 
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' ... (1·' ...... ·., ,, • ••• ,.· ••• ,11>', 
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1971). In the triclinic system we have thus 

. . .. I" I • 1: 1: - - <0'< (~,. ~J) 
I! 1 j .. , -"'J - - . ........ •....... 

,., 

where ql = 3.), .... , qe = ro. The covariances coV(ql,q,) are, of course, the elements 
of the variance-covariance matrix cr(X'Xrl n. 

In the case of independent errors the expression (26) is simpler: 

. "I' a> • 1: - ,j> 
, I I ... , _ ,_ ...... ,. 

(r7) 

The partial derivatives av 18ao. ..... av laro neroed for each crystal system 
in eq. (26) and (27) are listed in Table 2. 

Incidentally it is to be noted that uncorrelated variables are not necessarily 
independent (CAAMER., 1974; W ONNACQ'IT and WONNAOOrT. 1970). The analysis of 
this problem is, however, beyond the scope of the present paper. 

Concerning the use of a wcighting scheme, the considerations of LANGFQRD and 
Wn..sON (1973) are recommended. 

TABLE 2 
The partial d"ivativeI 0/ the unit-cell volume V required in em'mating its variance 

.. -.. 
TRIct.IWIC ~l 

IIOIIOCU"'C be.,., 
OIITIIOR/OIIIC K 

TUlIAGOM/.L h, 

ISOM£'IRIC ~, 

'""~ 6.0<.,. 50' 

-.-.... ,.'al 

~ • I ' co.'. - tol" - to,', + 2toSGto'KOfy 

(_. ". p Of ,. Tlbl. l) 

.. .. .. 
- - -.. • .. 

od l IbRi •• ~-i'h .. 

le,,", lb., •• 

" .. 
0' 

"'11. 50' 

.,. .... ,., .... 

.. .. 
- -.. " .• knIt'I.,., ..bcpll-I" .... 

IKcon 

(7) In the calculation of &' ••• go ... g.,. •• &'V it must be remembered that in the demenu 
of ( X'X)~ I radian measure arc involved. 
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Discus8ion 

T he method proposed in this paper will be now evaluated considering alter* 
native procedures such as those: devdoped, for instance, by B U Rh'HAM (1962) and 
UNGFORD (1973). For simplicity, the three methods will be referred in this section 
as F L (Farinalo-Loreto), B (Burnham), L (Langford). The original notations of 
the latter Authors have been slightly modified and thei r correction terms not 
considered. 

T he starting point of the B procedure is the same as in FL, but his curtailed 
expansion Taylor's series is applied in the reciprocal lauice expression for the Q 's. 

In E, for the i-lh observation QIOb. , the corresponding QI~. I" is 

and the procedure minimizes the following sum of squares, called here BSS : 

. I [", I ", I <, I . <, I . <, I . <, I . ll' us · r: loG1l,- - .... - ... . . - .. ,- ...... '-;" " 
I ~ ~ ~ ~ I, ~ 

I . :! . . ," .:~ .. ,'. .:~ .• ," .:~ .. ," .:~ .,," . :! ..... 

,n, 

bei ng a'·, ..... r'· the trial parameters. and (~Ql)u = QI"b. - Qkal" .. The Band FL 
methods differ in the type of function to be minimized though sharing the fi rst 
step of the procedure' which brings in the normal equations. The expressions of 
the derivatives are simpler in eq. (29) of B than in eq. (15) of FL. but once the 
normal equations system have been solved by the inverse-matrix method, in B only 
the estimated variances rr ~. , ..... &Z y: are easily available whilst the corresponding 
estimates &2 a ....... &2 y. have to be reached by further elahorations. 
In fact jf 

•• fl ( . . ...... , . ) 

(0' 

" " ( ...... .. ,") 

where the £k'S are the six functions each relating the direct to the reciprocal lattice 
constants. six expressions as 

e: . t I:J If! I" ~ I ~'J I ' • 1 ...... ') 
I jIPJ."'J •• • ...... , ....... ,. 

be ·11 I cl h A 2 _ ~2 A 2 _ A 2 • - . • - . cl must st1 eva uate , were 0"1 - (r 30' ... . ' 0"6 - 0" y. ' Pl - a, .... , p6 - r an 
bl/S are the elements of the variance<ovariance matrix. Thus a new table of partial 
derivatives fo r the fk'S with respect to the variables a· .... ., Y·. is needed now. 
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For the uoit<ell volume variance estimation. the covariances among the direct 
unit<ell constants are required. Following EADIE et AI. (1971) and using a notation 
appropriate for case S, the covariance between two functions, say fl (a·, ....• y.) and 
f2(a·, .... , y.) is given by 

(11) 

and consequently the variance a~v of the unit<e11 volume by 

where the partial derivatives in eq. (33) are the same as in eq. (27). 
T he enti re process is condensed by Burnham in an elegant compact matrix 

formulation. 
The L method differs from Band FL, because no use is made of T aylor's 

approxi mate formulas, but the Ii nearization is attained by another way . For the i-th 
observation Qi<>b. the corresponding fu nction is written as 

where 

• ," 
• .' , . "' • ~.,.cos.. PI) 

• ~.'.<oi •• 
~·b·co>y· 

T he following expression, called here LSS, is mi nimized: 

where (.:1QI}t. = Qlob. -QIUk .• .:1A = A - A' •.... , .AF = F - F' and A', .... , F' C) arc 
the trial parameters according to expressions (35). In the L mathematical development 
no explicit matrix-inversion appears and the following diffe rences with the B 
and FL cases may be pointed out: i) only a simple summation over the appropriate 
product among the h, k. I and the Qlob.'S is required to perform the normal 
equations; the derivatives present at this stage in the Band FL procedures are 
lacking here; ii) once the normal equations system is solved, the variaDCes and 
covariances concern quantities as A •... ., F. T he variances di rectly available in L are 

(I) When A' = O •... ,F' = 0 (but in this $ituation sec D£MING. 1938) the eq. (36) is 
the widdy used one. cf. SMlnl (19'6). 1.0 GIUDICE (1971). IlIId the • refinement ... is attained 
changing only the hkI's set. 
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thus Q-2 ... , ...• , a-:,., In order to calculate the variances cPlo I ..... &2 r . ' expressions si· 
milar to (30) are needed, namdy 

" fl cA •••••• r) 

(11) 

T' " (A ...... r) 

but, of course, the form of the functions Fk IS now different from the fk's. 
Consequently the new relationship for the estimated variances &21 = Q-2 a. •... ., 
&2, = U2 y. in the refined direct unit-cell parameters becomes 

(I. • , ..... . il <", 

where XI = A, ....• X6 = F and the hJ's are, after all. the elements of an actual 
variance-(ovariance matrix. As in B - but for the ,Fk'S in respect the A, .... , F - a 
table of partial derivatives is necessary at this calculation stage (Table 1 in LANGFORD, 

1973 ('). Subsequently the procedure follows the same pattern as in B. 
Incidentally we can nOle that in FL the parameters to be refined play a separate 

role in each term of the observation equations. 

ConclU8iOll8 

The minimization by the Least-Squares method, of an expression such as 

u • t. / (00, ) . ['·'1 ... · oil, 16b·· .0'1 .. ·· tilt I ... · tII, I·f .. tII, 1",1/' (IS) 
, I ... ". K. ... ... ."" •....• ...... ...... ...... ...... . .... , 

In terms of direct unit<ell constants, instead of expressions Jike 

. / [< I < I <'I <'I <'I ' <' I . 1/' 'r' 100)' J .. ' • ....! M' ._ .,, ' ._ .. ' '-; .. '-; ' T 
L... 'I N' ..,' K' .. ' .... 
I .:,..... .:, .. ," .:, ..... .:,..... .:' . • ," .:, ..... 

.n, 

0 ' 

(the latter two equations in terms of reciprocal lattice constants) makes it 
possible to perform a crystal lattice constants refinement and an estimate of the 
variance in these refined parameters in a more direct way. 

(') See . lso KELSEY (196.3), VISSEJ; (1969). 
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The method explained in the present work, requires a shortened calculation 
procedure and therefore can be carried out by even a small computer. If such a 
computer system is able to automatically invert a matrix C!), the procedure itself 
is very straightforward. The. «convergence., is rapid, as proved by a computer 
program prepared by the Authors wich will be described in detail in a pa~ now 
under preparation. 

Roma, may 1975, Islitulo di Mineralogia e Peuografia dell'Univenitl 
CenICO Studio del CN.R. per la Miner.logia e Petrologia delle Fomw.:ioni Ignee 
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