Il litotipo fondamentale è una diorite quarzifera anfibolica, spesso deuterizzata, ricollegabile ad un magma quarzodioritico di tipo peléeitico, che manifesta deboli variazioni composizionali e una marcata differenziazione tessiturale e strutturale in dipendenza della natura soggiacente o filoniana dei corpi ipoabissali.

La caratteristica più significativa notata in questo litotipo, che permette di accostarlo geneticamente a plutoniti dell'Adamello, è la presenza di un plagioclasio andesinico in individui idiomorfi zonati includenti relitti di cristalli labradoritico-bytownitici.

Viene inoltre segnalata nell'area del M.te Rena la presenza di filoni di porfirite diabasica, diretti E-W, così come i già noti filoni di porfirite dioritica anfibolica di Ama (Selvino).

(Il lavoro originale verrà stampato su « Atti Soc. Ital. Sc. Nat. Museo Civ. St. Nat. Milano »).

L. Fanfani, M. Tomassini, P. F. Zanazzi, A. R. Zanzari, La struttura cristallina della strunzite.

Il minerale strunzite cristallizza nel sistema triclino, gruppo spaziale $P\overline{1}$, con a = 10,228(5), b = 9,837(5), c = 7,284(5) Å, α = 90,17(5)°, β = 98,44(5)°, γ = = 117,44(5)°, Z = 2, e presenta una marcata pseudocella monoclina, gruppo spaziale C2/c, Z = 4, α ' = 18,158, β ' = 9,837, β ' = 7,284 Å, β = 99,61°.

L'indagine strutturale ha indicato per questa specie la formula chimica $Mn^{2+}Fe_2^{3+}(PO_4)_2(OH)_2 \cdot 6H_2O$, cioè con un contenuto inferiore di acqua rispetto a quello correntemente riportato in letteratura. Lo studio strutturale è risultato laborioso per la poligeminazione che il minerale presenta in corrispondenza dello pseudo slittopiano di simmetria. Il valore finale dell'indice R è 0,095.

La struttura cristallina della strunzite è da mettere in relazione con quella della metavauxite e con quella della serie polimorfa laueite, pseudolaueite e stewartite, dettagliatamente studiate da P. B. Moore (1975); essa consiste di catene di ottaedri centrati da Fe³⁺ che si scambiano vertici opposti, costituiti da gruppi ossidrilici, e da tetraedri PO₄ che, unendo segmenti ottaedrici contigui nella catena e le catene fra loro, originano uno spesso strato tetraedrico ed ottaedrico. La forma dello strato è molto simile a quella riscontrata nella metavauxite. Diverse risultano nelle due strutture le connessioni che avvengono normalmente ai piani mediante ottaedri isolati centrati da Mn²⁺, più strette nella strunzite, più lasche nella metavauxite.

Per la strunzite, usando la notazione stereoisomerica di Moore, si propone la seguente formula strutturale:

$$Mn^{2+}(H_2O)_4(O_p)_2 \;_{\rm trans.} [\; Fe^{3+}(OH) \; (H_2O) \; (O_p)_3 \;_{\rm IIIc} \;]_2P_2$$

(Il lavoro originale verrà stampato su «Tschermaks Mineralogische und Petrographische Mitteilungen»).

G. Ferraris, M. Franchini-Angela, P. Orlandi, Un nuovo carboborato di magnesio da Brosso (Torino).

Nel 1972 amatori del Gruppo Mineralogico Lombardo rinvennero nella miniera di Brosso una recente mineralizzazione ricoprente skarns a ludwigite e magnetite messi a 850 RIASSUNTI

nudo durante la ormai interrotta lavorazione. Il materiale, precipitosamente commercializzato da vari collezionisti come nesquehonite, è costituito da un minerale (A), in minuti aghetti aggregati in rosette lattee, sovente associato ad un secondo minerale (B) pure latteo e di aspetto oolitico.

Il minerale A risultò sconosciuto e, in base alla composizione chimica trovata, Mg₂(CO₃) (HBO₃)·5H₂O, costituirebbe con la carboborite il secondo rappresentante della famiglia dei carboborati. L'identità degli anioni è tra l'altro indicata dallo spettro infrarosso e dai prodotti di trasformazione per riscaldamento i quali, dopo alcune fasi non identificate, risultano essere MgCO₃ + altro e poi, a 900° C dopo una perdita in peso del 56 %, Mg₃(BO₃)₂ e MgO. L'ATP mostra, in accordo con ATD e spettri di polvere di alta temperatura, altre reazioni a 90, 190, 300, 410, 475 e 625° C con perdite in peso cumulative di 10, 20, 30, 39, 43 e 50 % rispettivamente.

Le righe più intense dello spettro di polvere sono 9,54 (100) ($\overline{2}$ 02), 8,12 (40) (201), 7,80 (18) (102, $\overline{3}$ 01), 4,56 (21) ($\overline{5}$ 01, $\overline{5}$ 03), 3,110 (19) ($\overline{4}$ 07). L'indicizzazione è avvenuta sulla base di una cella monoclina con a = 23,49 (2), b = 6,164 (6), c = 21,91 (2) Å, β = = 114,9 (1)°; di questi parametri solo b è stato ricavato da fotogrammi di monocristallo, o meglio di fibra fascicolata intorno a [010] come chiaramente mostrato dall'esame mediante microscopio elettronico a scansione. La cella suddetta porta a densità calcolate di 1.790 e 2,386 per Z = 12 e 16, rispettivamente; tentativi di misurare la densità sembrano favorire Z = 12.

Il minerale A è stato approvato dall'IMA con il nome Canavesite.

B sembra essere un composto tipo idromagnesite corrispondente al minerale senza nome Mg₅(CO₃)₄(OH)₂·8H₂O segnalato in Giappone nel 1973. Ricerche sono in corso per stabilire i rapporti (identità?) di tali minerali con la dypingite, scoperta nel 1970 e data con formula Mg₅(CO₃)₄(OH)₂·5H₂O ma con proprietà fisico-chimiche praticamente coincidenti con quelle dell'ottoidrato.

(Il lavoro originale verrà stampato su « Canadian Mineralogist » con il titolo « Canavesite, a new carboborate mineral from Brosso, Italy »).

A. FLAMINI, G. GRAZIANI, M. MARTINI, Caratterizzazione di due campioni di giada di Taiwan.

Sono stati studiati due campioni di giada provenienti da Taiwan (Taipei, Republic of China) tagliati a cabochon di colore verde pallido. I due campioni si differenziano perchè uno mostra un isorientamento degli individui fibrosi che lo compongono ed è caratterizzato da un eccezionale effetto occhio di gatto mentre l'altro non presenta alcuna particolare struttura. Dai valori della birifrangenza e del peso specifico si è dedotto che entrambi i campioni sono costituiti da tremolite. Mediante analisi chimiche alla microsonda elettronica si è potuto stabilire che i due campion posseggono un'identica composizione riferibile ad un termine tremolitico con un contenuto in actinolite pari a circa il 10 %. I risultati delle indagini diffrattometriche, T.G. e D.T.A. concordano con le percedenti determinazioni.

(Il lavoro originale verrà stampato su « Journal of Gemmology »).