Important Update News
The RRUFF Project has been migrated to RRUFF.net. Please update your bookmarks immediately, if you have not done so.
The data on this website is already three years out of date, and the entire website will be taken offline before the end of the year.
We are grateful to NASA for the funding of this effort.
We host articles and citations in collaboration with the Canadian , American , British , Japanese , French , Russian , and Italian mineral societies.Report a new mineral description or crystal structure reference.
Mineral contains: Goethite
Alvarez M, Sileo E E, Rueda E H (2008) Structure and reactivity of synthetic Co-substituted goethites. American Mineralogist 93, 584-590
Bernal J D, Dasgupta D R, Mackay A L (1959) The oxides and hydroxides of iron and their structural inter-relationships. Clay Minerals Bulletin 4, 15-30
Cech F, Johan Z (1969) Identité de l´allcharite et de la goethite. Bulletin de la Société Française de Minéralogie et de Cristallographie 92, 99-100
Cornell R M, Giovanoli R (1991) Transformation of akaganéite into goethite and hematite in the presence of Mn. Clays and Clay Minerals 39, 144-150
de Faria D L A, Silva S V, de Oliveira M T (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. Journal of Raman Spectroscopy 28, 873-878
Faria D L A, Lopes F N (2007) Heated goethite and natural hematite: can Raman spectroscopy be used to differentiate them?. Vibrational Spectroscopy 45, 117-121
Frankel R B, Bazylinski D A (2003) Biologically induced mineralization by bacteria. Reviews in Mineralogy and Geochemistry 54, 95-114
Gorton A T, Bitsianes G, Joseph T L (1965) Thermal expansion coefficients for iron and its oxides from X-ray diffraction measurements at elevated temperatures. Transactions of the Metallurgical Society of AIME 233, 1519-1525
Gualtieri A F, Venturelli P (1999) In situ study of the goethite-hematite phase transformation by real time synchrotron powder diffraction. American Mineralogist 84, 895-904
Hamilton V E, McSween H Y, Hapke B (2005) Mineralogy of Martian atmospheric dust inferred from thermal infrared spectra of aerosols. Journal of Geophysical Research 110, E12006
Heaney P J, Oxman M J, Chen S A (2020) A structural study of size-dependent lattice variation: In situ X-ray diffraction of the growth of goethite nanoparticles from 2-line ferrihydrite. American Mineralogist 105, 652-663
Hoppe W (1940) Über die kristallstruktur von α-AlOOH (diaspor) und α-FeOOH (nadeleisenerz). Zeitschrift für Kristallographie 103, 73-89
International Mineralogical Association (1980) International Mineralogical Association: Commission on new minerals and mineral names. Mineralogical Magazine 43, 1053-1055
Kreissl S, Bolanz R, Göttlicher J, Steininger R, Tarassov, Markl G (2016) Structural incorporation of W6+ into hematite and goethite: A combined study of natural and synthetic iron oxides developed from precursor ferrihydrite and the preservation of ancient fluid compositions in hematite. American Mineralogist 101, 2701-2715
Kučerová G, Majzlan J, Lalinská-Voleková B, Radková A, Bačík P, Michňová J, Šottník P, Jurkovič L, Klimko T, Steininger R, Göttlicher J (2014) Mineralogy of neutral mine drainage in the tailings of siderite-Cu ores in eastern Slovakia. The Canadian Mineralogist 52, 779-798
Lenz J G (1806) Göthit. in Tabellen über das gesammte Mineralreich, Göpferdts (Jena) 46-46
Markl G, Keim M F, Bayerl R (2019) Unusual mineral diversity in hydrothermal vein-type deposit: The Clara mine, SW Germany, as a type example. The Canadian Mineralogist 57, 427-456
Negrão L B A, Da Costa M L, Pöllmann H, Horn A (2018) An application of the Rietveld refinement method to the mineralogy of a bauxite-bearing regolith in the Lower Amazon. Mineralogical Magazine 82, 413-431
Oh S J, Cook D C, Townsend H E (1998) Characterization of iron oxides commonly formed as corrosion products on steel. Hyperfine Interactions 112, 59-65
Posnjak E, Merwin H E (1919) The hydrated ferric oxides. American Journal of Science 47, 311-348
Schwertmann U, Murad E (1983) Effect of pH on the formation of goethite and hematite from ferrihydrite. Clays and Clay Minerals 31, 277-284
Shannon R D, Shannon R C, Medenbach O, Fischer R X (2002) Refractive index and dispersion of fluorides and oxides. Journal of Physical and Chemical Reference Data 31, 931-970
Sobron P, Bishop J L, Blake D F, Chen B, Rull F (2014) Natural Fe-bearing oxides and sulfates from the Rio Tinto Mars analog site: Critical assessment of VNIR reflectance spectroscopy, laser Raman spectroscopy, and XRD as mineral identification tools. American Mineralogist 99, 1199-1205
Spencer L J (1919) Mineralogical characters of turite (=turgite) and some other iron-ores from Nova Scotia. Mineralogical Magazine 18, 339-348
Szytula A, Burewicz A, Dimitrijevic Z, Krasnicki S, Rzany H, Todorovic J, Wanic A, Wolski W (1968) Neutron Diffraction Studies of α-FeOOH. Physica Status Solidi 26, 429-434
Voelz J L, Arnold W A, Penn R L (2018) Redox-induced nucleation and growth of goethite on synthetic hematite nanoparticles. American Mineralogist 103, 1021-1029
Wang M, Chou I, Lu W, de Vivo B (2015) Effects of CH4 and CO2 on the sulfidization of goethite and magnetite: an in situ Raman spectroscopic study in high-pressure capillary optical cells at room temperature. European Journal of Mineralogy 27, 193-201
Wolska E, Schwertmann U (1989) Nonstoichiometric structures during dehydroxylation of goethite. Zeitschrift für Kristallographie 189, 223-237
Yang H, Lu R, Downs R T, Costin G (2006) Goethite, αFeO(OH), from singlecrystal data. Acta Crystallographica E62, i250-i252