THE SYSTEM

- 0 Pr

MINERALOGY
 OF

JAMES DWIGHT DANA

$=$
1837-1868

DESCRIPTIVE MINERALOGY

SIXTH EDITION
FOURTH THOUSAND
BY

EDWARD SALis̉BURY DANA

HNTIRELY REWRITTEN AND MUCH ERNLARGED

Blinstrated mith over 1500 figures
"Hasc studia nobiscum peregrinantur-rusticantur"

$$
\begin{gathered}
\text { With Appendix I, Completina the Wori to } 1899 \\
\because \because \because \\
\because \because \\
\text { JOHEW YORK } \\
\text { LoNDON : CHAPMAN \& HALL, LIMITRD } \\
\text { 1904. }
\end{gathered}
$$

乃．Monoclinic Section．

325．PYROEENE．Corneus pt．Wall．，188，1847．Basaltes pt．Cronst．，68，1758．Schorl noir de Liale．Crist．，265，1772；Schorl noir en prisme à huit pans terminé par une pyramide dièdre， etc．（fr．volc．Vivarais）Faujas，Volc．Viv．，80，fig．D，17i8．Schorl oct．obliquangle tronquá ［made a distinct species］Démeste，Lett．，1，882，1779．Schorl opaque rhomboidal pt．，Schorl opaque qui paroissent deriver d＇un octaèdre rhomboidal（fr．volc．Auvergne，Vesuv．，Viv．，Etna）． de Lisle，Crist．．2，396，407．415，tigs．12．13． 14 （twin），17，18，pl． $\mathrm{V}, 1783$. Augit（fr．volc．） Worn．，Freiesleben in Bergm．J．，243，1792．Volcanite Delameth．，Sciagr．，2．401， 1792. Pyroxene（fr．Etaa，Arendal，etc．）H．，J．Mines，6，289，1799；Tr．，3，1801．Pentaklasit Hursm．， Handb．，687，1813．Pirosseno，Piroxena，lat．

Diopaide．Malacolit Abildgaard，Ann．Ch．，32，1800；Delameth．，J．Phys．，61．249， 1800. Alalite，Mussite Bonvoiain，ib，409，May，1806．Diopside H．，J．Mines，20，65，1806．Traver－ sellit Scheerer，Pogg．，93．109， 1×5 I．

Lavrovite．Lawrowit，Vanadin－Augit，Koksharov，Bull．Ac．St．Pet．，11．88，1866．Lav－ roffite．

Salitg．Sahlit d＇Andrada．Scherer＇s J．，4，81，1800；J．Phys．，61，241，1800．Sahlite． Baicalit Renovana，Crell＇s Ann．，2，21，1793；Baikalit Karst．，Tab．34，74，1800．Funkite，Dufr．， Min．，3，761，1847．Violan Breithaupt，J．pr．Ch．，16．321， 1838 ．Anthocoite L．J．Igelström， Jb．Min．2，88，1889．Coccolit ${ }^{\text {a Andrada，Scherer＇s J．，4，1800．Protheite Ure．Canaanite }}$ Alger，Min．，89， 1844.

Diallage H．．Tr．，89，1801．Hudsonite Beek，Min．N．Y．，405，1842．Omphacite．Om－ phazit Wern．，Hoffm．Min．，2，2，302，1812；Breithaupl．ib．，4．2，125， 1817.

Hedenbergite．Hedenbergit Berz．，Nouv．Syst．Min．206，269，1819：Hedenberg，Afh．，2， 169．Lotalite Severgin，before 1814．Bolopherit Breith．，Handb．，58：，1847．Kalkeisenaugit Gorm．Manganhedenbergite Woibull，G．For．Förh．．6，605，1883．Astervite L．J．Igeletröm，B． H．Ztg．，Min．，29，8， 1870.

Sohefferite．Schefferit J．A．Michasleon，J．pr．Ch．，90，107，1868．Eisenscheflerit Fink， 2f．Kr．，11，495． $601,1886$.

Jepfrrsonite Keating © Fanuxom，J．Ac．Philad．，2，194， 1822.
Augite．Leucsugite，Dana，216，1868．Fassarte，Fassait Wern．，Hofim．，Min．，4，2，110． 1817．Avarte．Basaltische Hornblende pt．Wern．Bergm．J．，1792；Basaltine Kirvo．，Min．，1， 219，1794．Maclureite Nutinll，Am．J．Sc．，6，246， $1828=$ Amphibole H．Saybert，J．Ac．Phllad．， 2．189，1821．Pyrgom Breith．，Char．，140， 1882.

Monoclinic and hemihedral．Axes $\grave{a}: \dot{b}: \delta=1.09213: 1: 0.58932 ; \beta=74^{a}$ $10^{\prime} 9^{\prime \prime}=001 \wedge 100$ Rath 1 ．

$$
100 \wedge 110=46^{\circ} 24^{\prime} 59^{\prime \prime}, 001 \wedge 101=24^{\circ} 20^{\prime} 53^{\prime \prime}, 001 \wedge 011=29^{\circ} 33^{\prime} 6^{\prime \prime}
$$

Forms ：	M（401，－4－i ${ }^{3}$	－（221，－2）	$\Gamma(311.4$－3－8）	$N\left(182,-\frac{18}{18}\right)$
a（ $100, i_{i}$ ）	$\psi(501,-5-\bar{i})$	r（552，－尔）		l（241，－4．8）
3 （010，i－b）	n	20（331，－8）	g（ $\left.732,-\frac{7}{\frac{1}{2}} \frac{-7}{8}\right)^{8}$	d（181，－8－8）
－（001，0）	$p(101,1-i)$	$h(441,-4)$	$A(211,-2-2)^{2}$	$\phi\left(152,-\frac{\square}{-6}\right.$－$)$
χ（510，i－5］）		$0\left(118, \frac{1}{3}\right)^{2}$	$\eta(421,-4-2)$	e（347，$\left.\frac{5}{7}-\frac{1}{-1}\right)^{5}$
	II（302．－－i）${ }^{\text {？}}$	r（ $112, \frac{1}{3}$ ）	$\Lambda\left(488,-\frac{1}{8}-\frac{1}{8}\right)^{5}$	
$f(810, i-8)$	G（ $201,2-\bar{i})^{6}$	¢（8335，\％）	$\boldsymbol{K}(\overline{4} 14.1-\overline{4})^{9}$	－$\left(2355 .-1-\frac{1}{1}\right)^{6}$
$g(210, i-2)$	q（301，8－i）	$\nu\left(2 \overline{2} 8, \frac{2}{8}\right)^{2}$	$\Theta(313,1-\overline{3})$	
$m(110, I)$		－（111，1）		c（ $\left(354, \frac{+8}{4}-\frac{8}{4}\right)^{8}$
$\Omega\left(850, i-\frac{1}{1}\right)^{6}$	－（011，1－i）	ρ（ 8382.	$\Delta\left(\frac{3}{3} 11,8-8\right)$	
∞（ 120, i－2）	$\begin{aligned} & \varepsilon \quad(011,1-i) \\ & e \quad(021,2-i) \end{aligned}$	$\beta\left(885,{ }^{\text {B }}\right.$ ）	2 （211，2－2）	W（ī2，1－2），tw．pl．
i（130．i i．8）	$\pi(041,4-i)$	$\text { - }(2 \overline{2} 1,2)$	$x\left(461,-6-\frac{4}{3}\right)$	$\begin{aligned} & \in(\overline{1} 21,2.2) \\ & \zeta\left(\overline{4} 83,{ }^{2}-2\right) \end{aligned}$
	δ（061，6－i）	$\lambda(381,3)$	t（351，－5－	$\begin{aligned} & \zeta\left(\overline{4} 83, \frac{8}{8}-2\right) \\ & R\left(\overline{1} 82, \frac{1}{8}-8\right)^{2} \end{aligned}$
	$8\left(119,-\frac{1}{6}\right)^{4}$	к（711，－7－7̄）	$\sum(243,-4$	$\begin{aligned} & R\left(182, \frac{9}{8}-8\right)^{8} \\ & \theta(142,2-4) \end{aligned}$
$y(101,-1-i)$	$T\left(117,-\frac{1}{1}\right)^{2}$	$\left.D\left(022,-\frac{9}{8}\right)^{\text {a }}\right)^{3}$	$\mu(121,-2-2)$	$U(152 \quad-5)^{5}$
F ${ }^{\text {c }}(201,-2-i)^{4}$	$\sigma\left(112,-\frac{1}{1}\right)$	$B(411,-4 \overline{4})^{3}$	$Q\left(186,-\frac{1}{2} 8\right)^{5}$	γ ソ（ $\left.\mathbf{1}^{5} 51,5-5\right)$
$J\left(702,-\frac{i}{8} i\right)^{5}$	$u(111,-1)$	$\alpha\left(812,-\frac{8}{\text {－}}\right.$ ）${ }^{\text {a }}$	$P\left(184,-\frac{8}{4}-\frac{8}{3}\right)^{6}$	$\boldsymbol{\gamma}$ ．（151，5－0）

5 （801，－8－i）
Also，reported by Gotz from Ala，15．4．0，15．0．4， 154.4.

XX"'"	=	$23^{\circ} 44^{\prime}$
f	$=$	$38^{\circ} 86^{\prime}$
g9'"	=	$55^{\circ} 26^{\prime}$
mm''	=	$92^{\circ} 50^{\prime}$
$\boldsymbol{\mu} \boldsymbol{\mu}^{\prime}$	=	$50^{\circ} 54{ }^{\prime}$
น ${ }^{\prime \prime}$	$=$	$35^{\circ} 121^{\prime}$
cy	=	$24^{\circ} 21^{\prime}$
c5	=	$47^{\circ} 13^{\prime}$
$c \boldsymbol{c}$	$=$	$56^{\circ} 131^{\prime}$
cr	=	$15^{\circ} 39^{\prime}$
cp	=	$31^{\circ} 20^{\prime}$
$a^{\prime} p$	$=$	* $74^{\circ} 30^{\prime}$
$c G$	=	$55^{\circ} 48^{\prime}$
eq	=	$70^{\circ} 161^{\prime}$

$a^{\prime} W=90^{\circ} 9$
$u u^{\prime}=48^{\circ} 29^{\prime}$
$v v^{\prime}=68^{\circ} 42^{\prime}$
$200^{\prime}=77^{\circ} 25^{\prime}$
$p 8^{\prime}=29^{\circ} 351^{\prime}$
$88^{\prime}=58^{\circ} 111^{\prime}$
$o o^{\prime}=84^{\circ} 11^{\prime}$
$\lambda \lambda^{\prime}=91^{\circ} 35^{\prime}$
$k k^{\prime}=28^{\circ} 52^{\prime}$
$\Delta \Delta^{\prime}=37^{\circ} 50^{\prime}$
$m^{\prime} p=79^{\circ} 28^{\prime}$
$d d^{\prime}=108^{\circ} 58^{\prime}$
$b W=59^{\circ} 29^{\prime}$

Figy 1, 2, Russell, N. Y. 3, Pierrepont. N. Y. 4, Gouverneur, N. Y. 5, 7, Diopside, De Kalb, N. Y. 6, Rossie, N. Y. 1-7, Pfd. 8, Monroe, N. Y. 9, Warwick, N. Y.

Twins ${ }^{10}$: tw. pl. (1) a, contact-twins, common (fig. 18), sometimes polysynthetic. (2) c, as twinuing lamellæ producing striations and pseudocleavage or parting $\| c$; very common, often of unquestioned secondary origin; also capable of being produced artificially. (3) y (101) cruciform-twins, not common, f. 20. (4) W (122) contact-twins or penetration- and cruciform-twins, the vertical axes crossing at angles of nearly $60^{\circ}\left(b W=59^{\circ} 29^{\prime}\right.$, and since $a^{\prime} W=90^{\circ} 9^{\prime}$, the faces a and a fall nearly in a plane; sometimes repeated as a six-rayed star (f. 21).

Crystals usually prismatic in habit, often short and thick, and either a square prism (a, b prominent), or nearly square ($93^{\circ}, 87^{\circ}$) with in predominating; sometimes a nearly symmetrical 8 -sided prism with a, b, m. Often coarsely lamellar, If or a. Also granular, coarse or fine; rarely fibrous or
 columnar.

Occasionally hemihedral, only the planes at an extremity of the vertical axis being present, and the habit then apparently hemimorphic as in f. 22 and f. 19, the latter a twin. Of. G. H. Williams.

11, Ala, after Götz. 12, Nordmark. 13, 14, Schefforite, Långban, Flink. 15, Fasaaite, 16-18. Augite. 19, Orange Co., N. Y., G. H. Williams. 20, Schonhof, Zeph. 21, Sasbach.
Cleavage: m sometimes rather perfect, but interrupted, often only observed in
22.

Canaan, Conn. thin sections. $\perp \delta$. Parting $\| c$, due to twinning, often very prominent, especially in large crystals and lamellar masses; also $|\mid a$ less distinct and not so common. Fracture uneven to conchoidal. Brittle. H. $=5-6$. G. $=3 \cdot 2-3 \cdot 6$, varying with the composition. Luster vitreous inclining to resinous; often dull; sometimes pearly \||c in kinds showing parting. Color usually green of various dull shades, varying from nearly colorless, white, or grayish white to brown and black; rarely bright green, as in kinds containing chromium. Streak white to gray and grayish green. Transparent to opaque. Pleochroism usually weak, even in dark colored varieties; sometimes marked, especially in violet-brown kinds containing titanium. Pyro-lectrically + on a (cooling), and - on b for Ala crystals, but - on a and + on b for Tyrol; an indistinct opposite polarity between the extremities of the vertical axis was noted in one case, Hankel.

Optically + . Double refraction strong. Ax. pl. $\| b . \mathrm{Bx}_{\mathrm{a}} \wedge \cdot d=\mathrm{f} \wedge d=$ $+36^{\circ}$ to $+52^{\circ}$, or $c \mathrm{c}=20^{\circ}$ to 36°, the angle in general increasing with amount of iron (see below). Axial angles for diopside from Ala, Dx.:

$$
\begin{array}{ccccc}
\alpha_{y}=1.6727 & \beta_{y}=1.6798 & \gamma_{y}=1.7026 & \therefore 2 \mathrm{~V}_{y}=58^{\circ} 59^{\prime} & 2 \mathrm{E}_{y}=111^{\circ} 34^{\prime} \\
\text { Measured, } & 2 \mathrm{E}_{\mathrm{r}}=111^{\circ} 40^{\prime} & 2 \mathrm{E}_{y}=111^{\circ} 20^{\prime} & 2 \mathrm{E}_{\mathrm{bl}}=110^{\circ} 51^{\circ}
\end{array}
$$

Refractive indices, Heusser:

$$
\beta_{\mathrm{r}}=1.67810 \quad \beta_{\mathrm{y}}=1.68135 \quad \beta_{\mathrm{gr}}=1.68567 \quad \beta_{\mathrm{bl}}=1.69372
$$

See also beyond under diopside, etc.
The connection between the position of the axes of elasticity and the composition (seo further analyses beyond) is exhibited in the following tables, chiefly from Doelter, also Wiik.

Comp., Var.-For the most part a normal metasilicate, RSiO_{2}, of various bivalent or less frequently univalent metals, chiefly calcium and magnesium, also iron, less often manganese and zinc. The alkali metals potassium and sodium present rarely, except in very small amount. Also in certain varieties containing the trivalent metals aluminium, ferric iron, and manganese. These varieties may be most simply considered as molecular compounds of $\mathrm{Ca}(\mathrm{Mg}, \mathrm{Fe}) \mathrm{Si}_{2} \mathrm{O}_{6}$ and $(\mathrm{Mg}, \mathrm{Fe})(\mathrm{Al}, \mathrm{Fe})_{3} \mathrm{SiO}_{\rho}$, as suggested by Tschermak. Chromium is sometimes present in small amount; also titanium replacing silicon.

The name Pyroxens is from $\pi \bar{\nu} \rho$, fire, and $\xi \in \mathcal{\varphi}$ os, atranger, and records Hally's idea that the mineral was, as he expresses it, "a stranger in the domain of fire," whereas, in fact, it is, next to the feldspars, the most universal constituent of igneous rocks. This error, however, was more than counterbalanced by Haty's discovery of the true crystallographic distinction of the species, which led him to bring together, under this one name, what Werner and others had regarded as distinct species. The name, therefore, is properly the name of the species as a whole, while Augite is only entitled to be used for one of its varieties.

The varieties are numerous and depend upon variations in composition chiefly; the more prominent of the varieties properly rank as sub-species.

I. Containing little or no Aluminium.

Diopside. Malacolite, Alalite. Calcium-magnesium pyroxene. Formula $\mathrm{CaMg}\left(\mathrm{SiO}_{3}\right)_{2}=$ Silics $55^{\circ} \cdot 6$, lime $25 \cdot 9$, magnesia $18 \cdot 5=100$. Color white, yellow-
ish, grayish white to pale green, and finally to dark green and nearly black; sometimes transparent and colorless. In prismatic crystals, often slender; also granular and columnar to lamellar massive. G. $=3 \cdot 2-3 \cdot 38 . \quad \mathrm{Bx}_{\mathrm{a}} \wedge \boldsymbol{d}=+36^{\circ}$ and upwards. Iron is present usually in small amount as noted below, and the amount increases as it graduates toward true hedenbergite, see further below.

Flink gives for the tive varieties of diopside from Nordmark the following optical constants; see analyses $10-15$ beyond, and for the axial ratios see Ref.'.

$\mathrm{Bx}_{\mathrm{s}} \wedge$ ¢	$2 \mathrm{~V}_{\mathrm{F}}$	2 V ,	$2 \mathrm{~V}_{\text {gr }}$	β_{z}	β_{y}	$\beta_{\text {cre }}$
+ $88^{\circ} 8 j^{\prime}$		$58^{\circ} 59^{\prime}$	$58^{\circ} 40$	1.88478	$1 \cdot 69359$	1.69869
$88^{\circ} 45^{\prime}$	$59^{\circ} 9^{\prime}$	$58^{\circ} 57^{\prime}$	$58^{\circ} 46^{\prime}$	1.68183	$1 \cdot 69593$	1.69781
$39^{\circ} 1^{\prime}$	59° 61	$58^{\circ} 561^{\prime}$	$58^{\circ} 47^{\prime}$	1.88889	1.69588	1.70029
$41^{\prime \prime} 41^{\prime}$	$59^{\circ} 18$	$59^{\circ} 11$	$69^{\circ} 6^{\prime}$	1.70055	1.70467	1.71082
$44^{\circ} 88{ }^{\prime}$	$80^{\circ} 441$	$60^{\circ} 88^{\prime}$	$60^{\circ} 29^{\prime}$	1.71855	$1 \cdot 72428$	1.72883

The following belong here:
Chrome diopeide, a varity containing chromium in small amount, often of a bright green; from the localities mentioned under analyses 38-40.

Malacolite, as originally used, included a bluish gray, grayish green, and whitish translucent variety from Sala, Sweden.

Alalite occurs in broad right-angled prisms, colorless to faint greenish or clear green, usually striated longitudinally, and came originally from the Mussa Alp in the Ala valley, Piedmont. Mussite is white, grayish white, and apple-green (according to Bonvoisin's original description), and occurs in prismatic implanted crystals, and also in masses made up of aggregated crystals. Numed from the same locality, the Mussa Alp.

Traversellite, from Traversella, is in similar long glassy crystals, usually rectangular (a, b), much striated longitudinally, often clear green at one end and colorless at the other; prismatic cleavage perfect.

Canaunite is a grayish white or bluish white pyroxene rock occurring with dolomite at Canaan. Coun.; it has been referred to scapolite. Pyroxene in large white crystals is common in the region (f. 22); their composition, according to an analysis by M. D. Munin (priv. contr.) is: ${ }_{3} \mathrm{SiO}_{2} 55 \cdot 0.5, \mathrm{CaO} 31 \cdot 35, \mathrm{MgO} 12 \cdot 53 . \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Fe}_{2} \mathrm{O}_{2} 1 \cdot 07=100 ; \mathrm{G} .=3.38$. Cf. 5th Ed., p. 803.

Lavrovite is a pyroxene, colored green by vanadium, from the neighborhood of Lake Baikal in eastern Siberia. In coarse granular masses with quariz, and also in small imperfect crystals. Cleavage affiords the prism $87^{\circ} 7^{\prime}$; and there is the usual lamination from coinpound structure parallel to c. The color is fine emerald-green. Cf. anal. 50, and Kk., Min. Russl., 6, 206.

Diopaide is named from $\delta 15$, toice or double, and outis, appearance. Malacolite is from $\mu \alpha \lambda c k \dot{\prime} \dot{\prime}$, soft, because softer than feldspar, with which it was associated.

Hedenbergite. Calcium-iron pyroxene. Formula $\mathrm{CaFe}\left(\mathrm{SiO}_{3}\right)_{3}=$ Silica $48 \cdot 4$, iron protoxide $29 \cdot 4$, lime $22 \cdot 2=100$. Color black. In crystals, and also lamellar massive. G. $=3.5-3.58 . \quad \mathrm{Bx} \mathrm{a}_{\mathrm{a}} \wedge \delta=+48^{\circ}$. Manganese is present in manyanhedenbergite to 6.5 p. c., see anal. 45, below. Color grayish green. G. $=3.55$. Named after the Swedish chemist, Ludwig Hedenberg, who first analyzed and described the mineral.

Between the two extremes, diopside and hedenbergite, there are numerous transitions conforming to the formula $\mathrm{Ca}\left(\mathrm{Mg}, \mathrm{Fe}_{2}\right) \mathrm{Si}_{2} \mathrm{O}_{6}$. As the amount of iron increases the color changes from light to dark green to nearly black, the specific gravity increases from $3 \cdot 2$ to $3 \cdot 6$, and the angle $B x_{\&} \wedge d$ also from 36° to 48°.

The following are varieties, coming under these two sub-species, based in part upon structure, in part on peculiarities of composition.

Salite. Sahlite. Color grayish green to deep green and black; sometimes grayish and yellowish white. In crystals; also cleavable and granular massive $\quad \mathbf{G} .=\mathbf{3 \cdot 2 5 - 8 . 4}$. Named from Sala in Sweden, one of its localities, where the mineral occurs in masses of a grayish green color, having a perfect parting | c.

Buikalite is a dark dingy green variety, in crystals, with parting like the preceding. Named from Lake Baikal, in Siberia, near which it occurs.

Protheite is somber-green, in crystals, and approaches fassaite; from the Zillerthal in Tyrol.

Funkite is dark olive-green coccolite from Boksater in Gothland, having a larger percentage of Fe than Mg .

Lotalite from Lotala, Finland, in black lamellar masses, is near hedenbergite.
Violan Breithaupt, J. pr. Ch., 15 321,1838. Occasionally in prismatic crystals, affording (Dx, Min. 1, 68, 1862, N. R., 183, 1867 ; the angles and the planes (in the prismatic zone) of nyroxene. also the prismatic cleavage. Usually lamellar massive, sometimes fibrous. H. $=6 . \quad \mathrm{G} .=3 ? 23 \mathrm{~S}$.

Luster waxy. Color dark violet-blue. Translucent, but in thin plates transparent. Optically +, and Bxo inclined to a as in diopside. Anal.-1. Damour, Dx., Min., 1, 68, 1862 (impure material §). 2, Pisani, Dx., N. R., 184, 1887. 8, Schluttig, Inaug. Diss., Leipzig, Groitzsch. 17, 1884, as recalc. by Granhut, Zs. Kr., 13, 74, 1887.

Occurs in small seams with white quartz, white fibrous tremolite spotted violet with manganese, greenovite and manganesian epidote, in the braunite of St. Marcel, in the valley of Aosta, Piedmont. Named from its color.

Anthochrorte L. J. Igeletröm, Jb. Min., 2, 86, 1889. Probably identical with violan. Occurs in grains embedded in limestone and in thin veins. H. $=5-6$. Color rose-red to pale violet. Analysis gave: $\mathrm{SiO}, 51 \cdot \mathrm{~b}, \mathrm{MnO} 3 \cdot 4, \mathrm{MgO} 13 \cdot 5, \mathrm{CaO} 23 \cdot 3, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Fe}_{2} \mathrm{O}_{3}{ }^{1} \cdot 4$, alk. [6.8] $=100$. Occurs ussociated with braunite, manganesian garnet, epidote, vesuvianite at Jakobsberg, Wermland. Sweden. Named from $\alpha \nu \theta$ os, flower, and χ 人oóx, color.

Aeteroive L. J. Igelström, B. H. Zig., 29, 8, 1870, is a stellate radiated pyroxene, from Nordmark, in Sweden. Color ash-gmy to white; luster silky; opaque, becoming bronze color on exposure. Anal.- $\mathrm{SiO}_{2} 48 \cdot 48$. $\mathrm{FtO} 22 \cdot 24, \mathrm{MnO} 4 \cdot 12$, $\mathrm{CaO} 17 \cdot 00, \mathrm{MgO} 4 \cdot 18$, ign. $2 \cdot 83=98 \cdot 85$.

Coccours. A granular variety, sometimes as indistinct crystals embedded in calcite, also forming loosely coherent to compact granular aggregates. Color varying from white to pale green wo dark green, and then containing considerable iron; the latter the original coccolite. Named from kúkkus, a grain.

Diallage. Lamellar or thin-foliated pyroxene, characterized by a fine lamellar structure and parting $\mid a$, with also parting $\| b$, and less often $\mid c$. Also a fibrous structure $\| d$. Twinning a. often polysynthetic; interlamination with an orthorhombic pyroxene common. Color grayssh green to bright grass-green, and deep green; also brown. Luster of surfuce a often pearly, sometimes metalloidal or exhibiting schiller and resembling bronzite. from the presence of microscopic inclusions of secondary origin (cf. Judd, ref. see bustite. p. 351). $\mathrm{Ex}_{\mathrm{a}} \wedge \boldsymbol{d}=$ +39 to 40°. $\mathrm{H}=4 ; \mathrm{G}=3 \cdot 2-8 \cdot 35$. In composition near diopside, but often containing alumina and sometimes in considerable amount, then properly to be classed with the augites (cf. anal. 51-65). Often changed to amphibole; see smaragdite, p. 889, and uralite, p. 390.

Named from $\delta_{i \alpha \lambda \lambda \alpha \gamma \dot{\eta}, \text {, difference, in allusion to the dissimilar cleavages or planes of }}$ fracture. This is the characteristic pyroxene of gabbro, and other related rocks.

Hudeonite is a lamellar massive kind, color black, often with a bronze tarnish. $\quad \mathbf{G} .=\mathbf{8 . 5}$, Beck; 3•43-8.46, Brewer. Contains lime and ferrous iron, with but little magnesin. Named from the Hudson river, in the vicinity of which it occurs, in Cornwall, Orange Co., N. Y.

Omphacite. Omphazit [fr. Baireuth] Wern.. Hoffm. Min., 2. 2, 302, 1812; Breith., ib., 4, 2. 125, 1817, Handb., 612, 1841, B. H. Ztg., 24, 365, 387, 1865. The granular to foliated pyroxenic constituent of the garnet-rock called eclogyte, often interlaminated with amphibole (smaragdite); cleavage as with pyroxene. H. $=5-6$. G. $=8 \cdot 2-8 \cdot 3$. Luster vitreous to silky. Color grass. green. Anal.-1-5, J. Fikenscher, B. H. Ztg., 24, 887, 1865. 6, Luedecke, Zs. G. Ges., 28, 259, 1876.

Occurs near Hof in Bavaria; at Pacher in Styria. Also a similar mineral (diallage) in the glaucoplane schlats of the island Syra (Luedecke). Schrauf gives the name to the "chrom-
 to the color; it is among the names of green stones mentioned by Pliny.

Schefperite. A manganese pyroxene, sometimes also containing much iron (iron-schefferite, Eisenschefferit Flimk). Flink gives the composition of the Langban mineral (anal. 46) as corresponding to $6 \mathrm{CaMgSi}_{2} \mathrm{O}_{4} \cdot \mathrm{MgFeSi}_{2} \mathrm{O}_{4} \cdot \mathrm{Mn}_{3} \mathrm{Si}_{3} \mathrm{O}_{4}$.

In crystals, sometimes tabular 」o (f. 18), also with p (i01) prominent, more often elongated in the direction of the zone $b: p(101)$, as in f 14; very rarely prismatic, $\mid d$. Twins, with a as tw. pl., very common. Axial ratio as given beyond, Ref. '. Also crystalline, massive. Cleav-
age prismatic, very distinct. Color yellowish brown to reddish brown. Optically $+\mathrm{Bx}_{\Delta} \wedge \delta$ $=\boldsymbol{c}^{\wedge} \wedge^{\delta}=44^{\circ} 25 \underline{y}^{\prime} .2 V_{y}=65^{\circ} 8^{\prime}$. Named after the S wedish chemist (1710-1759).

The iron-schefferite from Pajsberg (anal. 47) is black in color and has the axial ratio given beyond. $c \wedge \delta=+49^{\circ}$ to 59° for different zones in the same crystal. The brown iron-schefferite from Längban (anal. 48) has $\mathfrak{c} \wedge \dot{d}=69^{\circ} 3^{\prime}$. It resembles garuet in appearauce.

Jefrersonite. A manganese-zinc pyroxene (see anal. 48). In coarse crystals sometimes very large; they are like ordinary pyroxene in habit. Edges rounded and faces uneven and apparently corroded. $\mathbf{G} .=3 \cdot 63$. Color greenish black, on the exposed surface chocolate-brown. $B x_{\mathrm{a}} \wedge d=53^{\circ} 32^{\prime} .2 \mathrm{H}_{\mathrm{a} . \mathrm{y}}=84^{\circ} 32^{\prime} \mathrm{Dx} .$, Min., 2, xIx, 1874. Named after Mr. Jefferson.

According to the view of R. Fritz Gaertner the zinc shown in the analysis is to be explained as due to enclosed zincite and the manganese to franklinite, but this needs confirmation; Pisani's analysis (49) was made on the crystals examined optically by Dx.

II. Aluminous.

Auarte. Aluminous pyroxene. Composition chiefly $\mathrm{CaMgSi}_{2} \mathrm{O}_{0}$ with (Mg, Fe)($\mathrm{Al}, \mathrm{Fe})_{3} \mathrm{SiO}_{9}$, and occasionally also containing alkalies. Here belong:
a. Leucadarte. Color white or grayish. Contains alumina, with lime and magnesia, and little or no iron. Looks like diopside. $\mathbf{H}_{.}=\mathbf{6}^{\cdot 5 ;} \mathbf{G} .=3 \cdot 19$, Hunt. Named from $\lambda \in v$ Kós, white.
b. Fassaitz, or Pyrgom. Includes the pale to dark, sometimes deep-green crystals, or pistachio-green and then resembling epidote. The aluminous kinds of diallage also belong here. Named from the locality in the Fassathal, Tyrol. Pyrgom is from $\pi \dot{v} \rho \gamma \omega \mu \alpha$, a towoer.
c. Augite. Includes the greenish or brownish black and black kinds, occurring mostly in eruptive rocks. It is usually in short prismatic crystals, thick and stout, or tabular a; often twins. Ferric iron is here present, in relatively large amount, and the angle $\mathrm{Bx}_{\mathrm{a}} \wedge$ d becomes $+50^{\circ}$ to 52°. Named from $\alpha^{\prime} v \gamma \dot{\eta}$, luster.

The Augite of Werner (and volcanite Delameth.) included only the black mineral of igneous. rocks-the poleanic schorl of earlier authors.

Titaniferous augite. Containing 0.5 to 4.5 p. c. titanium dioxide; cf. anals. 103 to 121.
Alikali-Augite. Here belong varieties of augite characterized by the presence of alkalies, especially soda; cf. anals., 103 to 121 ; they hence approximate to acmite and ægirite. They are known chietiy from rocks rich in alkalies, as elæolite syenite, phonolyte, leucityte, etc. A pyroxene intermediate betweeu diopside and ægirite has been described by Brogger from the elmolite-syenite of southern Norway, which has $\varepsilon \wedge d=+52^{\circ}$, Zs. Kr., 16, 655, 1880. Cf. also Cross, Am. J. Sc., 39, 359, 1890.

Anal.-The following are analyses, chiefly recent, of the typical varieties; for other analyses see 5th Ed., pp. 217 to 219; also Rg., Min. Ch., pp. 386-392. 1875. and Erg., 20-81, 1886, further Heddle, Trans. K. Soc. Edinburgh, 28, 1878, and many papers on pyroxene in rocks in Jb. Min., and elsewhere.

1-7, Doelter, Min. Mitth., 288 1877, Min. Mitth., 1, 48, 1878. 8, E. S. Sperry, priv. contr. 9, A. E. Nordenskiold, G. För. Förh., 12, 353, 1890. 10-13, Flink, Zs. Kr., 1i, 449, 1886. 14, Doetter, 1. c. 15, Sjögren, G. Fbr. Förh., 4. 378, 1879. 16-21, quoted by Wiik, Finsk. Vet.Soc. Förh., 24, 1882; 16. Moberg; 17, Cassren: 18, Hjelmman: 19, Hjelt; 20, 21, Castren. 22, Maskelyue, Phil. Trans. 160, 202, 1870. 23, Streng. Jb. Min.. 1, 288, 1885 24, Bamberger, Min. Mitth., 23. 1877. 25, Nauckhoff, G Fbr. Forb., 1, 167, 1873. 26, Haushofer, J. pr. Ch., 102, 35, 1867. 27. Freda [Gazz. Ch. Ital., 13, 498], JB. Ch., p. 1889, 1888. 28, Suchedorff. Z. Z. Kr., 2, 498, 1878 . 29, Renqvist. ibid. 30, Rath, Pogg.. 144. 387, 1871. 31, Lepéz. quoted by Zepharovich, Lotos, 1885. 32. Hawes, Am. J. Sc.. 16, 397, 1878.

33, Pisani, Bull. Soc. Min., 5, 281, 188\%. 34, A. Knop. Jr, Jb. Min., 2, 97 ref., 1890. 35, Scharizer, Jb. G. Reichs., 707, 1884. 36, Schrauf, Zs. Kr., 6, 329, 1882. 87, Knop, Jb. Min., 688, 1877. 38, Oebbeke, ib., p. 845. 39, Dmr., Bull. G. Soc. Tr., 19, 414, 1862. 40, Rg., Pogg., 141, 516, 1870.
41. Tschermak, Ber. Ak. Wien, 65 (1), 123. 1872. 42, Loczka, Zs. Kr., 11. 282, 1885. 48, Hidegh, ib., 8, 534, 1883. 44, Doelter, Min. Mitth., 1, 62, 1878. 45, Weibuli, G. F̈r. Forh., 6, 506, 1883. 40-48, Flink, Zs. Kr. 11, 487 et eq., 1888. 49, Pissini, C. R, 76, 287, 1878. 50, Hermann, J. pr. Ch., 1, 444, 1870.

51, Rath, Pogg., 144, 250, 1871. 52, Traube, Diss. Greifswald, p. 6, 1894. 53, Heddle, Min. Mag., 2, 31, 1876. 54. Hilger. Jb. Min.. 129, 1879. 55, Petersen, ib., 1, $264,1881$. 56, Cossa, Trans. Acc. Linc., 4, 43, 1879. 57-59, Cathrein. Zs. Kr., 7, 249. 1882. 60, Luedecke, Zs. G. Ges., 28, 260, 1876. 61. Leeds, Am. Ch., March. 1877. 62, Hummel, G. För. Förh., 7, 812, 1885. 68, H. von Post, ibid., 811. 64. 65, 'Oberg, ibid.

66, Leeds, Am. J. Sc., 6, 24, 1878. 68a, Harrington. Rep. G. Canada, 1874-75; cf. also anal 8. 4, p. 390. 67, Rath, Ber. Ak. Berlin, 538, 1875. 68, Id., Pogg. Erg., 6, 229, 1879. 69. Id., Zs. G. Ges., 27, 362, 1875. 70, Reyer, Min. Mitth., 258, 1872. 71, 72, Sommerlad, Jb. Min., Beil., 2, 177, 1883. '73, Ricciardi [Gazz. Chim. Ital., 11, 143], Rg., Min. Ch., Erg., 26. 1886. 74, Prge, Ch. News, 42, 194, 1880. 75, Khrushchov, Bull.' Soc. Min.. 8, 89, 1885. 78-88, Doelter, Min. Mitth., 279, 1877. 84-86, Id., ibid., p. 65. 87, Id., Min. Mitth., 1. 63, 1878.

88-100, Doelter, Vulk. Gest. Cap. Veri, 1882. 101, 102, Kertscher, ibid. 103-110, Knop, Zs. Kr., 10, 58, 1884, except 106, by Cathrein, quoted by Knop. 111-117, Merian, Jb. Min., Beil., 3, 252, 1885. 118-121, Mann. Jb. Min., 2, 172, 1884.

Diopaide.

Chromo-dioperide.

$$
\text { G. } \quad \mathrm{SiO}_{2} \mathrm{Al}_{2} \mathrm{O}_{3} \mathrm{Cr}_{2} \mathrm{O}_{3} \quad \mathrm{FeO} \mathrm{MnO} \quad \mathrm{MgO} \quad \mathrm{CaO}
$$

Diamond Fields, 8 . A., green	$8 \cdot 26$	62.4	$0 \cdot 6$	2.8	6.5	-	$15 \cdot 5$	$20 \cdot 5$	$\mathrm{H}_{8} \mathrm{O} \quad 1 \cdot 5^{[89 \cdot 8}=$
84 "									
(Jagerfon 35. Jan Mayen	8.818	54.97 51.86	$1 \cdot 68$	2.08 0.78	$4 \cdot 71$ $3 \cdot 46$	tr.	$17 \cdot 40$		$\mathrm{Fe}_{2} \mathrm{O}_{3} 2 \cdot 44$
									$0 \cdot 12=99 \cdot 72$
88. Křcmǐe	8.259	58.67	$2 \cdot 45$	$1 \cdot 49$	$8 \cdot 84$		$13 \cdot 57$	$20 \cdot 34$	$\mathrm{Fe}_{3} \mathrm{O}_{3}$ 2.07,
							15.48.	$\mathrm{Na}_{2} \mathrm{O}$	$\cdot 28=100 \cdot 20$
37. Kaiserstuhl		51.89	$4 \cdot 76$	1.09	$4 \cdot 40$	0.54	15.47	$19 \cdot 73$	usol. $\cdot 2 \cdot 30=$
38. Schw. Stein, Nassau	8.208	50.44	$5 \cdot 10$	$1 \cdot 40$	9.70	-	$17 \cdot 42$	14.63	$=98.68$
39. Lherz	8.28	53.63	4.07 7.42	1.30	8.52	-	12.48	20.37	$=100 \cdot 37$
0. Dreiser We	$8 \cdot 28$	8.	7.	$2 \cdot 61$	$5 \cdot 08$	-	17.		$=100 \cdot 0$

Hrdenberatte, aleo above.

	G.	SiO_{2}	$\mathrm{Al}_{9} \mathrm{O}$	$\mathrm{e}_{2} \mathrm{O}$	FeO	MnO	MgO	CaO	
41. Shergotty Meteorite	8.468	52.34	0.25	-	$23 \cdot 19$	-	14.29	10.48	$=100 \cdot 56$
42. Dognacska	8.557	48.38	0.68	8.23	15.8	7.94	$2 \cdot 22$	$22 \cdot 10$	alle. $0.28=$
43.8	8-588	49.00	0.91	2.85	17.24	8.52	$1 \cdot 34$	21-30	$=101 \cdot 16{ }^{[100 \cdot 71}$
44. Tunsberg	3.492	47.62	1.88	$0 \cdot 10$	26.29	-	$2 \cdot 76$	$21 \cdot 53$	$=100 \cdot 18$
45. Vester Siliferg	8.55	48.29	-	-	24.01	$6 \cdot 47$	2.83	$17 \cdot 69$	alk. $0 \cdot 22=$

SCHEPFERRITE.	G.	SiO_{2}	$\mathrm{Al}_{2} \mathrm{O}$	${ }_{3} \mathrm{O}_{3}$	FeO	MnO	MgO	Ca
46. Långban		52.28	-	-	8.88	$8 \cdot 38$	$15 \cdot 17$	$19 \cdot 62=98 \cdot 22$
47. Pajsberg		50.88	197	-	17.48	$6 \cdot 67$	8.08	$12 \cdot \% 2=98 \cdot 80$
Wisenschefforit, brn.		58.19	0.88	-	14.88	6.20	10.08	$14 \cdot 57=99 \cdot 75$
Jefforsonito. 49. Franklin Furnace, N. J. 8-68		45.95	0.85	-	8.91	10.20	8.61	$21.55 \mathrm{ZnO} 10 \cdot 16$,
c0. Laverovits	$8 \cdot 04$	68.68	2.25		-	48	16.00	
								$[=100$

Diallage.

Augite.

88. Rib. das Patas 89. Pico da Cruz 90. Garza valley 91. Aguas das Caldeiras 92. St. Vincent 98. Sidermo 95. Praya, Large cryst. 96. "~ mall oryst. 97. Pico da Cruz 9. Picos valley 99. St. Vincent 100. 101. Pedra Molar 102. 8t. Vincent

109. Basbach

104. Burkheim
105. Horberig
106. Amoltern
107. Oberschaffhausen
108. Lätzelberg
109. Badloch

SiO_{2}	$\mathrm{Al}_{2} \mathrm{O}$	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	FeO	MgO	CaO	Na O
40.81	14.24	7.88	5.95	14.85	16.01	$0 \cdot 61=99.86$
88.79	16.97	15.87	$2 \cdot 23$	8.99	18.90	$0.60 \mathrm{THO}_{2}$ tr. $=99.85$
44.11	$9 \cdot 68$	4.95	$5 \cdot 48$	14.06	21.92	tr. $=100 \cdot 18$
$45 \cdot 79$	789	8.51	4.81	14.81	21.60	$1 \cdot 55=99.96$
$45 \cdot 14$	$8 \cdot 15$	$5 \cdot 25$	$5 \cdot 20$	14.76	18.57	$1 \cdot 46=98 \cdot 53$
88.28	18.08	9.29	$9 \cdot 14$	$11 \cdot 78$	1480	$4 \cdot 32=100 \cdot 58$
$41 \cdot 76$	17.81	$2 \cdot 01$	$7 \cdot 47$	8.01	$19 \cdot 47$	$3.72=100 \cdot 25$
43.99	14.01	2.09	$8 \cdot 84$	10.88	$12 \cdot 42$	$1.09 \mathrm{MnO} 0.80=100.82$
$38 \cdot 15$	25.96	-11.08	$6 \cdot 17$	1.99	4.58	$7.91 \mathrm{MnO} 4.97=100 \cdot 76$
87.20	16.98	15.07	8.55	6.89	14.81	$5.08=99.51$
$42 \cdot 15$	21.51	3.79	$8 \cdot 43$	7.55	12.28	$2.98=99.69$
41.08	$9 \cdot 11$	17-18	15.98	$2 \cdot 29$	6.09	$8 \cdot 70=100 \cdot 44$
47.09	18.80	$11 \cdot 82$	10.89	$6 \cdot 16$	$5 \cdot 14$	$6 \cdot 60=100 \cdot 90$
46.94	5.67	$6 \cdot 18$	$5 \cdot 48$	14.18	17.88	$1.83=98.08$
$45 \cdot 14$	$8 \cdot 15$	$5 \cdot 25$	$5 \cdot 20$	14.76	19.57	$1 \cdot 46=99 \cdot 58$

SiO_{2}	THO_{3}	$\mathrm{Al}_{2} \mathrm{O}_{8}$	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	FeO	MgO	CaO	
44.15	4.57	6.90	602	$3 \cdot 49$	12.28	$22 \cdot 79=100 \cdot 20$	
$45 \cdot 88$	3.57	747	4.90	$4 \cdot 11$	10.92	$22.83=98.68$	
46.54	2.85	8.20	372	4.82	$18 \cdot 19$	$21 \cdot 29=100 \cdot 11$	
$47 \cdot 20$	$2 \cdot 70$	$5 \cdot 80$	$3 \cdot 17$	$4 \cdot 76$	12.79	$23.02=99.44$	[$=98.24$
49.75	1.45	0.58	$13 \cdot 28$	$9 \cdot 68$	4.55	16.72 MnO 1.09,	$\mathrm{Na}_{2} \mathrm{O} 2 \cdot 26$
51.87	0.84	$2 \cdot 48$	$4 \cdot 14$	$4 \cdot 46$	13.55	$22.72 \mathrm{Na}_{8} \mathrm{O} 0.44$,	$\mathrm{K}, \mathrm{O} 0.61$
52.09	0.85	$1 \cdot 18$	1.69	1.57	$18 \cdot 10$	$23.56 \mathrm{Na}_{8} \mathrm{O} 0.48$,	$\mathrm{K}_{8} \mathrm{O} \quad 0.48$

	G.	SiO_{3}	THO2	$\mathrm{I}_{2} \mathrm{O}$	$\mathrm{E}_{2} \mathrm{O}_{3}$	FeO	MgO CaO	$\mathrm{Na}_{2} \mathrm{O}$	$\mathrm{K}_{8} \mathrm{O}$
111. Laveline, Vosges	8.372	$50 \cdot 63$	0.79	0.87	$3 \cdot 38$	8.89	$18 \cdot 0121 \cdot 30$	1.02	$0 \cdot 50=99.84$
112. Laurvik	8.401	$50 \cdot 38$	0.66	$0 \cdot 80$	-	12.87	10.8822 .01	$2 \cdot 14$	$0.94=99.73$
113. Serra Monchique	3.473	$42 \cdot 27$	0.92	$8 \cdot 67$	13.93	$6.24{ }^{\circ}$	10.95 12.32	$3 \cdot 88$	$2 \cdot 12=101 \cdot 08$
114. Rieden	3.489	45.80	0.52	$2 \cdot 80$	11.11	$7.68{ }^{\text {b }}$	6.63 20.06	2.88	$1 \cdot 00=98 \cdot 48$
115. LDbau	3.425	$45 \cdot 18$	0.79	$8 \cdot 48$	8.21	$5.75{ }^{\circ}$	11.63 $23 \cdot 26$	1.20	tr. $=102 \cdot 50$
116. Sasbach	3.411	44.65	2.93	8.62	$5 \cdot 02$	$3.87{ }^{\circ}$	14.76 20.32	1.29	$0 \cdot 49=99 \cdot 95$
117. Halleberg	$8 \cdot 448$	50.25	$0 \cdot 45$	$1 \cdot 25$	$5 \cdot 86$	17.40°	15.728 .73	0.82	$0.47=100 \cdot 85$
118. Hohentwiel	8.859	42.15	$t \mathrm{r}$.	$5 \cdot 17$	$16 \cdot 86$	8.54	3.56 10.38	$0 \cdot 68$	$2 \cdot 64=100$
119. Enfdalen	$8 \cdot 465$	49.82	125	4.88	$16 \cdot 28$	$5 \cdot 65$	$4.28 \quad 9.39$	$8 \cdot 88$	$0 \cdot 88=100 \cdot 41$
120. Rieden	3.456	46.47	0.73	4.28	$5 \cdot 95$	12.17	7.2419 .28	$2 \cdot 61$	$0.74=99 \cdot 42$
121. Melif	$8 \cdot 416$	$44 \cdot 55$	1.88	7.27	8.08	5.91	10.44 $22 \cdot 88$	$1 \cdot 47$	$0.52=100 \cdot 41$

Pyry eto.-Varying widely, owing to the wide variations in composition in the different varieties, and often by insensible gradations. Fusibility, 3.75 in diopside; 3.5 in salite, baikalite, and omphacite; 3 in jeffersonite and augite; 2.5 in hedenbergite. Varieties rich in iron afford a magnetic globule when fused on charcoal, and in general their fusibility varies with the amount of iron. Jeffersonite gives with soda on charcoal a reaction for zinc, and in O.F. on platinum wire for manganese; many others also give with the fluxes reactions for manganese. Most varieties are unacted upon by acids.

Obe-Pyroxene is a common mineral in crystalline limestone and dolomite, in serpentine and in volcanic rocks: and occurs also, but less sbundantly, in connection with granitic rocks and metamorphic schists; sometimes forms large beds or veins, eapecially in Archæan rocks. It occurs also in meteorites. The pyroxene of limestone is mostly white and light green or gray in color, falling under diopaide (including malacolite, salite, coccolite); that of most other metamorphic rocks is sometimes white or colorless, but usually green of different shades, from pale green to greenish black, and occasionally black; that of serpentine is sometimes in fine crystals, but often of the foliated green kind called diallage; that of eruptive rocks is usually the black to greenish black augite.

In limestone the associations are of ten amphibole, scapolite, vesuvianite, garnet, orthoclase, titanite, apatite, phlogopite, and sometimes brown tourmaline, chlorite, talc, zircon, spinel, rutile, etc.; and in other metamorphic rocks mostly the same. In eruptive rocks it may be in distinct embedded crystals, or in grains without external crystalline form; it often occurs with similarly disseminated chrysolite (olivine), crystals of orthoclase, sanidine, labradorite, leucite, etc.; slmo with a rhombic pyroxene, amphibole, etc.

Pyroxene, as an essential rock-making mineral, is especially common in basic eruptive rocks. Thus, as augite, with a triclinic feldspar (usually labradorite), maguetite, often chrysolite, in basalt and basaltic lavas, diabase ; in andesyte; also in trachyte; in peridotyte and pikryte; with nephelite in phonolyte. Further with elæolite, orthoclase, etc., in elæoliteyynite and augite-syenite, also as diallage in gabbro, in many peridotytes and the serpentines
formed from them; as diopside (malacolite) in crystalline schists. In limburgyte, augityte, and pyroxenyte, pyroxene is present as the most prominent constituent, while feldspar is absent; it may also form rock masses alone nearly free from associated minerals.

Some of the more prominent foreign localities of pyroxene in its various forms are the following; many others have been noted in connection with the descriptions of varieties and analyses already giveu:

Diopside (alalite, mussite) occurs in fine crystals on the Mussa alp in the Ala valley in Piedmont, associated with garnets (hessonite) and talc in veins traversing serpentine; in fine crystals also at Traversella; at Zermatt in Switzerland; Scliwarzenstein in the Zillerthal; Ober-Sulzbachthal and elsewhere in Tyrol and the Salzburg Alps; Reichenstein; Rezbanya, Hungary; Achmatovsk in the Ural with almandite, clinochlore; L. Baikal (baikalite) in eastern Siberia. Pargas, Orijarvi. and elsewhere in Finland. At Nordmark, Sweden, in tine crystals of varied type of form (cf. Flink, l. c.), but often with a, b, c, p prominent, and varying in composition from a diopside nearly free from iron to one containing iron in large amount, approximating to hedenbergite.

Hedenbergite was originally described from Tuuaberg, Sweden; also from Arendal. Manganhedenbergite is from Vester Silfberg. Schefferite is from Långban. Wermland, Sweden, where it occurs embedded in calcite, also enclosing hematite and richterite; rbodonite and hedyphane occur in the neighborhood. Also from the Harstig mine at Pajgberg, with crystallized rhodonite (pajsbergite).

Augite (incl. fassaite) on the Pesmeda alp. Mi. Monzoni. and elsewhere in the Fassathal, as a contact formation; Traversella, Piedmont; the Laacher See and the Eifel; Sasbach in the Kaiserstuhl; Vesuvius, white rare. green, brown, yellow to black: Frascati; Eina; the Azores and Cape Verde Islands; the Sandwich Islands, as at the base of the cinder cones at the summit of Haleakala on Maui, where deposits of perfect crystals are found with chrysolite grains and glassy crystals of labradorite. Also in Japan, as on Bonin island (cf. Y. Kikuchi, J. Coll. Sc., Japan, 3, 67, 1889, fur an account of some forms).

In N. America, occurs in Maine, at Raymond and Rumford, diopside, salite, etc.; at Deer Isle. diallage in serpentine. In Vermont, at Thetford. black augite. with chrysolite, in boulders of basalt. In Mass., in Berkshire, white crystals abundant; at the Bolton quarries, same, good; Westield and Blanford, diallage in serpentine. In Conn., at Canasn. white cryst. 2-8 in. long hy $1-2 \mathrm{in}$. broad, often externally cbanged by uralitization to tremolite, in dolomite; also the pyroxenic rock, called canuanite; in Trumbull, large green cryst. in limestone; in Reading, on the turnpike uear the line of Danbury, small transp. cryst., and granular; at Watertown. near the Naugatuck, white diopside. In N. York, in N. Y. Co., white cryst. in dolomite; at Warwick, fine cryst.; in Westchester Co.. white, at the Sing-Sing quarries; in Orange Co., in Monroe, at 'Two Ponds, cryst., often large, with scapolite, titanite, etc., in limestone; 3 m . S.E. of Greenwood furvace. sallite with coccolite: $\frac{1}{d}$. E. of same, in cryst. with mica in limestone; 1 $\mathrm{m} . \mathrm{W}$. of Coffee's Hotel in Monroe, black coccolite; 24 m . N. of Edenville, gray cryst.; 1 m . N.W. of Edenville, black cryst. in limestone; in Cornwall, the var. hudsonite; near Amity and Fort Montgomery, good; in Forest-of-Dean, lamellar. green, and bronze-colored, with black coccolite; in Putnam Co., near Patterson. grayish white cryst., abundant; at Rogers' Rock, L. George, massive and granular (coccolite), gray, green. brown; near Oxbow, ou Vrooman Lake ${ }_{i}$ in Lewis Co., at Diana, white and black cryst.; in St. Lawrence Co., at Fine, in large cryst.; at De Kalb, tine diopside; also at Gouverneur, Rossie. Russell. Pitcairu; in Lissex Co.. near Long Pond, cryst., also beatiful green coccolite; at Willsboro', green coccolite with titanite and wollastonite; at Moriah, coccolite, in limestone mostly changed to serpentine forming a useful marble.

In N. Jersey, Franklin Furnace. Sussex Co., good cryst., also jeffersonite. In Penn., near Attleboro'. cryst. and granular; in Pennsbury, at Burnett's quarry, diopside; at the French Creek mines. Chester Co.. chictly altered to fibrous amphibole; at Bailey's quarry, East Marlborough. In Maryland, Harford Co., at Cooptown, diallage. In Delatoare. at Wilmington, a hypersthene-like variety, Nuttal's Maclureite. In Tennessee, at the Ducktown mines.

In Canada, at Calumet I., grayish green cryst. in iimestone with phlogopite; at the High Falls of the Madawaska, large crystals, having cryst. of bornblende attached; in Kildau as a rock; in Bathurst, colorless or white cryst. ; near Ottawa, in large subtrp. cryst., in limestone; at Grenville, dark green cryst., and granular: at Montreal, Rougemont and Montarvelli Mis., black in doleryte ; Burgess. Lanark Co.; Renfrew Co., with apatite, titanite, etc.; Orford, Sherbrooke Co., white crystals, also of a chrome-green color with chrome garnet; at Hull and Wakefield, white crystals with nearly colorless garnets, honey-yellow vesuvianite, etc. At many other points in the Archean of Quebec and Ontario. especially in connection with the apatite deposits.

Alt.-Pyroxene undergoes alteration in different ways. A change of molecular constitution without essential change of composition. i.e., by pitramorphism (using the word rather broadly), may result in the formation of some variety of amphibole. Thus, the white pyroxene crystals of Canaan, Conn., are often changed on the exterior to tremolite; similarly with other varietiea at many localities. See Uralite, p. 390.

Further there may be alteration with chemical change in many ways, as has been explained by Bischof, and many species have been instituted on the material in different stages of change. In the simplest, there is only a taking up of water, producing a "hydrous augite." The water often found in analyses may be from this source. In many cases a loss of silica appears to
attend this hydration; and often, also, a loss of one or more of the bases (of which the lime and iron are the first to go), through the dissolving agency of waters holding carbon dioxide, or carbonstes, in solution. A complete removal of the lime and iron produces steatite or talc, a common material of pseudomorphs. Rensselocrite is a variety of steatite, having sometimes the cleavage of pyroxene. Pyrallolite is also in part talc or steatite. Saponite and aerpentine are other results of the same kind of alteration, the latter, especially, very common. Hortonits is a steatitic pseudomorph of pyroxene, found in Orange Co., N. Y., with chondrodite. See further under Talc, Serpiantine. Spidote is another mineral resulting from the change involving oxidation of the iron. In the case of the aluminous pyroxene, when all the bases except the alumina are removed and water taken up, there may result cimolite, a whitish claylike earth, which has been observed constituting pseudomorphs of augite at Bilin in Bohemia. Under the action of alkaline waters, alkalies may be introduced. Thus the hydrous mineral glauconits or green arth may result as a constituent of some augite pseudomorphs; or mica, Which has been observed by Kjerulf as a pseudomorph after augite, in the Nifel.

Some of the substances formed by alteration are further mentioued below.
Artif.-Diopside has been observed as a furnace product at the iron-works of Philipsburg, N. Jersey (G. J. Brush. Am. J. Sc.. 39, 132, 1885); and dark-colored pyroxene at Gaspenberg; in an old furnace near Hackenburg; a copper furnace near Dillenburg; at Falun and Oldbury; a manganese-augite at Magdesprung. Augite in small yellow crystals has been found in old fumaroles at Eiterkopfe, near Andernach (Rath).

Formed in crystals, as diopside, artificially by the action of silicon chloride on magnesia (Daubrée); also, a grayish-white var., by mixing the constituents and exposing to a high heat (Berthier); also, a variety of compounds (Lechartier) by fusing the constituents at a bright red heat with an excess of calcium chloride in a carbon crucible enveloped in one of earthenware. See further, Fouqué \& Léry, Synth. Min., 102-110, 1882. Synthetic experiments hava been also made by Doelter, Jh. Min., 2, 51, 1884; also on the results of fusion, as in reforming pyroxene from the fused mass, by Becker, Zs. G. Ges., 37, 10, 1885. See also Vogt. Ak. H. Stockh., Bihung. 9, No. 1., 1884 ; Arch. Math. Nat., Christ., 30, 84, et seq., 1889, who describes various pyroxenic minerals formed from fusion in slags, etc., including augite, a monoclinic (or triclinic) MgSiO_{3}, a similarly crystallized FeSiO_{3}, also enstatite, rhodonite, an hexagonal CaSiO_{3}, etc.

Ref. ${ }^{1}$ Vesuvian augite, yellow variety, $G .=3 \cdot 277$, anal. 67, 1. c. It is noteworthy that the angles vary but little even for a wide variation in composition. For a discussion of the change in form with varying amount of FeO and (Al, $\mathrm{Fe}_{2} \mathrm{O}_{3}$, see Rath, Pogg. 6, 345, 1873 ; Flink, Zs. Kr., 11, 486, 1886. The following will serve for comparison, the axes being accepted as calculated by Kz., Rath, La Valle, Flink, etc., cf. anals. preceding and ref. below:

Since in pyroxene the angle ac differs but little from the angle $a^{\prime} p$, it is possible so to select the axes as to make the angle of obliquity, β, nearly 90°. This method, proposed by Huth and later by Tschermak, and adopted by Groth (Tab Ueb., p. 130, 1889) has a certain advantage in that it exhibits clearly the morphological similarity between the orthorhombic and monoclinic pyroxenes. It is not to be recommended otherwise, however, since the resulting symbols of the commonly occurring planes are often highly complex; moreover, it is clear that the basal plane in the position of Naumann here, as ordinarily, adopted is naturally a fundamontal plane since it is parallel to it that the common twinning lamellæ occur. with the resulting easy parting 80 often observed. Cf. also Flink, Zs. Kr., 16, 299, 1890, who notes another objection.
${ }^{2}$ Cf. Kk., Min. Russl., 4, 258. 1862; Mlr.. Min., p. 290. 1852; Dx. Min., 1, 55 1862; Hbg.; Min. Not., 1, 18, 1856, 6, 21, 1863; Rath. Pogg., Erg., 6, 838, 1879, Ber. nied. Ges. (311), July 7 , 1886. A list of planes with suthorities is given by Gơtz. Zs. Kr., 11, 242, 1885; another by Lá Valle, Mem. Acc. Linc., 3, 226, 1886; also a critical summary with literature by Gdt., Index, 2, 528, 1890.
${ }^{2} \mathrm{Hj}$. Sj., Nordmark, G. For. Förh., 4, 384, 1879. ${ }^{2}$ Gotz, 1. c. ${ }^{4}$ Fink, Nordmark, Zas. Kr., 11, 449 et eq., 1886, and Ofv. Ak. Stockh., 42, No. 2, 29, 1885. "La Valle, Val d'Ala, 1. c., also ib., 6, 380. 1888. 'Zeph, Ober-Sulabachthal, Lotos, 1889. 'Cathrein, Pinzgau, Ann. Mus. Wien, $4,181,1889 .{ }^{\text {E }}$ Gotz, Mitth. Univ. Greifswald, 1886.
'Hemihedrism: Williams, Am. J. Sc.. 34, 275, 1887, 38, 115, 1889; cf. also observations by Hbg.. Dx. (quoted by Williams), and. further, pyro-electrical observations by Hankel, 1. c. ${ }^{10}$ Twins: Rath, Zs. Kr., 5, 495. 1881; Zeph., Jb. Min., 59, 1871; Becke, Min. Mitth., 7, 98,

1885; Mgg., secondary and artificial twinning\|e, Jb. Min., 1, 185. 1886, 1, 288, 1889, La Valle, polysynthetic twins, Val d'Ala, Mem. Accad. Linc., 19, June 1, 1884. Association with amphibole, with analyses, Rath, Vesuvius, Pogg, Erg., 6, 229, 337, 1878; also, Hawes, Edenville, Am. J. Sc., 16. 397, 1878, and Rep. Min. New Hampshire. 68. 18i8; see also p. 390.

Refractive indices, etc., Dx., Min., 1, 55 et seq., 1862; Heusser, Pogg. . 91, 498, 1854; Taberg, A. E. Nd., l. c. ; also Flink et al., as already quoted. Etching-figures, Baumh. Pogg., 153, 75. 1874; Greim, Jb. Min., 1, 252. 1889. Pyro-electricity, Hankel, Wied., 1, 279, 1877. Pieso-electricity. P. Czermak, Ber. Ak. Wien, 96 (2), 1217, 1887.

Discussion of the composition of the group: Tschermak, Min. Mitth., 17, 1871: Doelter, ib., 65, 1877, 1, 49, 1878, 2, 183, 1879. See also Doelter, Knop, Merian, Mann, etc., references quoted under the analyses. On the relation between composition and optical characters, Doelter, Jb. Min., 1, 43, 1885; Wiik, Ofv. Fingk. Soc., 24. 1882, 26, 1883, 26, 1884, Zs. Kr., 7, 78, 1882. 11, 818. 1885: Herwig [Programm Gymn. Saarbrucken 1884]. Zs. Kr., 11, 67. 1885.

The following are more or less well-detined alteration products of various kinds of pyroxene; see further for analyses, etc., 5th Ed., pp. 220-223.

Hecturite 8. Horbert Cox, Trans. N. Z. Inst., 15. 409, 1882. A hydrated pyroxenic mineral from the serpentine rocks of the Dun Mts. New Zealand. Occurs in radiating groups. of thin tlexible laminæ. H. $=2-2 \cdot 5$. Color whitish green to dark green. Analysis by W. Skey:

$\mathrm{SiO}_{2} 5789 \quad \mathrm{Al}_{8} \mathrm{O}_{3} 4.74 \quad \mathrm{FeO} 18.46 \quad \mathrm{MgO} 13.94 \quad \mathrm{CaO} 1.98 \quad \mathrm{H}_{3} \mathrm{O} 2.98 \quad \mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{MnO}$ tr. $=100$

Hydrous Diallage. Various forms have been described, 厄th Ed., p. 281.
Monradite Eirdmann, Ak. H. Stockh., 103. 1842. Probably a slightly altered pyroxene. Described as occurring granular massive, with two unequal clesvages mutually inclined about 50°; with $H .=6, G .=3.267$; color yellowish, honey-yellow, and luster vitreous. From Bergen in Norway. Named after Dr. Monrad.

Picrophyll soanberg, Pogg., 50, 662, 1839. From Sala, where it occurs both massive, with the cleavage of pyroxene, and fibrous, of a greenish gray color, with $H .=2.5$ and $G .=2.75$. Named from nikpós, bitter, and $\phi \dot{\prime} \lambda \lambda$ ov, leaf, in allusion to the odor when moistened.

Pitkarantite Scheorer, Pogg., 93, 100, 1854. Pikarandite. Has a leek-green or dark green color, and looks like unaltered pyroxene. From Pitkaranta in Finland. Scheerer refera here part of pyrallolite.

Pyrallolite N. Nordenskiold, Schw. J., 31, 389, 1820. From Finland, where it occurs mostly in limestone, with pyroxene and scapolite. A pyrallolite from Sibbo in Finland has been named Vargasits, after Count Vargas, Huot Min., 2, 676, 1841; Wargasit Gorm. The crystalline structure is that of pyroxene. Named from $\pi \hat{v} \rho$, fire, $\alpha \lambda \lambda o 5$, other.

Straxomitzite Zepharveich, Jb. G. Reichs., 4, 695, 1858. Approaches steatite. It occurs in greenish yellow crystals, soft and greasy in feel. with $G .=1.91$.

Uralite Rose, Pogg., 22, 821, 829, 1831; 27, 97, 1888; 31, 609, 1881. Pyroxene altered to amphibole. See further, p. 390.
326. ACMITE. Achmit Ström, Ak. H. Stockh., 160, 1821, and Bers, 1b., 168. Akmis Gorm. Acmite.

Aegirite. Agirin Eismark, Berzelius, Jb. Min., 184, 1835.
Monoclinic. Axes: $\grave{a}: \dot{b}: d=1 \cdot 09957: 1: 0.60120 ; \beta=73^{\circ} 10{ }^{\circ}{ }^{\prime}=001 \wedge$ 100 Brögger ${ }^{1}$.
$100 \wedge 110={ }^{*} 46^{\circ} 28^{\prime}, 001 \wedge \overline{101}=31^{\circ} 521^{\prime}, 001 \wedge 011=29^{\circ} 551^{\prime}$.

Forms ${ }^{\text {: }}$	$f(810, i-\overline{3})$	H (302, 票-5)	$0(6761,6)$	$\mathcal{S}\left(3{ }^{\text {(3) }} 11,8\right.$-8] $)$
$a(100, \dot{i}-\bar{i})$	L (730, i- ${ }^{\text {² }}$)	\% (111, 1)	$\Omega(881,8)$	Q (161, 6-6)
b (010, i-i)	$m(110, I)$	$\lambda(3)$	P (261, -6.8)	$K(101,8-9)$
$\chi\left(510, i^{5}\right)$	p (101, 1-i)			
$\begin{aligned} & f^{\prime \prime \prime}= \\ & m m^{\prime \prime \prime}= \\ & a^{\prime} p= \end{aligned}$	$\begin{array}{ll} \mathbf{4 0}^{\prime} & a^{\prime} H \\ 58^{\prime} & m^{\prime} \dot{8} \\ 57^{\prime} & m^{\prime} O \end{array}$		$\begin{array}{cc} 77^{\circ} & 1 \prime \\ 89^{\circ} & 35^{\prime} \\ 50^{\circ} & 81^{\prime} \end{array}$	$60^{\circ} 17^{\prime}$ $95^{\circ} 25 j^{\prime}$ $188^{\circ} 20$

On Elairite: Brogger has observed:
$a, b, c, \nabla(11 \cdot 1 \cdot 0, i-\overline{1} \overline{1}), \quad \chi, f, W(16 \cdot 15 \cdot 0, i-F), m, p, u(111,-1), \quad(221,-2), \quad \pi, \pi(\overline{5} 51,5)$,

The angles are sensibly the same as those of acmite; Brogger measured:
$m m^{\prime \prime \prime}=92^{\circ} 49^{\prime}, a \prime p=74^{\circ} 56^{\prime}, \quad s 8^{\prime}=60^{\circ} 15^{\prime}, u u^{\prime}=48^{\circ} 41^{\prime}, a \Delta=58^{\circ} 48^{\prime}, m \Delta=19^{\circ} 58^{\circ}$. also $\Delta \Delta^{\prime}=107^{\circ} 0 \dagger^{\prime}$ (calc., Bgr.), Δ is a characteristic form.

Twins: tw. pl. a, very common, f. 1 ; crystals often polysynthetic, with enclosed twinuing lamellæ. Crystals long prismatic, vertically striated or channeled; the prisms bent, twisted or broken. Acute terminations very characteristic; faces often rough or rounded (a, b, p, s). Inclined hemihedrism, like pyroxene, probable.

The above applies to ordinary acmite.
For agirite, the crystals are prismatic $I d$ with m prominent, also a, b, and usually terminated by $s(\overline{1} 11)$, or $p(\overline{1} 01)$, or with Δ (592) and p ($\overline{101) \text {; again, prismatic by extension of (111) with }}$ m small. Twins not common. Also occurs in groups or tufts of slender acicular to capillary crystals, and in fibrous forms.

Cleavage: m distinct; b less so. Fracture uneven. Brittle. H. $=6-6.5$. G. $=3.50-3.55 \mathrm{Bgr}$. Luster vitreous, inclining to resinous. Streak pale yellowish gray. Color brownish or reddish brown, green; in the fracture blackish green. Subtransparent to opaque.

Crystals of acmite often show a marked zonal structure,

1, Aomite; 2, Algirite, Norway, Brögger. green within and brown on the exterior, particularly |a,b,p(101), s (111). The brown portion (acmite, see below) is feebly pleochroic, the green (ægirite) strongly pleochroic. Both have absorption $a>b>c$, but the former has a light brown with tinge of green, b greenish yellow with tinge of brown, c brownish yellow; the latter has a deep grass-green, b lighter grass green, cyellowish brown to yellowish.

Optically -. Ax. pl. \|b. $\mathrm{Bx} \mathrm{x}_{\mathrm{a}} \wedge d=\mathfrak{a} \wedge d=+2 \frac{1}{2}^{\circ}$ to 6°; for acmite $+5 \frac{1}{2}^{\circ}$ to 6°, for $¥ g i r i t e+2 \frac{1}{2}^{\circ}$ to $3 \frac{1}{2}^{\circ}$. Axial angles large. For $¥ g i r i t e, ~ B g r .: ~$
$\mathrm{Na} 2 \mathrm{E}=134^{\circ} 27^{\prime} \quad 2 \mathrm{H}_{\mathrm{a}}=63^{\circ} 41^{\prime} \quad 2 \mathrm{H}_{0}=117^{\circ} 18^{\prime} \quad \therefore \quad 2 \mathrm{~V}_{\mathrm{a}}=68^{\circ} 28^{\prime} \quad \beta=1753$
Also. Låven, $\beta_{\mathrm{y}}=1.8084 \mathrm{Na}$, Sanger (Kosenbusch).
Comp., Var.-Essentially $\mathrm{NaFe}\left(\mathrm{SiO}_{3}\right)_{2}$ or $\mathrm{Na}_{2} \mathrm{O} . \mathrm{Fe}_{2} \mathrm{O}_{3} .4 \mathrm{SiO}_{2}=$ Silica 52.0 , iron sesquioxide $34 \cdot 6$, soda $13 \cdot 4=100$. Ferrous iron is also present.

The analysis of Doelter as interpreted by him gives, with 89 p . c. of the characteristic $\mathrm{Na}{ }_{\mathrm{F}}^{\mathrm{F}}\left(\mathrm{SiO}_{3}\right)_{2}$, also 6 p. c. of $\mathrm{F}_{\mathrm{F}} \mathrm{F}_{\mathrm{F}}^{2} \mathrm{SiO}_{\text {c, }} 3.7$ p. c. of $\mathrm{F}_{\mathrm{F}} \mathrm{AlSiO}$ and 1.8 p. c. of $\mathrm{CaMn}\left(\mathrm{SiO}_{3}\right)_{2}$. Brogger, however, is inclined to assume the presence, with 85 p. c. of $\mathrm{Na}_{2} \mathrm{Fe}_{2}\left(\mathrm{SiO}_{3}\right)_{4}$, of 15 p. c. of $\mathrm{FeFe}_{2}\left(\mathrm{SiO}_{3}\right)_{4}$.

The essential identity of acmite and ægirite was shown by Tschermak, Min. Mitth., 88, 1871; it had been earlier suggested by Rose. Kryst. Ch.. 76, 1852.

Brogger regards the interior green, highly pleochroic, portion of the acmite crystals (noted above) as identical with the characteristic ægirite, while to the acmite proper belongs the feebly pleochroic brown exterior with greater angle of extinction ($\mathrm{to}+\mathbf{6}^{\circ}$). Acmite is characterized by the prevalence of twins, the acute terminations, the common occurrence of $\mathcal{B}(311)$, etc. With agirite simple crystals are the rule and twins rare; the crystals are more often bluntly terminated, with Δ (592) prominent; also of quite distinct habit, prismatic \| 111 . The color and higher angle of extinction of the acmite indicates greater iron percentage.

Anal.-1, Rg., Pogg., 103, 300. 1858. 2, Doelter, Min. Mitth., 1, 379, 1878. 3, Id., ib., p. 874. 4, 5. Id.. ib., Zs. Kr., 4, 34, 1879. That these analyses are of ægirite and not arfvedsonite seems to be sufficiently shown by Rg., Min. Ch., Erg., 24, 1886, cf. Lorenzen. 6. Lorenzen, Min. Mag., 5, 55, 1882. 7, Forsberg, quoted by Ramsay, Fennia, 3, No 7, 1890 (Geol. Beob. Halbinsel Kola.) 8, J. L. Smith, Am. J. Sc., 10, 60, 1875.

Acmite.

Abstract

Pyr., etc.-B.B. fuses at 2 to a lustrous black magnetic globule, coloring the flame deep yellow; with the fluxes reacts for iron and sometimes manganese. 8lightly acted upon by acids.

Obs.-The original acmite occurs at Rundemyr, east of the little lake called Rokebergskjern, in the parish of Eker, near Kongsberg, Norway, in a pegmatyte vein; it is in slender crystals, sometimes a foot long, embedded in feldspar and quartz; the crystals are often bent or fractured and recemented, and are quite fragile.

Algirite (and acmite) occurs with leucophanite, cancrinite, elæolite, etc., in the elæolitesyenite and augite-syenite of southern Norway, especially along the Langesund fiord in the "Brevik" region; also near Laurvik, Sande fiord, and Fredriksparn. Also at Kangerdluarsuk, West Greenland, in a sodalite-syenite with eudialyte arfvedsonite, etc.: also

Schrauf. at Ditró, Transylvania (acmite?), aud similarly associated elsewherc; in the acid lavas of San Miguel, one of the Azores.

In the U. S., in minute crystals in a dike of elæolite-syenite in northwestern New Jersey. At the Hot Springs, Magnet Cove, Arkansas, in fine prismatic crystals, up to 8 inches or more in length, often bent and twisted and with tapering terminations. In Canada, at Montreal and Belœil in elæolite-syenite.

A green pyroxene accurring as an alteration product of a blue amphibole allied to arfvedsonite or riebeckite (see p 400 . is referred to ægirite by Cross; it occurs in certain rocks forming dikes in Archæean gneisses in Custer Co., Colorado. Am. J. Sc., 39, 359, 1×90.

Brogger (l.c., p. 330) is inclined to regard the crocidolite of Stavern, Norway, and perhaps also that of S. Africa as a variety of mgirite (agirin-asbest); but see crocidolite, p. 400)

Acmite is from $\alpha \kappa \mu \dot{\eta}$, a point. in allusion to the pointed extremities of the crystals. Agivite is from Aegir. the Icelandic god of the sea.

Alt.-Occurs altercd to analcite in Norway (Bgr.). Williams suggests that manganpectolite at Magnet Cove may have been derived from the ægirite.

Ref.- ${ }^{1}$ Zs. Kr., 16, 295, 1890; he describes in detail the acmite and wgirite of the islands in the Langesund fiord, Norway, gives the earlier literature for the species, etc. For early observations, see Mitscherlich, Ed. Phil. J., 9. 65, 1823; Ph., Min., 151. 1837; Rath, Pogg., 111, 254, 1860; Schrauf, Atlas, Tf. II, 1864.

Note also that the $s(\overline{1} 11)$ of Brogger is $s(011, T)$ of Rath, $p=c(001), \mathcal{S}(511)=(211, \mathrm{~m})$, $O(\overline{661})=0(561), P(261)=z(361)$; cf. f. 3. This change of position, which better exhibits the relation of form to pyroxene, is probably the reason why most authors heve given $\mathrm{Bx} \mathrm{a}_{\mathrm{a}} \wedge d=-8^{\circ}$, while Brogger makes the same angle positive, that is with him the bisectrix (a) falls in the front obtuse axial angle, instead of in the acute angle.

327. BPODUNENE. D'Andrada, Scherer's J., 4, 30, 1800; J. Phys., 61, 240, 1800. Triphane Haüy, Tr., 4, 1801. Hiddenite J. L. Smith, Am. J. Sc., 21, 128, 1881.

Monoclinic. Axes: $\mathfrak{a}: \bar{b}: \bar{d}=1 \cdot 1238: 1: 0.6355 ; \beta={ }^{*} 69^{\circ} 40^{\circ}=001 \wedge 100$ J. D. Danai.

$$
100 \wedge \mathrm{in}=46^{\circ} 30^{\prime}, 001 \wedge \mathrm{i} 01=33^{\circ} 25 \frac{1}{\prime}^{\prime}, 001 \wedge 011=30^{\circ} 47 \overline{1}^{\prime} .
$$

Forms:	$k\left(230, i-\frac{1}{4}\right)^{4}$	$p(111,1)$	\% (181, $-3-8)^{4}$	$y\left(561,6-\frac{1}{8}\right)^{8}$
a (100, ${ }^{\circ}-\bar{i}$)	μ (120, i-2)	$q\left(382, \frac{9}{3}\right)^{3}$	2 (261, - 6-8) ${ }^{8}$	- (341, 4-4, ${ }^{6}$
$b(010, i-i)^{2}$	$n(130, i-3)$	$r(201,2)$	$\phi\left(312,{ }^{\text {en }} \text { - }{ }^{\text {d }}\right)^{4}$	$x\left(231,3-\frac{1}{1}\right)^{8}$
c (001, 0)	$\boldsymbol{Z}(150, i-5)^{4}$	$8(441,4)^{2}$	$f(\overline{2} 11,2-2)$	
l ($320, i$ i-)	Fr ${ }^{(011, ~ 1-i) ~}{ }^{6}$	$g(881,-8-4)^{8}$	D ($\overline{4} 21,4-2)^{6}$	$\epsilon(\underset{\sim}{2} 41,4-2)^{3}$
$m(110, I)$	d (021, 2-i)	$e(241,-4-2)^{8}$	w $(301,8-\text { - })^{6}$	($481,8-2)^{4}$

Also in etching-figuress, Brazil, (101, -1-i), wo (201, $-2-\bar{i})$.

$u l^{\prime \prime}=70^{\circ} 11^{\prime}$	cd $={ }^{\#} 50^{\circ} 0^{\prime}$	$m g=10^{\circ} 18^{\prime}$	$a^{\prime} f=54^{\circ} 48 t^{\prime}$
$m m^{\prime \prime \prime}=98^{\circ} 0^{\prime}$	$m^{\prime} p=69^{\circ} 8^{\prime}$	$m b=21^{\circ} 46^{\prime}$	$p p^{\prime}=63^{\circ} 81^{\prime}$
$\mu \mu^{\prime}=50^{\circ} 46^{\prime}$	$m^{\prime} q=44^{\circ} \mathrm{g} 1^{\prime}$	$m p=75^{\circ} 34^{\prime}$	$T^{\prime}=88^{\circ} 34^{\prime}$
$n n^{\prime}=35^{\circ} 6 \frac{1}{\prime}^{\prime}$	$m^{\prime} r=34^{\circ} 40^{\prime}$	$a^{\prime} p=78^{\circ} 54^{\prime}$	$88^{\prime}=96^{\circ} 28^{\prime}$
HF' $=61^{\circ} 35^{\prime}$	$n^{\prime} \boldsymbol{s}=17^{\circ} 401^{\prime}$	$a^{\prime} r=62^{\circ} 401^{\prime}$	$e e^{\prime}=107^{\circ} 24^{\prime}$

Twins: tw. pl. a. Crystals prismatic, often flattened \|a; the vertical planes striated and furrowed; crystals sometimes very large. Also massive, cleavable.

Cleavage: m perfect. A lamellar structure \| a sometimes very prominent, a crystal then separating into thin plates. Fracture uneven to subconchoidal. Brittle. H. $=6 \cdot 5-7 \%$ G. $=3 \cdot 13-3 \cdot 20$. Luster vitreons, on cleavage surfaces somewhat pearly. Color greenish white, grayish white, yellowish green, emeraldgreen, yellow, amethystine purple. Streak white. Transparent to translucent.

Pleochroism strong in deep green varieties. Optically +. Ax. pl.\|b. $\mathrm{Bx}_{\mathrm{a}} \wedge$ $d=+26^{\circ}$ Dx., $=24^{8}$ to $25 \frac{1}{2}^{\circ}$ Greim. Dispersion $\rho>v_{z}$ horizontal. Refractive indices and axial angles:

N. Carolina, Na	$\alpha=1.651$	$\beta=1.669$	$\gamma=1.677$	Brazil $\beta_{y}=1.669$ Dx. ${ }^{6}$
Brazil, red,	$\alpha=1.660$	$\beta=1.686$	$\gamma=1.676$	Lévy-Lcx. ${ }^{\text {a }}$
Brazil	$2 \mathrm{Har}_{\text {ar }}=64^{\circ} 47^{\prime}$	2Hay $=64{ }^{\circ} 581^{\prime}$	$2 \mathrm{H}_{\text {abl }}=$	$4 \frac{1}{2}$ Greim ${ }^{6}$.

Var.-1. Ordinary. Color white or nearly white, yellowish, rarely amethystine; commonly in finttened prismatic crystals, often very large, up to 4 fect or more in length and 12 inches across.
2. Hiddenitc. Color yellow-green to emerald-green, the latter used as a gem, resembling the emerald but showing more variety of color because of its pleochroism. In small ($\frac{1}{2} \mathrm{in}$. to ${ }_{2}$ inches long) slender prismatic crystals, surfaces often etched as the result of the action of some natural solvent.

Fig. 1, Norwich, Mass. 2-4, Hiddenite, Alexander Co., N. C. 8, 4, Sketches of natural crystals, W. E. Hidden.

Comp. $-\mathrm{LiAl}\left(\mathrm{SiO}_{3}\right)_{2}$ or $\mathrm{Li}, \mathrm{O}_{2} \mathrm{Al}_{3} \mathrm{O}_{4} .4 \mathrm{SiO}_{2}=$ Silica $64 \cdot 5$, alumina $2 \% \cdot 4$, lithia $8 \cdot 4=100$. Generally contains a little sodium; the variety hiddenite also chrominm, to which the color may be due.

Anal_1, 2, Rg., Pogg. Ann., 85, 546, 1852. 3, Thomson, Min., 1, 802. 1836. 4, Pisani, C. R., 84, 1509, 1877 . 5, 6, Doelier, Min. Mitth., 1, 528, 526, $1878 .{ }^{2}$ 7, Jannasch, Jb. Min., 1, 196, 1888. 8, 9, Julien, Ann. N. Y. Ac. Sc., 1, 322, 1879. 10, Penfleld, Am. J. Sc., 20, 259, 1880. 11, J. L. Smith, ib., 21, 128, 1881. 12, Genth, ib., 23, 68, 1882.

The formula, as given abnve, was first correctly established by Doelter.
Pyr, otc.-B.B. becomes white and opaque. swells up, imparts a purple-red color (1itnia) w the flame, and fuses at $3 \cdot 5$ to a clear or white glass. The powdered mineral, fused with a mixture of potassium bisulphate and fluorite on platinum wire, gives a more intense lithia reaction. Not acted upon by acids.

Obn-Occurs on the island of Uto in Sobdermanland, Sweden, with magnetite, quartz, tourmaline, and feldspar; also near Sterzing and Lisens in Tyrol; of a pale green or yellow. ish color, embedded in granite, at Killiney Bay, near Dublin, and at Peterhead in Scotland; in small transparent crystals of a pale yellow in Brazil, province of Minas Geraes.

In the U. S., in granite at Goshen, Mass., associated at one locality with blue tourmaline and beryl; also at Chesterfield, Chester, Huntingtou (formerly Norwich), and Sterling, Mass.: at Windham, Maine, with garnet aud staurolite; at Peru, with beryl, triphylite, petalite; at Winchester, N. H.; at Brooktield, Ct., a few rods north of Tonlinson's tavern, in small grayish or greenish white individuals looking like feldspar; at Branchville, Ct., in a vein of pegmatyte, with lithiophilite uraninite, several mauganesian phosphates, etc.; the crystals are often of insmense size embedded in quartz: uear Stony Point, Alexander Co., N. C., the variety hiddenite in cavities in a gueissoid rock with beryl (emerald), monazite, rutile, allanite, quartz, mica, etc.: near Ballground, Cherokee Co. Gat; in South Dakota at the Etta tin mine in Pennington Co. . in immense crystals. At Huntington, Mass, it is associated with triphylite, mica, beryl, and albite; one crystal from this locality was 161 inches long, and 10 inches in girt.

The name spodumene is from $\sigma \pi \operatorname{coj}^{2} \dot{c} 5$, ash-colored. Named triphane by Hany from rotфavís, appearing threefold, in allusion to his idea that the crystals ure divided by three planes with nearly equal ease. Middenite is named for W. E. Hidden of New York.

Alt-The spodumene at Goshen and Chesterfield is extensively altered; pseudomorphs occur of cymatolite (see below), killinite, muscovite, albite, quartz, and of "vein granite;" cf. Juhen, Ann. N. Y. Acad.. 1, 318, 1879 . Similar alteration-products at Branchville are described by Brush and Daus, Am. J. Sc., 20, 257. 1880; the following is a summary of their results:
β Spodumone. The first product of the alteration (Branchville), resulting from the exchange of Na for one-half the Li , is " β spodumene." It is compact, apparently homogeneous, with an indistinct fibrous to columnar structure. $\mathrm{H}=5 \cdot 5-6 . \quad$ G. $=2 \cdot 644-2 \cdot 649$. Color white, milky, or greenish white. Translucent. Fusibility $=2.2 \overline{0}$. Three analyses on material from different crystals gave nearly identical results. It is decomposed by HCl into two portions, one soluble and the other insoluble. Analyses by Penfield: 1, of the original material; 2, the soluble portion $32 \cdot 10 \mathrm{p}$. c., calculated to 100 ; 8, insoluble portion, $67 \cdot 56 \mathrm{p}$. c.:

	SiO_{2}	$\mathrm{Al}_{2} \mathrm{O}_{3}$	$\mathrm{Li}_{2} \mathrm{O}$	$\mathrm{Na}_{3} \mathrm{O}$	$\mathrm{K}_{2} \mathrm{O}$	ign.
1. B spodumens	量 61.51	$26 \cdot 56$	$8 \cdot 50$	$8 \cdot 14$	$0 \cdot 15$	$0 \cdot 29=100 \cdot 15$
2. Soluble	$48 \cdot 13$	$40 \cdot 50$	10.90	-	$0 \cdot 47$	$-=100$
8. Insoluble	$68 \cdot 18$	20.07	-	11.75		-100

The insoluble portion is albite, the soluble is eucryptite. Examined under the microscope in sections (1) parallel to fibers, the irregular interlacing fibers of eucryptite are seen embedded in albite: (2) transverse to fibers, the eucryptite is in bands with hexagonal outline, surrounded by albite, like quartz in a " graphic granite." See further Ehucryptite, p. 426.

Cymatolite. A second stage in the alteration is the formation of cymatolite (C. U. Shepard, Dana, Min., p. 455, 1868). It has a tibrous to wavy structure, silky luster, white or slightly pinkish color; H. $=1 \cdot 6-2 ;$ G. $=2 \cdot 69-2 \cdot 70$. The cymatolite from Goshen whs earlier (Eng. Mng. J., 22, 217) called aglaite by Julien. Analyses.-1, 2, 3, Julien. 1. c. 4, Penfield, 1. c.

	SiO_{3}	$\mathrm{Al}_{2} \mathrm{O}_{3}$	Fe	0	MgO	CaO	Lis	${ }_{2} \mathrm{O}$	$\mathrm{K}_{2} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{O}$		
1. Goshen	58.51	21.80	0.85	$0 \cdot 29$	$1 \cdot 44$	0.84	019	6.88	6.68	$2 \cdot 40^{\circ}$		99.88
2. Aglaits	58.11	$24 \cdot 38$	1.68	$0 \cdot 18$	0.75	$0 \cdot 48$	0.09	2.57	$8 \cdot 88$	$3.01{ }^{\text {b }}$		99.61
3. Chesterfield	58.58	22.28	1.77	015	$0 \cdot 45$	0.98	$0 \cdot 10$	9.08	$4 \cdot 48$	$2.08{ }^{\text {c }}$	=	$99 \cdot 90$
4. Branchville	60.55	28.38		0.07			$0 \cdot 17$	$8 \cdot 12$	$8 \cdot 84$	1.65		100.28

a With nitrogenous organic matter $0.44 \quad$ Do. 0.43 . Do. undet.
This corresponds to: $(\mathrm{Na}, \mathrm{K}, \mathrm{H}) \mathrm{AlBi}_{2} \mathrm{O}_{8}$ or $(\mathrm{K}, \mathrm{H}) \mathrm{AlSiO}_{4}+\mathrm{NaAlSi}_{3} \mathrm{O}_{8}$. The microscopic examination shows that cymatolite is not, as previously assumed, a simple mineral, but, corresponding to the formula, a very uniform mechanical mixture of muscooste and abbite. In some sections the transitions from β spodumene to cymatolite, i.e. from eucryptite to muscovite, are clearly seen. In other cases the muscovite and albite have each segregated together, so that they are distinct. For example, in fgure $2, s=$ unaltered spodumene, $\beta=$ β spodumene, $c=$ cymatolite, $g=$ mica, $a=$ albite. Furthermore the successive stages of alteration may be seen in the same crystal, thus as shown in fig. $1,1 a, 1 b, 1 c$, three sections at intervals of 3 to 6 inches in a large crystal 15 inches in length; $s, \beta, 0$ having the same meaning as in fig. 2.

As further steps in the alteration there result: albite, often fibrous, like β spodumene: also muscovite, and granular microcline.

Killinite. Structure, If any, that of the original spodumene. Compact, crypto-crystallina. $\mathrm{H} .=8.5$; $\mathrm{G}_{\mathrm{C}}=2.623-2.652$. Luster dull and greasy to vitreous. Color bluish green, greenish gray to olive-green, oil-green, and greenish black. Analyses.-1, Julien. 2, Penfield. prismatic varlety, 1. c. 3, Dewey, compact. ibid.

1. Chesterfield

The original killinite (Thomson, Min., 1, 330, 1836) was from Killiney Bay, Ireland, where it is also an alteration-product of spodumene, see further 5th Ed., p. 480.

The following scheme explains the above changes of the spodumene, supposing an exchange of the alkali metal:

$$
\begin{aligned}
& \text { Spodumene } \left.2\left[\operatorname{LiAlSi}_{2} \mathrm{O}_{6}\right]=\underset{\text { Eucryptite }}{\left[\mathrm{LiAlSiO}_{4}\right.}+\underset{\text { Albite }}{\mathrm{NaAlSi}} \mathrm{~N}_{8}\right] \beta \text { spodumene } \\
& =\underset{\text { Muscovite }}{\left[(\mathrm{K}, \mathrm{H}) \mathrm{AlSiO}_{4}\right.}+\underset{\text { Albite }}{\left.\mathrm{NaAlSi}_{8} \mathrm{O}_{8}\right] \text { cymatolite }} \\
& =(\mathrm{K}, \mathrm{H}) \mathrm{AlSiO}_{4}+\left\{\begin{array}{l}
\mathrm{NaAlSi}_{3} \mathrm{O}_{8} \text { albite }
\end{array}\right. \\
& \text { Muscovite }+\left\{\begin{array}{l}
\text { or } \mathrm{KAlSi} \mathrm{O}_{8} \text { microcline }
\end{array}\right. \\
& \text { (or killinite) }
\end{aligned}
$$

Experiments showing the effect upon spodumene of solutions of potassium and sodium carbonates, see Lemberg, Zs. G. Ges., 39, 584, 1887.

Ref.-1 Min.. p. 693, 1850, 169, 1852: Rath obtained for Alexander Co., No. Carolina, spodumene, $\dot{a}: \bar{b}: d=1.1283: 1: 0.62345 ; \beta=69^{\circ} 324^{\prime} ;$ the crystals were measured with the help of attached glass plates, Ber. nied. Ges., May 3, 1886. The surface of the crystals of hiddenite are often extensively etched, and some of the planes noted. cf. ${ }^{8}$ and ${ }^{*}$ below, may be simply corrosion forms. y J. D. D., 1. c. ${ }^{8}$ E. S. D., Alex. Co., Am. J. Sc., 22, 179, 1881. ${ }^{4}$ Rath, 1. c. ${ }^{6}$ Am. J. Sc., 32, 204, 1886. ${ }^{6}$ Greim, Jb. Min., 1, 253, 1889. ${ }^{1}$ Min. Roches, 266, 1888.
328. JADEITE. Nephrite or Jade pt. Jadeite Damour, C. R., 66, 861, 1863. Chloromelanite Id., ibid., 61, 313, 357, 1865.

Monoclinic (or triclinic)', with clearage and optical characters like pyrozene. Only known massive, with crystalline structure, sometimes granular, also obscurely columnar, fibrous foliated to closely compact.

Cleavage: prismatic, at angles of about 93° and 87°; also orthodiagonal, difficult. Fracture splintery. Extremely tough. H. $=6 \cdot 5-7 \%$ G. $=3 \cdot 33-3 \cdot 35$. Luster subvitreous, pearly on surfaces of cleavage. Color apple-green to nearly emerald-green, bluish green, leek-green, greenish white, and nearly white; sometimes white with spots of bright green. Optically biaxial, negative. $\mathrm{Bx}_{\mathrm{a}} \wedge \delta=30^{\circ}$ to $40^{\circ}, 2 \mathrm{H}_{25}=82^{\circ} 48^{\prime} \mathrm{Knr}$. Streak uncolored. Translucent to subtranslucent.

Comp.-Essentially a metasilicate of sodium and aluminium corresponding to $\varepsilon^{\prime \prime} \cdot$ dumene, $\mathrm{NaAl}\left(\mathrm{SiO}_{3}\right)_{2}$ or $\mathrm{Na}_{2} \mathrm{O}_{2} \mathrm{Al}_{2} \mathrm{O}_{\mathbf{2}} \cdot 4 \mathrm{SiO}_{2}=$ Silica $59 \cdot 4$, alumina $25^{\circ \cdot} \sim$, soda $15 \cdot 4$ $=10 n$

Chloromelanite is a dark green to nearly black kind of jadeite, containing iron sesquioxide and not conforming exactly to the above formula. Named from $\chi \lambda \omega \rho o ́ s$, green, and $\mu \varepsilon ́ \lambda \alpha s_{\text {, }}$ black.

Anal.-1, Damour, C. R., 66, 861, 1868. 2, Id., ibid., 61, 360, 1865. 3-7, Bull. Soc. Min., 4, 157, 1881. 8, Fellenberg, Mitth. Ges. Bern, 112, $1865.8,10$, Id., Vh. Schweiz. Ges., Solothurn, 63, 88, 1869.11 , Eckstein, quoted by Fischer, p. 375. 12, Frenzel, Jb. Min., 2, 6 ref., 1885. 18, Dinr., 1. c., 1881. 14-1T, F. W. Clarke, Proc. U. 8. Nat. Mus., 11, 115, 1888. 18, Dmr., l. c., 1881. 19, 20, IU., 1. c., 1865. 21, Id., 1. c., 1881. 22, 28, G. W. Hawes. unpubl. contr., 1875. 24, 25, Id., 1. c., 1865. 26, Id., 1. c., 1881. 27, Fellenberg, quoted by Fischer, 1. c., p. 881. 28, Cohen, Jb. Min., 1, 71, 1884. 29-30, Frenzel, ib., 2, 6 ref.. 1885. 31-35, 36-40, Dmr., l. c., 1881. 84, 35, Schoetenssck, Inaug. Diss., 6, 7, Berlin, 1885.

Worked Jadeite.

Chloromblanito.

	G.	SiO_{2}	$\mathrm{Al}_{2} \mathrm{O}_{3}$	$\mathrm{Ca}_{2} \mathrm{O}$	FeO	MnO	CaO	MgO	${ }^{\text {Na, }}$	$\mathrm{K}_{2} \mathrm{O}$
24. Dordogne	$3 \cdot 413$	56.40	$14 \cdot 76$	$3 \cdot 27$	6.08	0.66	$5 \cdot 49$	$1 \cdot 82$	11.20	tr. $=99.66$
25. MorbiLan	$8 \cdot 410$	56.12	14.96	3.84	6.54	$0 \cdot 47$	517	2.78	10.98	6r. $\mathrm{TiO}_{2} 0.18$
26. Mexico ${ }^{\text {b }}$	$8 \cdot 36$	57.90	14.64	$8 \cdot 89$	-	0.76	$5 \cdot 16$	$2 \cdot 21$	10.77	tr. $=[=100.38 \mathrm{~F}$
27. Swiss Lak	$8 \cdot 40$	55.88	18.64	-	10.58	0.98	$4 \cdot 28$	$8 \cdot 19$	11.48	$=100$

Unworked jadeite (Rohjadeit); also (36-40) rocks approaching jadeite in composition.
28. Thibet
88. L. Neuenbury
30.
31. Burma
83. "
88. Burma
34. Burm
85. Thibet ($\%$

G.	SiO_{3}	$\mathrm{Al}_{2} \mathrm{O}$	O_{3}	FeO	CaO	MgO	$\mathrm{Na}_{3} \mathrm{O}$	$\mathrm{K}_{2} \mathrm{O}$	H, O
	$59 \cdot 17$	22.58		$1 \cdot 56$	2.68	$1 \cdot 15$	12.98		$-=100.07$
$8 \cdot 42$	52.42	28.10		2.02	9.05	3.56	$7 \cdot 44$		$0 \cdot 20=100 \cdot 68$
$3 \cdot 36$	50.30	25.68		2.79	11.00	4.45	$6 \cdot 30$	-	$0.40=100.92$
$2 \cdot 97$	58.24	24.47	1.01	-	0.69	$0 \cdot 45$	14.70	1.55	$\underline{-}=101 \cdot 11$
8.08	81.51	22.53			$t r$.	$4 \cdot 25$	11.00	$1 \cdot 29$	$\underline{-}=100 \cdot 58$
8.07	53.85	21.86	$0 \cdot 76$		$2 \cdot 42$	$7 \cdot 17$	$8 \cdot 87$	3•70	$=98.83$
$8 \cdot 138$	58.70	22.77		0.61	2.52	$1 \cdot 87$	18.19		$0 \cdot 54=101 \cdot 20$
8.22"	5968	2282	-	0.60	$1 \cdot 41$	0.52	$14 \cdot 64$		$0.24=9909$

$\mathbf{P y r}_{\text {，}}$ etc．－B．B．fuses readily to a transparent blebby glass．Not attacked by acids after fusion，and thus ditfering from saussurite．

See Lemberg on the results of treatment of jadeite with alkaline carbonates；it is shown that，after fusion，jadeite behaves like fused analcite．Zs．G．Ges．，39， 586 et zeq．， 1887.

Obm．－Occurs chietly in Eastern Asia，thus in the Mogoung distr．in Upper Burma，in a valley 25 miles southwest of Meinkhoom；this jadeite is found in rolled masses in a reddish clay，and specimens gave a specitic gravity of $3 \cdot 34,3 \cdot 83,3 \cdot 24$ ；easily fusible（Mallet ）．Also in Yungchang，province of Yunuan，southern China（Pumpelly ${ }^{\text {}}$ ）；in Thibet．Much uncertainty prevails，however，as to the exact localities，since jadeite and nephrite have usually beeu con－ founded together．May occur also on the American continent，in Mexico and South America； perhaps also in Europe．

Aualyses 29,30 are of rolled masses of jadeite from the shores of L ．Neuenburg in Switzerland，which may have come from a local source．Anal．36－40 are of various soda－bearing rocks，approaching jadeite more or less clusely in composition，and also believed to have been of European origin．

Jadeite has long been highly prized in the East，especially in China，where it is worked into ornaments and utensils of great variety and beauty．It is also found with the relics of early mau，thus in the remains of the lake dwellers of Switzerlaud，at various points in France，in Mexico．Greece，Egypt，and Asia Minor．Mr．Pumpelly remarks that the foitsui（＝kingfisher plumes）is perhaps the most prized of all stones among the Chinese．He also observes that the chatchinuil of the ancient Mexicaus，of which he had seen many specimens，is probably the same mineral；but W．P．Blake refers this name to the turquois from the vicinity of Santa Fé．See turquois．The question of the origin and distribution of jadeite is of great interest and has been much discussed．Cf．Fischer，＂Nephrit und Jadeit nach ihren mineralogischen Eigen－ schaften， 80 wie nach ihrer urgeschichtlichen und ethnographischen Bedeutung，＂Stuttgart，1875， 1880．Also Arzruni，2s．Ethnol．，16，163．1883；Meyer，Mitth．Anthropol．Ges．，Wien，16，1885； at al．，see further jade，below．

Ref．－${ }^{1}$ On the microscopic structure of jadeite，cf．Dx．，1．c．，1881；Cohen，1．c．；Krenner， Jb．Min．，2，178，1883；Arzruni，Jb．Min．， 2,6 ref．，1885；Merrill，Proc．U．S．Mus．，11， 128 ， 1888．${ }^{2}$ Min．India，94， 1887.
${ }^{3}$ Pumpelly，Geol．China， 1866 （Smithson．Contrib．，16，118）．
JADE．A general term used to include various mineral substances of tough compact texture and nearly white to dark green color used by early man for utensils and ornaments，and still highly valued in the East，especially in China，where it is called $Y u$ or $Y u-s h i h$（yu－stone）．It in－ cludes properly two species only：nephrite，a variety of amphibole（p．889），either tremolite or actinolite，with G．$=2 \cdot 95-3 \cdot 0$ ，and jadeite，which is classed with the pyrozene group and in com－ position is a soda－spodumene，with $G .=3 \cdot 8-3 \cdot 35$ ；easily fusible．

The jade of China belongs to both species，so also that of the Swiss lake－habitations and of Mexico．Of the two，however，the former．nephrite，is the more common and makes the jade （ax－stone or Punamu stone）of the Maoris of New Zealand；also found in Alaska．

The name jade is also sometimes loosely used to embrace other minerals of more or less sim－ ilar characters，and which have been or might be similarly used－thus sillimanite，pectolite，ser－ pentine；also vesuvianite，garnet．Cf．remarks under these species．Bowenite is a jade－like variety of serpentine．The＂jade tenace＂of de Saussure is now called saussurite．

329．FOLLAETONTHE．Tafelspath Stutg，Neue Einr．Nat．samml．Wien，144， 1798. Tabular Spar．Schaalstein Wern．，1808，Ludwig＇s Min．Wern．，2，212．1804，Mohs，Null Kab．， 2，1，1804 Wollastonite H．，Tr．，1822．Vilnite（fr．Vilna）Horodeki，Dx．，Min．，1， $554,1862$.

Monoclinic．Axes $\dot{d}: \frac{1}{b}: d=1 \cdot 05312: 1: 0.96_{6}^{\sim} 61: \beta=84^{\circ} 30^{\prime}=001 \wedge 100$ Rath ${ }^{1}$ ．

$$
100 \wedge 110={ }^{*} 46^{\circ} 21^{\prime}, 001 \wedge 101=45^{\circ} 5^{\prime}, 001 \wedge 011=43^{\circ} 55 \frac{1}{2}
$$

Forms ${ }^{\text {a }}$	－（820， $\mathrm{i}-\mathrm{H})$	x（120，i－2）			$f(111,1)$
a（ 100, i－i）	\％（540，酒）	$)$	α（102，者－i）	－（201，2－i）	n（3522，
c（001， 0 ）	m（110，I ）		β（305，旁行）		$\rho(122,-1$－2）
d（830，i－$\frac{\text { E }}{\text { I }}$ ）	2（840，i－$-\frac{\text {－}}{}$ ）		t（101，1－ī）	$g(011,1-i)$	μ（122，1－2）

