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Abstract

Negevite, ideally NiP2, is a new phosphide mineral from pyrometamorphic complex of the Ha-
trurim Formation (the Mottled Zone), Southern Levant. It is found in phosphide assemblages of the 
Hatrurim Basin, south Negev Desert, Israel, and Daba-Siwaqa complex, Jordan. The mineral occurs 
as tiny isometric grains reaching 15 mm in size and forms intimate intergrowths with other phosphides 
related to the Fe-Ni-P system. In reflected light, negevite is white with yellowish tint and isotropic. 
Reflectance values for COM recommended wavelengths [R (%), l (nm)] are as follows: 54.6 (470), 
55.0 (546), 55.3 (589), 55.6 (650). Chemical composition of the holotype specimen (electron micro-
probe, wt%): Ni 42.57, Co 3.40, Fe 2.87, P 42.93, S 8.33, total 100.10, corresponding to the empirical 
formula (Ni0.88Co0.07Fe0.06)S1.01(P1.68S0.31)S1.99. The crystal structure of negevite was solved and refined 
to R1 = 1.73% based on 52 independent observed [I >2s(I)] reflections. The mineral is cubic, space 
group Pa3, a = 5.4816(5) Å, V = 164.71(3) Å3, and Z = 4. Dx = 4.881(1) g/cm3 calculated on the basis 
of the empirical formula. Negevite is a first natural phosphide belonging to the pyrite structure type. 
It is a chemical and structural analog of vaesite, NiS2, krutovite, NiAs2, and penroseite, NiSe2. The 
well-explored catalytic and photocatalytic properties of a synthetic counterpart of negevite could 
provide new insights into the possible role of higher phosphides as a source of low-valent phosphorus 
in prebiotic phosphorylation processes.
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Introduction

Since the discovery of first phosphide mineral, schreibersite 
(Fe,Ni)3P (Berzelius 1832), natural iron-nickel phosphides were 
recognized as mandatory accessory constituents of different 
meteorite groups (Buchwald 1975; Papike 1998). This mineral 
family is suggested to play an important role in the highly reduced 
assemblages of deep planetary interiors (Scott et al. 2007; Dera 
et al. 2008; Gu et al. 2011, 2012, 2014). Meanwhile, occurrences 
of terrestrial phosphides of non-anthropogenic origin are quite 
rare and confined to a few localities worldwide 
(e.g., Britvin et al. 2015); the most notable one is 
schreibersite in native iron from basalts of Disko 
Island, Greenland (Pauly 1969). The practical ab-
sence of phosphides in the present-day lithosphere 
cannot be accounted just for highly reducing 
conditions required for their formation. A possible 
explanation might imply oxidative decomposition 
of phosphides at the early stages of Earth evolu-
tion, leading to a release of low-valent phosphorus 

required for initiation of prebiotic phosphorylation processes 
(Pasek et al. 2017; Kitadai and Maruyama 2018; Gibard et al. 
2019). The recent discovery of rich phosphide assemblages 
preserved in geologically juvenile pyrometamorphic complex 
of the Mottled Zone (Hatrurim Formation) supports this point 
of view (Britvin et al. 2015).

Of 12 phosphide minerals related to the Fe-Ni-P system, nine 
are currently reported from the Hatrurim Formation (Table 1). We 
herein present the results of a study of a new mineral negevite, 
NiP2—the first natural phosphide that crystallizes in a pyrite 
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Table 1. Natural phosphides related to the Fe-Ni-P system
Mineral	 End-member	 Structure	 Occurrence 	 Reference
		  type	  	
Schreibersite	 Fe3P	 Fe3P (I4)	 M T	 Berzelius (1832)
Barringerite	 Fe2P	 Fe2P (P62m)	 M T	 Buseck (1969); 
				    Britvin et al. (2017)
Allabogdanite	 Fe2P	 Co2Si (Pnma)	 M	 Britvin et al. (2002)
Murashkoite	 FeP	 MnP (Pnma)	 T	 Britvin et al. (2019b)
Zuktamrurite	 FeP2	 Marcasite (Pnnm)	 T	 Britvin et al. (2019a)
Melliniite	 (Ni,Fe)4P 	 Au4Al (P213)	 M	 Pratesi et al. (2006)
Nickelphosphide	 Ni3P	 Fe3P (I4)	 M	 Britvin et al. (1999)
Nazarovite	 Ni12P5	 Ni12P5 (I4/m)	 M T	 Britvin et al. (2019c)
Transjordanite	 Ni2P	 Fe2P (P62m)	 T	 Britvin et al. (2020a)
Orishchinite	 Ni2P	 Co2Si (Pnma)	 T	 Britvin et al. (2019d)
Halamishite	 Ni5P4	 Ni5P4 (P63mc)	 T	 Britvin et al. (2020b)
Negevite	 NiP2	 Pyrite (Pa3)	 T	 This work
Note: Occurrence: M = meteoritic; T = terrestrial (the Hatrurim Formation). 
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structure type. Negevite is named for its type locality in the 
Negev Desert, Israel; both the mineral and the name have been 
approved by the Commission on New Minerals, Nomenclature 
and Classification of International Mineralogical Association 
(IMA 2013-104). The holotype specimen of negevite is deposited 
in the collections of the Mineralogical Museum of the Depart-
ment of Mineralogy, St. Petersburg State University, Russia, 
catalog number 19604.

Occurrence and general appearance

The Mottled Zone is the world’s widest area of sedimentary 
rocks affected by combustion metamorphism, which is the suite 
of processes leading to high-temperature annealing and melting 
of surficial sediments (Sokol et al. 2005). Outcrops of the Mottled 
Zone are scattered across the territory of 150 × 200 km2 in South-
ern Levant in the surroundings of the Dead Sea. The detailed 
description of the geological setting along with the hypotheses 
explaining the origin of the Mottled Zone are given in previous 
works (Gross 1977; Burg et al. 1991; Vapnik et al. 2007; Geller 
et al. 2012; Novikov et al. 2013). Metamorphic processes were 
followed by pronounced hydrothermal alteration and weather-
ing stage (Gross 1977; Kolodny et al. 2014), that resulted in 
emergence of unique mineral assemblages, combining ultrahigh-
temperature minerals (Weber and Bischoff 1994; Murashko et al. 
2010; Sharygin et al. 2013; Galuskina et al. 2014; Khoury et al. 
2016) and secondary phases corresponding to Earth’s extreme 
oxidative and/or alkaline environment (Hauff et al. 1983; Sokol 

et al. 2011; Galuskin et al. 2013, 2014).
Negevite was discovered in phosphide assemblages found 

along the upper stream of the Halamish Wadi, Hatrurim Basin, 
Southern Negev desert, Israel (Britvin et al. 2015). The mineral 
forms irregular minute grains up to 15 mm in size intimately 
intergrown with murashkoite, zuktamrurite, transjordanite, or 
halamishite (Fig. 1). Phosphide assemblages often occur together 
with magnetite, pyrrhotite, and andradite in diopside microbrec-
cia that is severely altered by hydrothermal and weathering 
processes (Fig. 1). Secondary minerals are comprised of calcite 
and unidentified X‑ray amorphous Ca-Fe hydrous silicates and 
phosphates. The Hatrurim Basin is a type locality for negevite. 
Later, the mineral was identified in one sample of weathered 
pyrometamorphic paralavas of the Daba-Siwaqa complex (Um 
Al-Rasas Sub-District, 80 km SSE of Amman, Jordan, 31° 
21′52″ N, 36° 10′55″ E) where it forms micrometer-sized ag-
gregates of irregularly fractured grains often intergrown with 
transjordanite and zuktamrurite (Fig. 2).

Physical properties and chemical composition

In reflected light, negevite has a white color with bluish tint 
(Supplemental1 Fig. 1A). It is optically isotropic and has no in-
ternal reflections. Reflectance values (Supplemental1 Table S1) 
were measured in air by means of a MSF-21 spectrophotometer 
(LOMO, St. Petersburg, Russia) using monochromator slit of 
0.4 mm and beam diameter of 0.1 mm, against a WTiC standard. 
The mineral has no observable cleavage. Due to the small size 

Figure 1. Negevite in phosphide assemblages of the Halamish wadi, Hatrurim Basin, Southern Negev Desert, Israel. (a) Photomicrograph in 
reflected light. (b) The same area, SEM BSE image. (c) Element distribution map for phosphorus. (d) Element distribution map for iron and nickel. 
Abbreviations: Ng = negevite (NiP2); Zk = zuktamrurite (FeP2); Tj = transjordanite (Ni2P). (Color online.).
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Table 2. Chemical composition of negevite and associated phosphides
Mineral	 Ng	 Ng	 Ng	 Tj	 Zk	 Ng	 Zk	 Tj
Locality 	 HB	 HB	 HB	 HB	 HB	 DS	 DS	 DS
Notes	 Holotype		  Fig. 1	 Fig. 1	 Fig. 1	 Fig. 2	 Fig. 2	 Fig. 2
				    wt%	 			 
Ni	 42.57	 38.25	 37.77	 71.95	 8.83	 38.79	 15.66	 74.80
Co	 3.40	 2.92	 3.44	 0.30	 1.24	 3.40	 0.37	 0.15
Fe	 2.87	 6.15	 6.41	 6.26	 36.74	 5.12	 30.87	 3.30
Ag	 –	 –	 –	 –	 –	 1.01	 –	 –
P	 42.93	 40.05	 40.07	 21.14	 52.25	 39.51	 51.43	 21.09
S	 8.33	 12.12	 12.78	 0.00	 1.51	 10.82	 0.00	 0.00
Se	 –	 –	 0.24	 –	 –	 –	 –	 –
  Total	 100.10	 99.49	 100.71	 99.65	 100.57	 98.65	 98.33	 99.34

			  Formula amounts (3 apfu)			 
Ni	 0.88	 0.79	 0.77	 1.82	 0.18	 0.82	 0.32	 1.90
Co	 0.07	 0.06	 0.07	 0.01	 0.02	 0.07	 0.01	 0.00
Fe	 0.06	 0.13	 0.14	 0.17	 0.77	 0.11	 0.67	 0.09
Ag						      0.01		
Σ	 1.01	 0.98	 0.98	 2.00	 0.97	 1.01	 1.00	 1.99
								      
P	 1.68	 1.56	 1.55	 1.01	 1.97	 1.57	 2.00	 1.01
S	 0.31	 0.46	 0.48		  0.06	 0.42		
Se			   0.004					   
Σ	 1.99	 2.02	 2.03	 1.01	 2.03	 1.99	 2.00	 1.01
Notes: Abbreviations: Ng = negevite; Tj = transjordanite; Zk = zuktamrurite. 
Localities: HB = Hatrurim Basin, Israel; DS = Daba-Siwaqa complex, Jordan. The 
bar “–“ denotes below detection limit (<0.05 wt%).

Figure 2. Fractured grain of Ag-bearing negevite among secondary 
Ca-Fe-silicates in altered pyroxene-anorthite paralava. Note grains 
of Ag-free transjordanite and zuktamrurite associated with negevite. 
Daba-Siwaqa complex, Transjordan plateau, Jordan. SEM BSE image. 
Abbreviations: Ng = negevite (NiP2); Zk = zuktamrurite (FeP2); Tj = 
transjordanite (Ni2P).

be retrieved from the CIF file in the Supplementary Data (see 
also CSD entry 1936174). The insufficient amount of substance 
precluded obtaining experimental X‑ray powder diffraction 
data for the mineral. Therefore, the powder diffraction pattern 
of negevite was calculated for CuKa1 radiation on the basis of 
refined atomic coordinates and unit-cell metrics, using ATOMS 
v.5.0 software (Dowty 2006) (Supplemental1 Table S3).

Discussion

Negevite is the first natural phosphide related to a pyrite 
structure type (Fig. 3). From the crystal-chemical point of 
view, the mineral can be regarded as phosphide analog of either 
vaesite, NiS2, krutaite, NiAs2, and penroseite, NiSe2 (Table 3). 
Though the ideal formula of negevite is NiP2, its real composition 
shows substantial (up to 0.48 atoms per MX2 formula) contents 
of sulfur (Table 2), suggesting the occurrence of at least partial 
isomorphism along the join NiP2–NiS2. Substitution of P for S 
correlates with an increase of the unit-cell parameter of negevite 
as compared to pure NiP2 (Table 3).

Contrary to the synthetic marcasite-type FeP2 and its natural 
analog, zuktamrurite (Table 1), NiP2 can exist in two polymorphic 
modifications, both of which are stable under ambient condi-
tions: (1) cubic, pyrite-type one (Donohue et al. 1968) and (2) 
monoclinic polymorph (space group C2/c) that has no sulfide 
or phosphide structural analogs (Larsson 1965; Orishchin et al. 
2000). Synthetic pyrite-type NiP2 was first synthesized under 
a high-pressure–high-temperature environment and thus was 
considered to be metastable, high-pressure polymorph of NiP2 
(Donohue et al. 1968). However, further studies revealed that this 
modification can be obtained using different methods at atmo-
spheric pressure: via solid-state synthesis (Barry and Gillan 2009) 
and even by “soft chemistry” solvothermal techniques (Barry and 
Gillan 2008). Because NiP2 was found to be promising material 
in modern electrochemical and catalytic applications (Gillot et 
al. 2005; Jiang et al. 2014), its chemical and physical character-

of the grains available, microindentation hardness could not 
be measured. The calculated density of the holotype specimen 
calculated for an empirical formula is 4.881(1) g/cm3. Negevite 
is insoluble in cool 10% HCl. Chemical composition of negevite 
and associated phosphides were studied in carbon-coated pol-
ished thick sections by means of a Hitachi S-3400N scanning 
electron microscope equipped with (1) an Oxford Instruments 
AzTec Energy X-Max 20 energy-dispersive (EDX) spectrometer 
and (2) an INCA WAVE 500 wavelength-dispersive (WDX) 
spectrometer. Preliminary screening of chemical composition 
and elemental mapping (Figs. 1c and 1d) was carried out in EDX 
mode, whereas quantitative data (Table 1) were obtained with 
WDX spectrometer using the following analytical standards: GaP 
(PKa), pyrite (FeKa, SKa), PbSe (SeLa), metallic Co (CoKa), 
Ni (NiKa), Mo (MoLa), Ag (AgLa). The measurement condi-
tions were: 20 kV accelerating voltage, 15 nA beam current, 
peak counting time, 20 s peak counting time, 10 s background 
counting time. Chemical composition of the holotype negevite 
(Table 2) corresponds to the empirical formula (Ni0.88Co0.07Fe0.06)S1.01  

(P1.68S0.31)S1.99 leading to the ideal formula NiP2.

X‑ray single-crystal study

To establish and refine the crystal structure of negevite, 
a ~10 mm single-crystal grain of the mineral was extracted 
from the polished section, mounted onto the glass fiber and 
subjected to a conventional X‑ray single-crystal data collection 
by means of a Bruker APEX Kappa DUO CCD diffractometer. 
Data processing and integration routines were performed using 
a Bruker AXS instrument built-in software (Bruker 2003). The 
crystal structure of negevite was solved by direct methods and 
refined assuming NiP2 formula, by means of SHELX-2018 
software (Sheldrick 2015) incorporated into an Olex2 program 
environment (Dolomanov et al. 2009). The essential parameters 
of data collection and structure refinement are summarized in 
Supplemental1 Table S2; the complete structural information can 
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Figure 3. Crystal structure of negevite (pyrite structure type). (a) General view: corner-sharing [NiP6] octahedra (green) linked by P–P 
“dumbbell” bonds (yellow) characteristic of the pyrite structure. (b) Skeletal view of [NiP6] octahedron connected to [P(Ni3P)] tetrahedra. (c) Slice 
of substructure framework composed of corner-sharing [NiP6] octahedra. (d) Slice composed of [P(Ni3P)] tetrahedra. Legend: green = Ni [4a; 0, 
0, 0]; yellow = P [8c; 0.3844(1), x, x]. (Color online.)

istics were studied in detail. In particular, it was determined that 
pyrite-type NiP2 is a low-temperature modification stable below 
600 °C (Owens-Baird et al. 2019). Moreover, it was shown that 
transformation of cubic NiP2 into the monoclinic modification 
is irreversible, implying that the presence of cubic NiP2 in a 
given assemblage shows that the temperature has never passed 
the level of cubic-to-monoclinic transition (Owens-Baird et al. 
2019). These results could be helpful in understanding the forma-
tion conditions of natural phosphide assemblages of the Mottled 
Zone (Britvin et al. 2015). However, the presence of sulfur in 
the composition of natural negevite (Table 2) might stabilize 
its pyrite-type structure toward higher transition temperatures.

An interesting feature of negevite from the Daba-Siwaqa 
complex in Jordan is its relative enrichment in Ag (Table 2). It 
becomes even more attractive taking into account the absence of 
Ag in closely associated zuktamrurite, FeP2, and transjordanite, 

Ni2P (Fig. 2, Table 2). Ag is an element that is structurally in-
compatible with Ni. Synthetic phosphide AgP2 is known though 
it is not isostructural with negevite (Möller and Jeitschko 1982). 
Recent investigation of Ag-doped synthetic pyrite demonstrated 
that it might contain up to 0.4 wt% (3820 ppm) Ag incorpo-
rated via mechanism of lattice-scale structural defects (Li and 
Ghahreman 2018). Therefore, one can assume that minor (0.01 
atoms per formula unit) incorporation of Ag into negevite is 
also permissible.

Table 3. 	 Unit-cell parameters of negevite and related minerals and 
compounds

Mineral	 Negevite	 Synthetic	 Vaesite	 Krutovite	 Penroseite
Ideal formula	 NiP2	 NiP2	 NiS2	 NiAs2	 NiSe2

a (Å)	 5.4816	 5.4475	 5.6679	 5.7634	 5.988
Reference		  [1]	 [2]	 [3]	 [4]	 [5]
Notes: [1] This work; [2] Owens-Baird et al. (2019); [3] Kerr (1945); [4] Donohue 
et al. (1968); Vinogradova et al. (1976); [5] Bindi et al. (2008).
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Implications

Discovery of negevite, naturally occurring NiP2, might have 
promising implications considering the general role of phos-
phides as a source of phosphorus required for phosphorylation 
processes. It was shown that gentle aquatic oxidation of sch-
reibersite, (Fe,Ni)3P, results in a release of diverse water-soluble 
phosphorus compounds that could serve as building blocks dur-
ing prebiotic phosphorylation at the early stages of Earth evolu-
tion (Pasek et al. 2017; Kitadai and Maruyama 2018; Gibard et al. 
2019). Other phosphides related to the Fe-Ni-P system (Table 1) 
were not considered for that role. However, our recent findings 
demonstrate that these minerals could be formed in a reducing 
environment of Archean era as well (Britvin et al. 2015). In that 
respect, unique catalytic and electrochemical properties of the 
synthetic counterpart of negevite, including its ability to photo-
induced water splitting under soft conditions and hydrogenation 
activity (Gillot et al. 2005; Jiang et al. 2014), could provide new 
routes for further exploration of possible natural phosphorylation 
pathways. The discovery of negevite-bearing phosphide assem-
blages of the Mottled Zone undoubtedly implies the extremely 
reducing (“super-reducing”) environment occurred during their 
crystallization. This enigma of the Hatrurim Formation is not yet 
resolved and requires the gathering of further evidence.
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