Tetrahedrite stability relations in the $\mathrm{Cu}-\mathrm{Fe}-\mathrm{Sb}-\mathrm{S}$ system

Kiyoaki Tatsuka and Nobuo Morimoto
Institute of Scientific and Industrial Research
Osaka University. Suita 565, Japan

Abstract

Tetrahedrite forms a stable cone-shape solid solution at $500^{\circ} \mathrm{C}$ in the quaternary $\mathrm{Cu}-\mathrm{Fe}-\mathrm{Sb}-\mathrm{S}$ composition tetrahedron, extending from its base with a narrow composition field on the $\mathrm{Cu}-\mathrm{Sb}-\mathrm{S}$ face to the top of composition $\mathrm{Cu}_{10} \mathrm{Fe}_{2} \mathrm{Sb}_{4} \mathrm{~S}_{19}$. With the composition change from $\mathrm{Cu}_{12.3} \mathrm{Sb}_{4} \mathrm{~S}_{13}$ to $\mathrm{Cu}_{10} \mathrm{Fe}_{2} \mathrm{Sb}_{4} \mathrm{~S}_{13}$ in the solid solution. the cell edge, melting temperature, and Vickers micro-hardness increase regularly from 10.32601010 .3835 A , from $\$ 73^{\circ}$ to $661^{\circ} \mathrm{C}$, and from 300 to $380 \mathrm{~kg} / \mathrm{mm}^{7}$, respectively, whereas the density decreases from 5.00 to 4.81. Although iron-free tetraliedrite $\mathrm{Cu}_{12} \mathrm{Sb}_{\mathrm{S}_{4}} \mathrm{~S}_{19}$ decomposes below $250^{\circ} \mathrm{C}$, iron-bearing tetrahedrite such as $\mathrm{Cu}_{11 .-5} \mathrm{Fe}_{0.3} \mathrm{Sb}_{1} \mathrm{~S}_{12}$ persists ill room temperature.

Tetrathedrite sold solution is the only stable quaternary phase inside the $\mathrm{Cu}-\mathrm{Fe}-\mathrm{Sb}-\mathrm{S}$ system and coexists with all the binary and ternary sulfide plases of the $\mathrm{Cu}-\mathrm{Fe}-\mathrm{Sb}-\mathrm{S}$ system at $500^{\circ} \mathrm{C}$. except covellite.

Introduction

Tetrahedrite contains many elements such as Fe, $\mathrm{Zn}, \mathrm{Ag}, \mathrm{Hg}$, and/or As in addition to the three essential elements of Cu, Sb and S . This suggests that these guest elements may play important roles for the stability of tetrahedrite. In order to elucidate the stability relations of tetrahedrite in general, a study of the phase relations in quaternary systems such as the $\mathrm{Cu}-\mathrm{Fe}-\mathrm{Sb}-\mathrm{S}$ and $\mathrm{Cu}-\mathrm{Zn}-\mathrm{Sb}-\mathrm{S}$ is necessary.

The phases and phase relations in the $\mathrm{Cu}-\mathrm{Sb}-\mathrm{S}$ system have been reported by Skinner et al. (1972). Subsequently, the composition variations and phase relations of tetrahedrite and pseudotetrahedrite in the $\mathrm{Cu}-\mathrm{Sb}-\mathrm{S}$ system have been reported by Tatsuka and Morimoto (1973, 1977). Substitution of Cu by Zn , Fe , and Ag in synthetic tetrahedrite was studied by Hall (1972, 1974). Differential thermal analysis of synthetic tetrahedrite with iron was reported by Sugaki et al. (1972), and phase relations in the $\mathrm{Cu}-\mathrm{Fe}-\mathrm{Sb}-\mathrm{S}$ system at $475^{\circ} \mathrm{C}$, especially in the vicinities of the tetrahedrite solid solution and bornite solid solution, were reported by Nakamura et al. (1974).

In the $\mathrm{Cu}-\mathrm{Sb}-\mathrm{S}$ system (Tatsuka and Morimolo, 1973, 1977), the tetrahedrite solid solution at $500^{\circ} \mathrm{C}$

[^0]does not contains the ideal composition, $\mathrm{Cu}_{12} \mathrm{Sb}_{1} \mathrm{~S}_{13}$. but occupies a narrow, more copper-rich composition field from $\mathrm{Cu}_{12.28} \mathrm{Sb}_{4.07} \mathrm{~S}_{13}$ to $\mathrm{Cu}_{1802} \mathrm{Sb}_{4.01} \mathrm{~S}_{13}$. Telrahedrite in this solid-solution field decomposes into famatinte, digenite. and antimony on annealing at temperatures below $250^{\circ} \mathrm{C}$. However, tetrahedrite persists without this decomposition by rapid cooling to above $95^{\circ} \mathrm{C}$: it dissociates into immiscible Cu -rich and Cu -poor metastable tetrahedrite phases by rapid cooling to below $95^{\circ} \mathrm{C}$.

In some preliminary experiments, however, we observed that such decomposition and dissociation reactions did not occur when a small amount of iron replaced copper of tetrahedrite in the $\mathrm{Cu}-\mathrm{Sb}-\mathrm{S}$ ternary system (Tatsuka and Morimoto, 1973, 1977). This indicates that the stability region of tetrahedrite is essentially dependent on the amount of iron in the $\mathrm{Cu}-\mathrm{Fe}-\mathrm{Sb}-\mathrm{S}$ system. In the present investigation, the phase relations and the stability regions of tetrahedrite in the $\mathrm{Cu}-\mathrm{Fe}-\mathrm{Sb}-\mathrm{S}$ system have been determined, mainly from synthetic experiments at about $500^{\circ} \mathrm{C}$. Addıtional experiments have been carried oul at lower temperatures. The name abbreviations used in this study are given in Figure 1 and Table 1.

Experimental procedures

Elements of high purity were used as starting materials. Copper grains and iron sponge of 99.99 percent

Table 1. Composition and name abbreviation of natural and symbelic phases in the $\mathrm{Cu}-\mathrm{Fc}-\mathrm{Sb}-\mathrm{S}$ system

System	Name	Abbreviation	Consesition
cu-s	covellite	cv	Cus
	chalcocite	cc	$\mathrm{Cu}_{2} \mathrm{~S}$
	high digenite	hdg	$\mathrm{Cu}_{2} \mathrm{~s}-\mathrm{Cu}_{1.75}{ }^{\text {s }}$
Fe-S	pychotite solid solution	poss	$\mathrm{Fe}_{1-\mathrm{x}}{ }^{\text {S }}$
	pyrite	PY	$\mathrm{Fe}_{2} \mathrm{~S}$
$\mathrm{Cu}-\mathrm{Sb}-\mathrm{S}$	famatinite	fm	$\mathrm{Cu}_{3} \mathrm{SbS}_{4}$
	chalcostibite	cstb	CuSbs_{2}
	tetrahedrate solid solution	td ss	$\mathrm{Cu}_{12 \div} \mathrm{x}^{\mathrm{Sb}}{ }_{4+Y} \mathrm{~S}_{13}$
	pseudotetrahedrite solid solution	pta ss	$\begin{aligned} & \mathrm{Cu}_{3} \mathrm{SbS}_{3}- \\ & \mathrm{Cu}_{12.39} 5 \mathrm{~b}_{4.54} \mathrm{~s}_{13} \end{aligned}$
	skinnerite	sk	$\mathrm{Cu}_{3} \mathrm{SbS}_{3}$
$\mathrm{Cu}-\mathrm{Fe}-\mathrm{S}$	bornite	on	$\mathrm{Cu}_{5} \mathrm{FeS}_{4}$
	borníte solid solution	bn ss	wide range
	chalcopyrite	cp	CuFeS_{2}
	cubanite	cb	$\mathrm{CuFe}_{2} \mathrm{~S}_{3}$
	intermediate solid solution	iss	wide range
$\mathrm{Fe}-\mathrm{Sb}-\mathrm{S}$	berthierite	bt	$\mathrm{FeSb}_{2} \mathrm{~S}_{3}$
	gudmundi te	gd	FeSbS
Cu-Fe-Sb-s	tetrahedrite solid solution	td ss	$\begin{gathered} C u_{12-x} \mathrm{Fe}_{x} \mathrm{Sb}_{4} S_{13} 3^{*} \\ 0 \leq x \leq 2 \end{gathered}$

lis. I. Natural and synthetic phases in the $\mathrm{Cu} \cdot \mathrm{I}^{\circ} \mathrm{C}-\mathrm{Sb}-\mathrm{S}$ system) The name abbreviations used in the present study are given in Table I. The section with Jic - 68965 atomic percent corresponds to the stoichometric composition $\mathrm{Cu}_{10} \mathrm{Fe}_{2} \mathrm{Sb}_{8} \mathrm{~S}_{13}$.
purity and sulfur powder and antimony crystal grains of 99.999 percent purity were obtained from Nakarai Chemicals Lid. Prior to use, iron sponge was reduced in a hydrogen stream for at least two hours at $1000^{\circ} \mathrm{C}$. Preparation of specimens for the present study is essentially identical to that described by Tatsuka and Morimoto (1973).

In order to investigate the effect of iron on the stability of tetrahedrite solid solution, the shape of the tetrahedrite solid-solution field in the $\mathrm{Cu}-\mathrm{Fe}-\mathrm{Sb}-\mathrm{S}$ system was studjed by synthesizing specimens with $1.7241,3.4482,5.1724,6.8965$, and 7.5172 atomic percent iron. These atomic percents of iron correspond to iron contents of $x=0.5$. 1.0, I.5, 2.0, and 2.18, respectively, in the formula of Cu_{2-x} $\mathrm{Fe}_{x} \mathrm{Sb}_{4} \mathrm{~S}_{18}$. Two-hundred thirty-four specimens were synthesized in the present study.

Fig. 2 a-e. Tetrahedrote sohd-solution lields at $500^{\circ} \mathrm{C}$ in the sections with various iron contents of the $\mathrm{Cu}-\mathrm{Fe}-\mathrm{Sb}-\mathrm{S}$ compasition tetrabedron. Ideal compositions are indicated by solid circles

Reflection microscope and X-ray diffraction methods were employed to identify the phases. The cell dimensions of tetrahedrite were obtained by the X ray powder method. Density was measured with a pycnometer at $20^{\circ} \mathrm{C}$. Finc-powdered specimens (~ 20 mg) sealed in evacuated silica capsules underwent differential thermal analysis to study the transition, decomposition, and melting behavior of tetrahedrite. A Shimadzu microhardness tester was used for the measurement of Vickers microhardness. Instead of the standard load of 100 g , a load of 25 g was used because of the small size of crystals. The time of indentation was 15 seconds Ten indentations were made for each determination, excluding the indentations with excessive fracturing.

Tetrahedrite solid solution in the $\mathbf{C u}-\mathrm{Fe}-\mathbf{S b}-\mathbf{S}$ system

The tetrahedrite solid-solution field in sections parallel to the $\mathrm{Cu}-\mathrm{Sb}-\mathrm{S}$ face in the $\mathrm{Cu}-\mathrm{Sb}-\mathrm{Fe}-\mathrm{S}$ tetrahedron shrinks with increase of iron content at $500^{\circ} \mathrm{C}$
(Fig. 2). Therefore tetrahedrite solid solution forms a cone-like shape slightly deviating from the line connecting $\mathrm{Cu}_{12} \mathrm{Sb}_{1} \mathrm{~S}_{13}$ and $\mathrm{Fe}_{12} \mathrm{Sb}_{4} \mathrm{~S}_{12}$ composition, as shown in Figure 3. At $500^{\circ} \mathrm{C}$ tetrahedrite in the $\mathrm{Cu}-\mathrm{Sb}-\mathrm{S}$ system occupies a narrow solid-solution field at $500^{\circ} \mathrm{C}$ from $\mathrm{Cu}_{12}{ }_{28} \mathrm{Sb}_{4.07} \mathrm{~S}_{13}$ to $\mathrm{Cu}_{1302} \mathrm{Sb}_{4.09} \mathrm{~S}_{13}$ (Tassuka and Morimoto, 1973, 1977) (Fig. 2a). In the compositon section with 1.7241 atomic percent iron, the tetrahedrite solid-solution field extends from $\mathrm{Cu}_{11, .58} \mathrm{Fe}_{0.30} \mathrm{Sb}_{4,02} \mathrm{~S}_{13}$ to $\mathrm{Cu}_{12}{ }_{10} \mathrm{Fe}_{0.53} \mathrm{~S}_{405} \mathrm{~S}_{13}$, but does not reach the "ideal" composition $\mathrm{Cu}_{11,5} \mathrm{Fe}_{0} \mathrm{Sb}_{4} \mathrm{~S}_{18}$ (Fig. 2b). In the section with 3.4482 atomic percent iron, tetrahedrite solid solution has a small field around the "ideal composition $\mathrm{Cu}_{11} \mathrm{FeSb}_{4} \mathrm{~S}_{13}$ (Fig. 2c). In the more iron-rich sections with 5.1724 and 6.8965 atomic percent iron, the tetrahedrite solidsolution fields narrow almost to points and are located very near the "ideal" compositions, $\mathrm{Cu}_{10.3} \mathrm{Fe}_{1.5} \mathrm{Sb}_{4} \mathrm{~S}_{13}$ and $\mathrm{Cu}_{10} \mathrm{Fe}_{2} \mathrm{Sb}_{1} \mathrm{~S}_{13}$ respectively (Figs. $2 d$ and 2ε). Single-phase tetrahedrites with the

Fig. 3. Sketch of the tetrahedrite solid solvtion at $500^{\circ} \mathrm{C}$ in the $\mathrm{Cu}-\mathrm{Fe}-\mathrm{Sb}-\mathrm{S}$ composition tetrahedron. All the joins with the telsahedrite solid solution are shown by the arrows.
"ideal" compositions $\mathrm{Cu}_{10}{ }_{6} \mathrm{Fe}_{1.5} \mathrm{Sb}_{4} \mathrm{~S}_{13}$ and $\mathrm{Cu}_{19} \mathrm{Fe}_{2} \mathrm{Sb}_{4} \mathrm{~S}_{1,3}$ were not obtained by repeated syntheses, but the compositional differences between the "ideal" compositions and the compositions of the synthetic single-phase tetrahedrites were very slight. In the section with 7.5172 atomic percent iron, thirteen specimens with compositions near the "ideal" composition $\mathrm{Cu}_{9.82} \mathrm{Fe}_{2,18} \mathrm{Sb}_{4} \mathrm{~S}_{13}$ have been synthesized. Teirahedrite always appeared with chalcopyrite and Sb , and no single-phase tetrahedrite was observed.

Thus, it can be concluded that tetrahedrite in the $\mathrm{Cu}-\mathrm{Fe}-\mathrm{Sb}-\mathrm{S}$ system possesses stoichiometric compositions represented by a general ideal formula Cu_{12-x} $\mathrm{Fe}_{x} \mathrm{Sb}_{4} \mathrm{~S}_{13}$, where $\mathrm{I} \leq x \leq 2$. This result is consistent with the stoichiometric formula $(\mathrm{Cu}, \mathrm{Ag}, \mathrm{Fe}, \mathrm{Zn})_{\mathrm{tz}}$ $(\mathrm{Sb}, \mathrm{As})_{4} \mathrm{~S}_{1 y}$ proposed for tetrahedrite (Pauling and Neuman, 1934; Takéuchi, 1971; Springer, 1969).

A sketch of the tetrahedrite solid-solution field in the $\mathrm{Cu}-\mathrm{Fe}-\mathrm{Sb}-\mathrm{S}$ system is shown in Figure 3, together with the coexisting phases. The "cone" of the tetrahedrite solid solution extends from a base in the $\mathrm{Cu}-\mathrm{Sb}-\mathrm{S}$ face toward the point $\mathrm{Fe}_{12} \mathrm{Sb}_{4} \mathrm{~S}_{13}$ on the $\mathrm{Fe}-\mathrm{Sb}-\mathrm{S}$ face and terminates at the apex composition $\mathrm{Cu}_{10} \mathrm{Fe}_{2} \mathrm{Sb}_{4} \mathrm{~S}_{13}$. Tetrahedrite is the only quaternary phase in the $\mathrm{Cu}-\mathrm{Fe}-\mathrm{Sb}-\mathrm{S}$ tetrahedron. Selected runs essential to interpretation of the phase relations are presented in Table 2.

This result is consistent with that of Nakamura et al. (1974), who reported that tetrahedrite in the $\mathrm{Cu}-\mathrm{Fe}-\mathrm{Sb}-\mathrm{S}$ system has a linear solid solution of $(\mathrm{Cu}, \mathrm{Fe})_{12} \mathrm{Sb}_{4} \mathrm{~S}_{13}$ with the iron content between 4 and 7.4 weight percent at $475^{\circ} \mathrm{C}$ based on quantitative microprobe analyses of synthetic specimens.

In order to determine the effect of iron contents on tetrahedrite at low temperatures, tetrahedrite specimens with no iron and with 1.7241 atomic percent iron were annealed at $250^{\circ} \mathrm{C}$ for two months. The decomposition into famatinite, digenite, and antimony was observed only in iron-free tetrahedrite, indicating the stability of tetrahedrite with 1.7241 atomic percent iron under this condition. Furthermore, no dissociation of iron-bearing tetrahedrite into two phases was observed in cooling to below $95^{\circ} \mathrm{C}$, supporting the effect of a small amount of iron on the stability of tetrahedrite at low temperatures.

Cell dimensions and density in tetrahedrite solid solution

The cell dimensions and density of tetrahedrite of different iton contents along the Cu-poor edge of tetrahedrite solid solution were measured at room temperature. The cell dimensions gradually increase with increase of iron content from 10.3260 A for an iron-free specimen to 10.3835 A for a sample contain-

Table 2. Significant experimental runs for the phase relations of tetrahedrite solid solutions in the $\mathrm{Cu}-\mathrm{Fe}-\mathrm{Sb}-\mathrm{S}$ system al $500^{\circ} \mathrm{C}$. Name abbreviations are given in Table I

34.50 39.65	1.7241 1.7241	$\begin{aligned} & 13.80 \\ & 13.79 \end{aligned}$	$\begin{aligned} & 44.9759 \\ & 44.8259 \end{aligned}$	$\begin{aligned} & 35 \\ & 71 \end{aligned}$	$\begin{aligned} & t d \downarrow f u+c s t b \\ & t d \downarrow f m+c s t b \end{aligned}$
39.90	1.7241	13.70	44.6759	35	cd +5 m
40.00	1.7241	13.60	44.6759	16	$\mathrm{cd}+\mathrm{E}_{\mathrm{m}}$
40.10	1.7241	13.65	44.5259	35	$\pm 0+\mathrm{Fm}$
40.15	1.7241	13.55	44.5759	16	$t d+E: T+d g$
40.30	1.7241	13.50	44.5759	16	$t d+$ frat ${ }^{\text {d }}$
40.45	1.7241	13.45	44.3759	16	$t d+d g$
40.55	1.7241	13.55	44.1759	16	$t d+d g$
40.70	1.7241	13.50	44.0759	16	$t \mathrm{~d} \rightarrow \mathrm{dq}$
39.80	1.7241	13.80	44.6759	71	ed
10.10	1.7241	13.70	44.4759	16	td
40.25	1.7241	13.65	44.3759	16	td
40.10	1.7241	13.60	44.2759	16	cd
40.50	1.7241	13.70	44.0759	16	ed
40.65	1.7241	13.65	43.9759	105	td
40.80	1.7241	13.65	43.8259	105	td
40.95	1.7241	13.50	43.8259	105	tatsk
40.95	1.7241	13.65	43.6759	105	td.tsk
40.65	1.7241	13.80	43.8259	35	td+3k
40.45	1.7241	13.85	43.9759	16	td+Ek
40.35	1.7241	13.75	44.1759	16	edosk
40.20	1.7241	13.80	44.4759	16	totsk
40.30	2.7241	13.90	44.0759	16	td+sk
40.10	1.7241	14.10	46.0759	35	td+sk+cseb
40.00	1.7241	14.00	44.2759	35	td+sklescb
39.90	2.7241	13.90	44.6759	71	td+escb
39.60	1.7241	14.00	44.8259	16	cdrcsed
37.75	3.4483	13.80	45.0017	14	$\pm d+\mathrm{fmbcstb}$
37.60	3.1483	13.95	45.0017	14	$t d+f m+c s t b$
37.85	3.1483	13.80	44.9071	71	td+fim
37.95	3.4883	13.70	44.9017	71	$t \mathrm{~d} \rightarrow \mathrm{fm}$
38.10	3.4483	13.70	44.7517	91	$\mathrm{cd}+\mathrm{fm}$
38.20	3.4483	13.60	44.7519	16	edrdg
38.10	3.4483	13.75	44.7017	105	$t d+d g$
38.10	3.4893	13.80	44.6517	71	$t a+d g$
38.20	3.4483	13.80	44.5517	16	catdg
37.85	3.4483	13.83	44.8717	35	td
37.93	3.4483	13.79	44.8317	14	td
38.00	3.4403	13.80	44.7517	16	td
38.10	3.4483	13.90	44.6517	16	edtesto
38.00	3.4483	13.90	44.6527	16	td+estb
37.90	3.4483	13.90	44.7517	71	tdtastb
38.00	3.4483	13.80	44.7517	35	td+cstb
37.75	3.4483	13.90	44.9017	71	$\pm d+c s t b$
35.95	5.2724	13.85	45.0276	19	ta coptcstb
35.85	S. 2724	13.95	45.0276	19	tdteptestb
36.10	5.1924	13.80	44.9276	73	Edecp
36.05	5.1724	13.85	44.9276	19	cd + cp
36.15	5.1724	13.80	44, 8776	105	cd + bo
36.207	5.1724	13.793	44.8276	26	td+bo
36.15	5.1724	13.85	44.8276	19	td+botestb
36.20	5.1724	13.85	44.7776	19	$5 d+60+c s t b$
36.10	5,1924	13.85	44.8776	105	td
36.15	5.1724	13.825	44.8526	35	ta
36.10	5.1724	13.90	44.8276	20	tdiostb
36.00	5.1724	13.90	44.9286	71	cd+estb
35.90	5.1724	13.95	46.9776	35	cd+cztb
34.15	6. 8965	13.85	45.1035	19	td+cp+py
34.03	6.8965	13.95	45.1035	19	cd+cp+py
34.20	6.8965	13.90	45.0035	35	$t d+c p$
34.25	6.8965	13.90	44.9535	35	td+cp
34.40	6.8965	13.80	44.9035	105	$t d+C p$
34.50	6.8965	13.70	44.9035	105	td + cp
34.40	6.8965	13.70	15.0035	20	edtep

Table 2. continued.

Compasition, atomict				Feating time,	Produces
Cu	Fe	5b	5	Days	
34.68	6.8965	13.79	44.8335	105	tdhioo
34.55	6.8965	13.75	44.8035	105	td+bo
34.60	6.8965	13.75	44.7535	105	$t d+b o$
34.35	6.8965	13.65	44.9035	205	td
34.40	6.8965	13.825	44.8785	205	td
34.50	6.8965	23.85	44.7535	105	ta+So
34.45	6.8965	13.85	14.8035	35	$c d+5 b$
34.30	6.8965	13.90	$44.903 \hat{3}$	105	Ed+Sb
33.86	7.5172	13.795	44.8278	35	$t d-C p+5 i$
33.75	7.5172	13.85	44.8828	35	$t d+c p+5 b$
33.65	7.5172	13.90	44.9128	35	td + cp+Sb
33.65	7.5172	13.85	44.9828	24	ed+cp-Sb
33.50	7.5172	14.00	44.9828	24	$t \mathrm{~d}-\mathrm{c}+\mathrm{Sb}$
33.45	7.5172	14.05	44.9828	24	$t d+c p+5 b$

ing 6.8965 atomic percent iron (Fig. 4a). However, the density of tetrahedrite decreases from 5.00 for the iron-free specimen to 4.81 for the 6.8965 atomic percent iron specimen (Fig. 4a). The influence of cop-per-iron replacement on the density variation is relatively small, because the difference in atomic weight between iron and copper is small. It can be concluded that iron atoms simply replace copper atoms in the solid solution and the number of atoms in a unit cell stays constant.

Theoretical density values were calculated from the starting composition by assuming 26 sulfur atoms per unit cell. The measured densities are in good agreement with theoretical values, showing only a systematic difference of about three percent (Fig. 4a)

In the composition plane with 1.7241 atomic percent iron, the tetrahedrite solid-solution field at $500^{\circ} \mathrm{C}$ expands from near the "ideal" composition $\left(\mathrm{Cu}_{11}{ }_{4} \mathrm{Fe}_{0.5} \mathrm{Sb}_{4} \mathrm{~S}_{13}\right)$ to the more copper-rich composition, or more exactly, from $\mathrm{Cu}_{11.48} \mathrm{Fe}_{0.5} \mathrm{Sb}_{4.02} \mathrm{~S}_{13}$ to $\mathrm{Cu}_{12}{ }_{10} \mathrm{Fe}_{n .51} \mathrm{Sb}_{405} \mathrm{~S}_{18}$. Both cell edge and density increase with increase of copper content from 10.3424 to 10.3789 A and 4.91 to 5.01 , respectively (Fig. 4b). The mass of the unit cell of the copper-rich tetrahedrite is greater by about 3.1 percent than that of the copper-poor end member. This suggests that the composition change of tetrahedrite in a constant iron content section takes place mainly by addition of copper atoms to interstices of the structure. The most copper-rich end member of the solid solution has approximately one more copper atom in each unit cell in comparison with the most copper-poor end member in the section of 1.7241 atomic percent iron. These experimental results are in agreement with

Fig 4(a) Cell edge and density of the tetrahedrite solid solution plotted against atomic percent of iron For the specimens widh no iron and 1.7241 atomic percent ron, the most copper-poor end members were selected, because they have the nearest composilions to the ideal ones in their solid-solutton sections. (b) Cell edge and density of the tetraheorite sohd-solution field with 17241 atomic percent iron plotted against atomic percent of sulfur. The calculated values of densily (open circles) were obtained by assuming 26 sulfur aloms ma unut cell Precise values for the cell edge, density, and composition are given in Table 3.
those of Talsuka and Morimoto (1973). Thus the variation of the cell edge and density of the synthetic tetrahedrite can be explained by two main factors. One is the substitution of copper atoms by other atoms such as iron, zinc, mercury, and silver, and the other is the interstitial addition of copper atoms in a tetrahedrite structure of no or very low iron content.

Wuensch (1964) reports a cell edge of 10.3908 A for a natural tetrahedrite consisting mainly of copper. iron, zinc, antumony, and sulfur, which is close to 10.3835 A of synthetic tetrahedrite with the composition $\mathrm{Cu}_{10} \mathrm{Fe}_{2} \mathrm{Sb}_{4} \mathrm{~S}_{13}$. Half the metal atoms are in tetrahedrai coordination sites, and the other half are in three-fold sites. The $\mathrm{Cu}-\mathrm{S}$ interatomic distances of the mineral are 2.342 A for the four-coordination copper, and 2234 and 2.272 A for the three-coordination copper.
Fe^{2+} atoms occupy preferentially the six- or fourcoordination sites in sulfides and sulfosalts in general. The isomer shifts and quadrupole splittings of Mössbauer spectra for synthetic tetrahedrite with a composition of $\mathrm{Cu}_{10.0} \mathrm{Fe}_{2.0} \mathrm{Sb}_{4} \mathrm{~S}_{12,7}$ have shown that iron atoms are tetrahedrally coordinated by four sulfur atoms, and are in the divalent state, Fe^{2+} (Kawai et al., 1972). In tetrahedrite, therefore. the expansion of the cell edge by the substitution of Cu atoms by Fe atoms is considered to be due mainly to the larger ionic radius of Fe^{2+} relative to that of Cu^{2+}.

Some expenmental results of interest on copper valency have been obtained by X-ray photoelectron spectroscopy (Nakai et al., 1976). The valence state of copper atoms in some twenty sulfide and sulfosalt minerals, including natural tetrahedrite, are all Cu^{4+}. and no Cu^{2+} has been found. If copper atoms prefer the monovalent state in tetrahedrite of the $\mathrm{Cu}-\mathrm{Sb}-\mathrm{S}$ system, the composition of ter rahedrite in this system must be described as $\mathrm{Cu}_{14} \mathrm{Sb}_{4} \mathrm{~S}_{19}$ by requirement of the electrical charge balance. The existence of the wide solid-solution range of tetrahedrite from $\mathrm{Cu}_{12,11} \mathrm{Sb}_{4.08} \mathrm{~S}_{13}$ to $\mathrm{Cu}_{13.97} \mathrm{Sb}_{4.08} \mathrm{~S}_{33}$ (Tatsuka and Morimoto, 1973) in the $\mathrm{Cu}-\mathrm{Sb}-\mathrm{S}$ system at $300^{\circ} \mathrm{C}$ suggests that copper atoms exist in two ionic states. $\mathrm{Cu}^{* *}$ and Cu^{3++}, with preference of Cu^{1+} over Cu^{2+}

Melting temperature and Vickers microhardness

Both melting temperature and Vickers microhardness vary systematically with the iron content of tetrahedrite solid solution. The Vickers microhardness varies from 300 to $380 \mathrm{~kg} / \mathrm{mm}^{2}$ with increasing iron content, in spite of a decrease in density (Fig. Sa). The Vickers microhardness for tetrahedrite reported by Hall (1972) is consistent with the present results.

In order to examine the change in the melting temperatures of iron-bearing tetrahedrite, differential thermal analyses of tetrahedrite solid solution along
the Cu-poor edge were carried out (Fig. 6). The melting temperature apparently rises from 573° to $661^{\circ} \mathrm{C}$ with increase in iron content (Fig. 5b). However. microscopic observations of the quenched products indicated that tetrahedrite with less than 1.7241 atomic percent iron decomposes below the melting temperature, whereas letrahedrite with more than 3.4482 atomic percent iron does not decompose prior to melting.

Because the specimen used for the DTA measurement in this invesugation was the copper-poor tetrahedrite $\mathrm{Cu}_{12,30} \mathrm{Sb}_{\mathrm{s}, 05} \mathrm{~S}_{13}$ (Table 3a), it first breaks down to famatinite + chalcostibite + high-skinnerite at about $543^{\circ} \mathrm{C}$. Two endothermic peaks starting at $573^{\circ} \mathrm{C}$ and $584^{\circ} \mathrm{C}$ are considered to indicate the melting of the decomposition products.

The copper-poor tetrahedrite $\mathrm{Cu}_{11.58} \mathrm{Fe}_{0.5} \mathrm{Sb}_{1.02} \mathrm{~S}_{13}$ (1.7241 atomic percent iron) (Table 3a) breaks down to famatinite + chalcostibite + tetrahedrite at about $570^{\circ} \mathrm{C}$. The endothermic peak beginning at $594^{\circ} \mathrm{C}$ may correspond to melting of the decomposition products. The tetrahedrite $\mathrm{Cu}_{10.46} \mathrm{Fe}_{1.50} \mathrm{Sb}_{4.01} \mathrm{~S}_{13}$ does not break down at temperatures below the melting point. The endothermic peak beginning at $643^{\circ} \mathrm{C}$ corresponds to the incongruent melting to hquid and a more iron-rich tetrahedrite phase. The final tetrahedrite in this incongruent melting is $\mathrm{Cu}_{0.96} \mathrm{Fe}_{2} \mathrm{Sb}_{4} \mathrm{~S}_{18}$, which melts at $661^{\circ} \mathrm{C}$. For the tetrahedrite $\mathrm{Cu}_{11} \mathrm{FeSb}_{4} \mathrm{~S}_{13}$. the endothermic peak shows some intermediate shape between $\mathrm{Cu}_{1, .68} \mathrm{Fe}_{0.5} \mathrm{Sb}_{1.02} \mathrm{~S}_{13}$ and $\mathrm{Cu}_{10}{ }_{40} \mathrm{Fe}_{1.40} \mathrm{Sb}_{4.01} \mathrm{~S}_{13}$. However, microscopic observa-

Fig. 5 Vickers microbardness and melting temperature in the tetrahedrate solid solution. Composition of the specimens are given in Table 3 a .

Fig. 6 DTA curvas of synthetic tetrahedrite on the $\mathrm{Cu}-\mathrm{Fe}-\mathrm{Sb}-\mathrm{S}$ system. Composilions of the specimens are given in Table 3 a
tion of the quenched products indicated that the melting or $\mathrm{Cu}_{2}{ }_{1} \mathrm{FeSb}_{4} \mathrm{~S}_{18}$ is of the same type as that of $\mathrm{Cu}_{10,16} \mathrm{Fe}_{1.60} \mathrm{Sb}_{401} \mathrm{~S}_{13}$.

The almost symmetrical endothermic peak starting at $661^{\circ} \mathrm{C}$ shows congruent melting of tetrahedrite $\mathrm{Cu}_{9.96} \mathrm{Fe}_{2} \mathrm{Sb}_{4} \mathrm{~S}_{18}$, which is very near the stoichiometric composition. These results indicate that the thermal stability range of tetrahedrite gradually increases with increasing iron content. However, the role of iron atoms for the stabilization of tetrahedrite is not clear at this slage.

Stability and assemblages of tetrahedrite

Tetrahedrite solid solution can coexist at $500^{\circ} \mathrm{C}$ with almost all stable phases in the $\mathrm{Cu}-\mathrm{Sb}-\mathrm{S}$, $\mathrm{Cu}-\mathrm{Fe}-\mathrm{S}$, and $\mathrm{Fe}-\mathrm{Sb}-\mathrm{S}$ systems. Only covellite does not form a join with tetrahedrite solid solution. Dige-nite-bornite solid solution coexists with tetrahedrite solid solution over the entire compositional range. Chalcostibite coexists with tetrahedrite solid solution

Table 3. Cell edges, densities, and compositions of tetrahedrile solid solvtions.

	composition							cell edge			
	atomic percent				chemical formula			$\begin{gathered} (5=13) \\ s \end{gathered}$	$\begin{aligned} & \frac{a}{a}(A) \\ & +0.002 \end{aligned}$	$\begin{gathered} \text { at } 25^{\circ} \mathrm{C} \\ \pm 0.03 \end{gathered}$	calc.
(a)	41.90	0	13.80	44.30	12.30	0	4.05	13	10.3260	5.00	5.099
	39.80	2.7241	13.80	44.6759	11.58	0.50	4.02	13	10.3424	4.91	5.011
	37.93	3.4483	13.79	44.8317	11.00	1.00	4.00	13	10.3499	4.87	4.967
	36.10	5.1724	13.85	44.8776	10.46	1.50	4.01	13	10.3661	4.82	4.928
	34.40	6.8965	13.825	44.8785	9.96	2.00	4.00	13	10.3835	4.81	4.891
(b)	39.80	1.7241	13.80	44.6759	11.58	0.50	4.02	13	10.3424	4.91	5.011
	40.10	1.7241	13.70	44.4759	11.72	0.50	4.00	13	10.3508	4.94	5.022
	40.50	1.7241	13.70	44.0759	11.95	0.51	4.04	13	10.3649	4.97	5.058
	40.65	1.7241	13.65	43.9759	12.02	0.51	4.04	13	10.3705	5.00	5.061
	40.80	1.7241	13.65	43.8259	12.10	0.51	4.05	13	10.3789	5.01	5.070

containing up to about five atomic percent iron. Famatinite and high-temperature skinnerite form joins with tetrahedrite solid solution with up to about 3.5 and 1.7 atomic percent iron. respectively. Tetrahedrite solid solution with more than about five atomic percent iron can coexist with chalcopyrite solid solution, intermediate solid solution, pyrrhotite solid solution, pyrite, stibnite, berthierite, and antimony.

Natural tetrahedrite shows complex compositions in which As and Sb display extensive mutual substitution, and elements such as $\mathrm{Fe}, \mathrm{Zr}, \mathrm{Hg}$, and Ag commonly substitute for Cu . Phase relations in the system $\mathrm{Cu}-\mathrm{Sb}-\mathrm{As}-\mathrm{S}$ were studied by Luce et al. (1977). It has been shown that silver atoms preferentially occupy three-coordinated positions (Kalbskopf, 1972) and that mercury atoms substitute only for copper atoms tetrahedrally coordinated with sulfur (Kalbskop「, 1971).

Chemical compositions of natural tetrahedrite strongly support the conclusion that the minerals belonging to the tetrahedrite-tennantite series have a general formula, $(\mathrm{Cu}, \mathrm{Ag})_{10}\left(\mathrm{Fe}, \mathrm{Zn}, \mathrm{Hg}, \mathrm{Cu}^{*}\right)_{2}(\mathrm{Sb}$, As) S $_{13}$ (Pauling and Neuman, 1934; Takéuchi, 1971: Springer, 1969). According to Charlat and Levy (1974), Cu^{*} in the ($\mathrm{Fe}, \mathrm{Zn}, \mathrm{Hg}$) sites is limited less than 0.2 atom in most natural specimens. Only when more than one atom Fe is in the ($\mathrm{Fe}, \mathrm{Zn}, \mathrm{Hg}$) sites can as much as 0.8 atom Cu^{*} be included in the same sites in some cases. suggesting that more Cu-rich tetrahedrites than $\mathrm{Cu}_{10.4} \mathrm{Fe}_{12} \mathrm{Sb}_{1} \mathrm{~S}_{18}$ are not stable. Thus, although tetrahedrite $\mathrm{Cu}_{11.0} \mathrm{Fe}_{0.5} \mathrm{Sb}_{4} \mathrm{~S}_{13}$ was apparently stable at room temperature in the present experiments, it is most likely that such tetrahedrite decom-
poses in nature 10 the mixture of more iron-rich letrahedrite $\mathrm{Cu}_{10 \sim \text { iu. }} \mathrm{Fe}_{2 \sim, .8} \mathrm{Sb}_{4} \mathrm{~S}_{12}$, famatinite, digenite, and antimony.

Acknowledgments

We thank Professor Y Nakamura, Osaka Cily University, for the use of the microhardness tester. We also thank Professor B. J. Skinner. Yale Universicy, for sharing the manuscript of a paper on the Cu-\$b-As-S system before publication and comments made during review, and Professor G Kullerud, Purdue Universty, for his discussion and comments on the results of this wark Suggestuons made, dunng review, by Professor Ulrich Petersen. Mr. Robert R. Loucks, and Mr John C. Tanger are appreciared. Part of the expenses of this work were defrayed by a grant for scienulic research from the Mibistry of Education of the Japanese Govern. ment.

References

Charlat, M. and C. Levy (1974) Substututions muluples dans la série tennanute-tétraédrıte. Bull. Soc. fr. Minéral. Crystallogr., 97. 241-250.

Hall, A. J. (1972) Substilution of Cu by Zn . Fe and $\Lambda \mathrm{g}$ in synthctic tetrahedrite. $\mathrm{Cu}_{12} \mathrm{Sb}_{4} \mathrm{~S}_{11}$. Bull. Soc. fr. Minéral. Cristallogr., QS. 583-594.
-_ (1979) The effect of substution of Cu by Zn , Fe and Ag on the optical properties of synthetic tetrahedrite, $\mathrm{Cu}_{12} \mathrm{Sb}_{4} \mathrm{~S}_{13}$. Bull Soc. fr. Minéral. Cirstallogr. 97, 18-26
Kalbskopf, R. (1971) Die Koordination des Quecksilbers im Schwazit. Tschermaks Mineral Petrog. Witt., 16, 173-175.
-_ (1972) Strukurverfemerung des Freibergits Tschermaks Mimeral Petrog Mith., 18, 147-155.
Kawill, S., Y. IIo, and R. Kiriyama (1972) Magnctuc susceptibilıy. Mossbaucr effect and conductivity in sphalerite and telrahedrute (in Japanese) J. Minerol. Soc. Japan, 10. 487-498.
Luce, F. D.. C. L. Tiltle and B. J. Skinner (1977) Studies of sulfosalis of copper. V Phases and phase relations in the system $\mathrm{Cu}-\mathrm{Sb}-\mathrm{As}-\mathrm{S}$ between $350^{\circ} \mathrm{C}$ and $500^{\circ} \mathrm{C}$. Econ. Geol., 72, 271289.

Nakai. I.. Y. Sugitani, Y Niwa and K. Nagashima (1976) Application of X-ray photoelectron spectra for copper ore minerals
(abstr. in Japanese) Absir. Annual Meet. Mineral. Soc Japan, 101. B41.

Nakamura, Y., A Sugaki, H. Shima, and A. Knakaze (1974) The phase relations in the Cu-Fe-Sb-S system (II) Tetrahe. drite-bormite solid solution (absir. in Japancse). J. Jap. Assoc. Mineral. Petrol. Econ. Geol. 69. 42.
Pauling, L.. and E. W, Neuman (1934) The crystal structure of binnite, ($\mathrm{C}, \mathrm{FE})_{12} A S_{1} S_{13}$ and the chemical composition and structure of minerals of the tetrahedrite group. Z. Kristallogr., 88, 54-62.
Skinner, B. J., F D. I.uce and E. Makovicky (1972) Studies of the sulfosalts of copper. III. Phases and phase relations in the system Cu-Sb-S. Econ. Ceol., 67, 924-938.
Springer, G. (1969) Electronprobe analyses of telrahedrite. Neus Jahrb. Mineral. Monaish., 24-32.
Sugaki, A., J. Shima and A. Kitakaze (1972) The differential
thermal analysis of ore minerals (III). On the minerals of system Bi-Sb-S and Cu-Sb-As-S (in Japanesc) Mem. Fac. Eng. Yamaguche Univ. 23, 23-33.
Takéuchi, Y. (1971) On the crystal chemistry of sulphides and sulphosalts. In T. Taisumi. Ed, Volcanism and Gemeris in Japan. p. 395-420 Univ. of Tokyo Press, Tokyo.

Tatsuka, K., and N. Monmolo (1973) Composition variation and polymorphism of tetrahedrite in the $\mathrm{Cu}-\mathrm{Sb}-\mathrm{S}$ system below $400^{\circ} \mathrm{C}$. Am. Mineral., 58, 425-434.
and \qquad (1977) Telrahedrite stability relations in the Cu-5b-S syslem. Econ. Geol., 72, 258-270.
Wuensch, B J. (1964) The crystal struciure of tetrahedrite, $\mathrm{Cu}_{12} 5 \mathrm{~S}_{4} \mathrm{~S}_{19} .2$. Krisiallogr., 119. 437-453.

Manuscrip: recelved. February 14. 1977; accepted
for publicanom, June 13, 1977.

[^0]: ${ }^{1}$ Present address Osaka Cuşiom Housc, Minsto-ku, Osaka 552 Japan.

