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ABSTRACT

Within the context of the total electron density distribution, a well-defined set of radii
known as bonded radii can be derived by measuring, along the bond path, the distance
between the center of an atom and the point of minimum electron density. As the prop-
erties of a crystal, including its total energy, are determined by its electron density distri-
bution, such radii provide an objective measure of atomic size and a basis for understand-
ing and correlating physical and chemical properties.

Bonded radii observed for chloride and oxide anions are not constant for a given co-
ordination number, as assumed in derivations oflists of ionic and crystal radii, but increase
in a regular way with bond length. On the other hand, bonded radii observed for cations
show a much smaller increase with coordination number than that reported in studies of
ionic and crystal radii. An examination of the electron density distributions observed for
the alkali halides, fluorides, oxides, and silicates indicates that the distributions in such
crystals can be regarded as largely atomic in nature, despite bond type. Promolecule radii
calculated for spherically averaged electron density distributions for corresponding coor-
dinated polyhedra with bond lengths and angles fixed at values observed in crystals repro-
duce to within -0.05 A the Tosi-Fumi radii derived for the alkali halides with the rock
salt structure and bonded radii observed for the silica polymorphs, BeO, MgO, CuCl,
CaF2, and CuBr. The close correspondence of pro molecule and bonded radii indicates that
the electron density distribution of individual atoms in these crystals decreases rapidly
with distance. Reliable estimates of bonded radii of atoms in crystals are obtained from a
calculated charge density distribution for the corresponding coordinated polyhedra making
up such crystals, using Roothaan-Hartree-Fock wave functions.

INTRODUCTION

For more than half a century, crystallographers have
recorded X-ray diffraction patterns for thousands of crys-
tals and have been able to account for the scattering of
X-rays by such crystals quite satisfactorily with an inde-
pendent atom or procrystal model that employs spheri-
cally averaged atomic scattering factors. Also, in recent
years, numerous workers have attempted a mapping of ELECTRON DENSITY DISTRIBUTIONS AND

the elusive deformation electron density (e.g., Coppens BONDED RADII

and Hall, 1982; Tsirelson et aI., 1990) and have found Within the context of the total electron density distri-
that it is very small relative to the total density and dif- bution, p(r), in a crystal, Gourary and Adrian (1960) and
ficult to recover even when the diffraction data are precise later Slater (1965) have argued that a sensible and weIl-
and massive, particularly when the atoms involved are defined list of radii, referred to as bonded radii by Bader
heavy (atomic number of 10 or greater)(Hirshfeld, 1985). et aI. (1971) and Bader (1990), can be derived by mea-
Both of these observations indicate that the electron den- suring, along the bond path, the distance between the
sity distributions in these crystals are largely atomic in center of an atom and the point of minimum electron
nature, particularly when the constituent atoms are heavy. density. Such a definition of radii is natural because the
They also corroborate Slater's (1965) conclusions that the properties of an atom in a molecule, as well as the total
atoms in the alkali halides tend to be more nearly neutral energy of the molecular system, are determined by the
than a fully ionic model would indicate and that the elec- ground-state electron density distribution (Hohenberg and
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tron density differences for a crystal consisting of either
ions or atoms would be small and very difficult to mea-
sure. They also suggest that the bonded radius of an atom
in such crystals, as measured by the electron density dis-
tribution, would be largely independent of charge and
bond type.
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Fig. 1. A map of the static electron density distribution ob-
tained in a pseudoatom model refinement of coesite, calculated
through the plane ofthe Sil-05-Si2 group. The contour interval
is 0.0625, 0.125, 0.250, . . . , e/ A3. The circle centered on 05
and labeled S (Slater, 1964) defines the outermost limit of the 0
atom as defined by its atomic radius, and those labeled S&P
(Shannon and Prewitt, 1969) and W&G (Wasastjeme, 1923;
Goldschmidt et aI., 1926) define the outermost limits of the ox-
ide ion as defined by its crystal and ionic radii, respectively.

Kohn, 1964; Reiss and Munch, 1981). Furthermore, the
electron density is so distributed that it adopts a config-
uration that minimizes the total energy of the resulting
configuration (Bader, 1981, 1990). It follows, therefore,
that the bonded radii provided by such a configuration
must be considered as minimum energy features of such
a system. As a crystal can be viewed as a molecule of
visible dimensions (Slater, 1939), these arguments may
be extended directly and without loss of generality to a
crystalline system.

Figure I shows a map of the electron density distri-
bution obtained in a pseudoatom refinement of a set of
X-ray diffraction data observed for coesite, a crystalline
form of silica with fourfold-coordinate Si (Geisinger et
ai., 1987). The bonded radii for the atoms that define the
Sil-05-Si2 angle ofthe structure were obtained by mea-
suring along the Sil-05 and Si2-05 bonds the distances
between Sil, Si2, and 05 and the minima in the electron
density distribution. The measurement for the Sil-05
bond yielded the bonded radii, 'b(Sil) = 0.65 A and 'b(05)
= 0.97 A, and that for Si2-05 yielded 'b(Si2) = 0.67 A
and 'b(05) = 0.95 A (Buterakos, 1990). Concentric cir-
cles of radius 0.60 A (Slater's atomic radius for 0), 1.21
A (crystal radius for 02- of Shannon and Prewitt, 1969),
and 1.32 A (Wasastjeme-Goldschmidt ionic radius for
02-) are drawn about 05 and compared with the points
of minimum electron density as measured along the two

bonds. In terms of the electron density distribution, Sla-
ter's (1964) atomic radius is much too small, with its
outermost extent falling well within the basin of charge
density belonging to the 05 oxide ion. On the other hand,
the outer limits of the crystal and ionic radii assigned to
05 both fall well within the basins of charge density be-
longing to the two Si atoms. Actually, the bonded radii
of the a atoms in coesite have values that lie about half-
way between the atomic and ionic radius of the a atom.
Thus, the sizes of the bonded radii obtained for the oxide
ion are seen to be quite different from traditional values
published for ionic, crystal, and atomic radii. As revealed
by Figure I, it is clear that the electron density distribu-
tion of the SiOSi group is compressed along both SiO
bonds and is expanded into the empty regions of the coes-
ite structure, rendering a nonspherical distribution for 05.
We also note that 05 has two marginally different bonded
radii, one toward Si I and the other toward Si2, with the
larger one involving the longer Sil-05 bond.

A relatively few accurate total electron density maps
have been published for crystals over the years from which
bonded radii can be measured (Witte and W51fel, 1955;
Krug et ai., 1955; Schoknecht, 1957; Weiss et ai., 1957;
Slater, 1965; Kurki-Suonio and Meisalo, 1966; Meisalo
and Inkinen, 1967; Jarvinen and Inkinen, 1967; Spack-
man et ai., 1987; Downs, 1991). However, as observed
by Slater (1965), when such radii are measured, they do
not in general agree, as observed above, either with his
atomic radii or with lists ofionic radii. In addition, bond-
ed radii recorded for anions are not approximately con-
stant, as traditionally assumed for ionic and atomic radii.
For example, the bonded radius for Cl, 'b

(CI), obtained
from experimental electron density maps, increases from
1.25 A for a CuCl bond length of 2.35 to 1.64 A for a
NaCl bond length of 2.82 to 1.70 A for a KCl bond length
of 3.15 A (Slater, 1965).More recently,O'Keeffe(1979)
observed that the apparent radius of the nitride ion in
compounds with the rock salt structure increases from
1.28 to 1.46 A as the interatomic separation, R (XN),
between the metal atom, X, and N increases from 2.05
to 2.65 A, with the radius of the nitride ion increasing
linearly with bond length. As the coordination number
of the nitride ion is six in a rock salt crystal, this increase
cannot be ascribed to a change in coordination number.
In a study of more than 500 experimental R (XN) data,
Baur (1987) concluded that the ionic radius of the nitride
ion shows a greater dependence on the coordination
number than that observed for the oxide ion (Shannon
and Prewitt, 1969). However, no attempt was made to
test whether a correlation obtains between bond length
and the radius of the nitride ion. Evidence has also been
presented by O'Keeffe (1977, 1979) that suggests that the
apparent radius of the oxide ion also increases with bond
length. Such variations in radii support the argument made
by Fajans (1941) and Johnson (1973) that anion radii
tend to decrease with increasing field strength of the metal
atom to which an anion is bonded.

An examination of electron density maps recorded for
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coesite and stishovite, a crystalline form of silica with
sixfold-coordinate Si, yields an oxide bonded radius, rb(0),
for coesite of 0.95 A, averaged over eight nonequivalent
SiO bonds, and an oxide bonded radius for stishovite of
1.05 A, averaged over two nonequivalent bonds (Spack-
man et aI., 1987; Geisinger et aI., 1987). It is apparent
that rb(0) is 0.10 A larger in stishovite, where R (SiO) is
-1.78 A, than it is in coesite, where R (SiO) is -1.61 A.
Also, the bonded radius of the oxide ion is observed to
increase with R (SiO) (Fig. 2) in both coesite and stishov-
ite. In addition, rb(0) obtained from an electron density
map recorded for periclase, MgO, for which R (MgO) =
2.09 A is even larger: rb(O) = 1.09 A. Collectively, these
results indicate that there is no such thing as a unique
bonded radius for atoms like Cl, N, and 0 but that the
radii of these anions appear to vary with bond length.

In a careful study of the cohesive energies of the alkali
halides with the rock salt structure type, Tosi and Fumi
(1964), Tosi (1964), and Fumi and Tosi (1964) undertook
a derivation of a list of crystal radii, using a generalized
Huggins-Mayer form for the repulsive energy, based on
experimental isothermal compressibility and thermal ex-
pansion data. The resulting crystal radii match bonded
radii obtained from electron density maps recorded for
the alkali halides significantly better than they match the
traditional ionic radii derived by Wasastjerne, Gold-
schmidt, Pauling, and others (Slater, 1965). Tosi and Fumi
(1964) also observed that the crystal radii of the cations
are -0.2 A larger than ionic radii, whereas those of the
anions were -0.2 A smaller. For instance, the crystal
radius for the fluoride ion was found to be 1.19 A, a
radius that is significantly smaller than values proposed
in earlier studies (1.33-1.36 A).

In their derivation of lists of crystal radii for oxides
and fluorides from -1000 bond length data, Shannon
and Prewitt (1969) and Shannon (1976) accepted the Tosi-
Fumi radius of 1.19 A as the sixfold-coordinate radius of
the fluoride ion. Assuming a difference of 0.07 A between
the radii of the oxide and the fluoride ions, Shannon and
Prewitt (1969) deduced a crystal radius of 1.26 A for a
sixfold-coordinate oxide anion. Using these two radii and
following the strategy used by Goldschmidt et ai. (1926)
to obtain ionic radii from observed bond length data,
they undertook a derivation of a list of crystal radii in
which the radii were refined to conform with observed
bond length data and plots of ionic volumes vs. unit-cell
volume (r3 vs. V). The resulting radii have since been
found to reproduce average bond lengths in oxide- and
fluoride-coordinated polyhedra in a variety of structure
types to within -0.01 A when coordination number,
electronic spin state, covalency, oxidation, and polyhe-
dral distortions are taken into account. These radii have
found wide application, as argued by Prewitt (1985) in
his MSA Presidential Address, in the determination of
the average bond lengths in oxide and fluoride structure
types and cation coordination numbers based on radius
ratio arguments. They have also provided a basis for cor-
relating physical properties, generating structure field
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Fig. 2. The bonded radius of the oxide ion, rb(O), measured
from static electron density maps, provided by pseudoatom re-
finements of observed diffraction data for coesite and stishovite
vs. the observed SiO bond length, R (SiO), in angstroms. The
pseudoatom refinements were completed by Geisinger et al.
(1987) and Spackman et al. (1987), and the bonded radii were
measured by Buterakos (1990).

maps, and rationalizing diffusion in solids. Despite such
successes, Shannon and Prewitt (1969) did remark that
crystal and ionic radii may not be realistic indicators of
the sizes of ions, particularly as they relate to easily de-
fined properties of the electronic charge density distri-
bution within a crystal (Slater, 1965). Another problem
with the Shannon and Prewitt (1969) crystal radii is their
determination of 1.21 A for the radius of a twofold-co-
ordinate oxide ion. Such a radius requires a negative ra-
dius for H+ of -0.25 A to reproduce the observed length
(0.96 A) of the OH bond. If radii are additive, then the
radius of the oxide ion in the molecule is indicated to be
significantly less than 1.0 A, in conformity with the short
OH bond length.

The observation that the Shannon and Prewitt (1969)
and the Shannon (1976) radii generate bond lengths that
match average values exhibited by coordinated polyhedra
in a variety of oxide and fluoride crystals can be taken as
evidence that the average separation between the bonded
atoms in such polyhedra is largely independent of the
forces exerted on the polyhedra by the other parts of the
crystal structure, other than those that induced local charge
balance. This result suggests that molecules constructed
from such coordinated oxide and fluoride polyhedra can
serve as useful models for studying bond length and
bonded radii variations, provided the molecules are neu-
tralized by attaching H atoms, for example, to the pe-
ripheral anions to mimic the local crystal field (Gibbs,
1982). As these molecules are relatively small, molecular
orbital calculations have been completed on a wide va-
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riety of such molecules, using relatively robust basis sets,
to learn whether the resulting bond lengths match ob-
served values reported by Shannon and Prewitt (1969)
and Shannon (1976). For example, Gibbs et al. (1987)
undertook a calculation of the minimum energy bond
lengths in hydroxyacid molecules with fourfold-coordi-
nate HS_nX+n04 polyhedra and sixfold-coordinate
HI2_nX+n06 polyhedra with first- and second-row cations
(X = Li through Nand Na through S) and found that the
resulting bond lengths match those recorded, on average,
for similarly coordinated polyhedra in oxide crystals to
within -0.03 A. In addition, Finger and Gibbs (1985)
calculated total electron density maps for these molecules
and found, for example, that the bonded radii for Si and
o obtained for H4Si04 and HsSi06 match those observed
for coesite and stishovite to within -0.05 A. The radii
also show that rb(0) increases for fourfold-coordinate X
cations from 0.90 A for the SO bond to 1.22 A for the
NaO bond. Not only did Gibbs and Boisen (1986) ob-
serve that rb(0) increases with R (XO), but they also ob-
served that rb(0) decreases, for a given bond length, with
the row number of the X cation. Total electron density
maps calculated for the molecules S03, H2S04' H2S207,
and H6S06 show that rb(S) and rb(0) both increase lin-
early with R (SO), with the bonded radii of both Sand 0
increasing at about the same rate (Lindsay and Gibbs,
1988). Similar molecular orbital calculations have been
completed on hydrosulfide (Bartelmehs et al., 1989) and
hydronitride (Buterakos, 1990; Buterakos et al., 1992)
molecules. In these studies, the bonded radii for both the
sulfide and the nitride ions were found to increase in a
regular way with bond length and to decrease with row
number. It is noteworthy that the cation bonded radii
obtained in each of these molecular orbital studies cor-
relate with the available crystal and ionic radii, but the
slopes of the lines are not 1.0 because the radius of the
anion to which a cation is bonded also increases linearly
with bond length.

PROMOLECULE RADII

A pro molecule is defined to be a model of a molecule
where the electron density distributions of each of its at-
oms have been spherically averaged and placed at their
minimum energy positions (Hirshfeld and Rzotkiewicz,
1974). Like the bonded radius of an atom in a molecule,
the promolecule radius, rp, of an atom is defined to be
the distance between the nucleus of the atom and the
point of minimum electron density between the atom and
its nearest neighbors, as measured along the line between
the atom and each of its neighbors. Spackman and Mas-
len (1986) have calculated promolecule radii for 39 dia-
tomic molecules, with bond lengths clamped at the values
recorded for these molecules, and have found that the
resulting promolecule radii match bonded radii obtained
from electron density distributions calculated with accu-
rate Roothaan-Hartree-Fock wave functions with an es-
timated standard error, ese, of 0.06 A. As the difference
(deformation electron density) between the Roothaan-
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Fig. 3. A plot of the bonded radius for the H atom in XH
diatomic molecules calculated from total electron density maps
generated with Hartree-Fock wave functions vs. the minimum
energy R(XH) bond length in angstroms. The data used to pre-
pare this plot were taken from Table A3 of Bader (1990). The
open squares represent X atoms of the first row of the periodic
table, and the solid circles represent X atoms of the second.

Hartree-Fock electron density and the promolecule elec-
tron density is small, they concluded that bonded radii
derived from electron density maps are largely consistent
with those calculated in the promolecule and, therefore,
appear to be largely atomic in nature, despite bond type.
In other words, the deformation electron density, which
is very small in comparison with the pro molecule elec-
tron density, apparently exerts a minor role in determin-
ing bonded radii.

A comparison with published lists shows that promole-
cule radii, just like bonded radii, calculated for diatomics
and for the silica polymorphs, correlate with but lie be-
tween atomic and ionic radii. Spackman and Maslen
(1986) also observed that promolecule radii bear little
resemblance to the radii of such anions as F-, 02-, and
so forth, as determined by Pauling (1927). They also ob-
served that bonded radii for a given atom exhibit a rel-
atively wide range of values. An examination of these
radii shows, as observed for the hydroxyacid, hydrosul-
fide, and hydronitride molecules discussed above, that
the radii of the nonmetal atoms tend to increase with
bond length and to decrease with the row number of the
metal atom to which they are bonded (Gibbs et al., 1991).
Figure 3 shows, for example, how the bonded radius of
the H atom measured for a variety of diatomic hydride
molecules varies with bond length. Clearly, for these di-
atomics, the radius of the H atom is not constant but
increases from 0.14 A when bonded to F to 0.90 A when
bonded to Na. Thus, for H in the hydride diatomics and
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Fig. 4. Bonded radii, rb, vs. promolecule radii, rp, calculated
for hydroxyacid (Gibbs et a!., 1987), hydrosulfide (Bartelmehs
et a!., 1989), and hydronitride molecules (Buterakos et a!., 1992).

for the 0, N, and S in hydroxyacid, hydrosulfide, and
hydronitride molecules, not only do the bonded radii show
a relatively wide range of values, but they also correlate
with the length of the bond in which they participate. A
calculation of the promolecule radii for the Hand 0 at-
oms in the H20 molecule and the OH group yields rp(H)
= 0.20 A and rp(O) = 0.76 A. The promolecule radius
for H is positive and -0.45 A larger than the crystal
radius derived by Shannon and Prewitt (1969), and rp(O)
is, as expected, smaller than it is in coesite and stishovite.
The bonded radius of the 0 atom obtained from a Har-
tree-Fock structure determination of the electron density
of the OH molecule (0.77 A) is in close agreement (Bader,
1990) with that provided by the calculation on the pro-
molecule.

A COMPARISON OF PROMOLECULE RADII WITH
BONDED RADII

Promolecule radii, calculated for the hydroxyacid mol-
ecules studied by Finger and Gibbs (1985), for the hy-
drosulfide molecules studied by Bartelmehs et al. (1989)
and for the hydronitride molecules studied by Buterakos
et al. (1992), are plotted in Figure 4 against the bonded
radii calculated for these molecules with robust 6-31 G*
basis sets. The charge density distributions for the pro-
molecules were calculated (see Appendix 1) with Root-
haan-Hartree-Fock wave functions expressed as a linear
combination of Slater-type functions, squared and spher-
ically averaged. A linear regression analysis of the bonded
radii as a function of the resulting promolecule radii cal-
culated for the molecules shows that more than 96% of
the variation of the bonded radii calculated for these mol-
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Fig. 5. The spherically averaged electron density, (p(r»), plot-
ted as a function of r for Na (a) and Cl (b) atoms. The electron
densities were calculated for neutral ground state atoms, using
the Roothaan-Hartree-Fock wave functions published by Cle-
menti and Roetti (1974) (I bohr = 0.529 A).

ecules can be explained in terms of a linear dependence
on the promolecule radius with an ese of 0.06 A. This
indicates, as observed by Spackman and Maslen (1986)
for diatomic molecules, that bonded radii can be regarded
as largely atomic in nature.

Calculations show that the spherically averaged elec-
tron density distribution, (p(r», of an atom falls off rap-
idly with increasing distance, r, from its nucleus. This fact
is illustrated for both the Na and Cl atoms in Figure 5,
where it is seen that (p(r» is less than 0.0 1 e/b3 for an r
value of -3 bohrs (1 bohr = 0.529 A). This suggests,
because (p(r» diminishes rapidly with r, that promole-
cule radii for atoms making up the coordinated polyhedra
in crystals can be accurately estimated by completing a
calculation on model polyhedra whose bond lengths and
angles are clamped at the values observed for a crystal.
We tested this assertion by calculating the promolecule
radii of Na and Cl for a NaCl dimer, for a NaCl6-coor-
dinated octahedron, for a CINa6 octahedron and for a
unit cell ofNaCl ofNa13Cl'4 composition. In each of these
calculations, R (NaCl) was fixed at 2.82 A, and each
LNaClNa and LClNaCI was clamped at 90.0°, as ob-
served in the rock salt structure. The calculation for the
NaCI dimer yielded promolecule radii of rp(Na) = 1.168
A and rp(Cl) = 1.652 A, compared with rp(Na) = 1.169
A and rp(Cl) = 1.651 A calculated for the NaCl6 octahe-
dron, rp(Na) = 1.165 A and rp(Cl) = 1.655 A calculated
forthe CINa6 octahedron, and rp(Na) = 1.166 A and rp(Cl)
= 1.654 A calculated for the NaCl6-coordinated polyhe-
dron centered at 1h,1h,Ih in the unit cell. The values of
rp(Na) and rp(Cl) obtained for the isolated NaCl6 octa-
hedron and for the one in the NaCl unit cell and those
obtained for the CINa6 octahedron are identical for our
purposes. What may be surprising is that the pro molecule
radii obtained for the CINa6 octahedron and for both
NaCl6 octahedra agree to within 0.003 A with that cal-
culated for the NaCI dimer, demonstrating that the effect
of (p(r» is not long-ranged. Witte and WOlfel (1955) cal-
culated electron density maps for a NaCl crystal with
observed X-ray diffraction data and reported bonded ra-
dii of 1.17 A for Na+ and 1.64 A for Cl-, radii that agree
to within 0.0 1 A of the promolecule radii calculated for
the NaCl6 octahedra. A map of the promolecule electron



746 GIBBS ET AL.: BONDED AND PROMOLECULE RADII

Fig. 6. A total electron density map calculated through a plane
defined by Na and four CI atoms in an NaCl6 octahedron. The
map was calculated using the sum of the electron densities from
spherically averaged atoms calculated from the Roothaan-Hart-
ree-Fock wave functions (Clementi and Roetti, 1974). The kth
contour, counting from the comers of the map, corresponds to
the value (3.0 x 1O-4)(1.3k-1)elb3. The contours at the atom cen-
ters have been omitted.

density calculated through the center of a NaCI octahe-
dron is displayed in Figure 6. Despite the fact that the
map was calculated for superimposed spherically aver-
aged Na and Cl atoms, the resulting electron density dis-
tribution shows a slight polarization in the direction of
the NaCl bond, a feature that might be erroneously as-
cribed to covalency.

Another test is provided by a careful determination by
Downs (1983) of the electron density distribution ofbro-
mellite, BeO, using X-ray diffraction data. The bromellite
structure can be described as a hcp eutactic array of 0
atoms in which one-half of the available tetrahedral sites
are filled by Be. The term eutactic, as defined by O'Keeffe
(1977), means that the centers of the oxide ions in BeO
are arranged as those in an hcp metal, but the ions do
not make contact with one another as assumed by Bragg
and Brown (1926) in their analysis of the structure of
forsterite.

As all of the Be04 tetrahedra in BeO are equivalent,
the comers of each such tetrahedron are shared by four
Be04-coordinated tetrahedra. Three of the four BeO bonds
at the base of each tetrahedron are equivalent and are
called basal bonds, whereas the fourth lies along the c
axis of the crystal and is called the apical bond. The re-
finement of the structure shows that the length of the
apical bond (1.655 A) is slightly but significantly longer
than that of the basal bonds (1.647 A). In an excellent
review of the electrostatic properties of the mineral,

Downs (1991) determined the bonded radii of Be and 0
in procrystal and the pseudoatom model refinements. Like
a promolecule, a procrystal is defined to be a collection
of atoms whose electron density distributions have been
spherically averaged and placed at their equilibrium po-
sitions in the crystal (Coppens and Hall, 1982).

The BeO procrystal electron density distribution mea-
sured by Downs (1983) yielded bonded radii for the api-
cal bond [rb(Be) = 0.579 A, rb(O) = 1.076 A] that are
similar to those of the basal bonds [rb(Be) = 0.577 A,
rb(0) = 1.070 A]. These values show close agreement
with pro molecule radii calculated for a Be04-coordinated
tetrahedron [apical bond: rp(Be) = 0.581, rp(O) = 1.074;
basal bonds: rp(Be) = 0.579, rp(O) = 1.068 A] whose
bond lengths and angles were clamped at the values ob-
served for the Be04 group in BeO. The close agreement
between these two lists of radii demonstrates again that
pro molecule radii calculated for a model coordinated
polyhedron with a geometry matching that in a crystal
provides a good estimate of bonded radii. The pseudo-
atom refinement provided bonded radii for the apical bond
[rb(Be) = 0.569 A, rb(O) = 1.086 A] and basal bonds
[rb(Be) = 0.562 A, rb(O) = 1.085 A] that match those
obtained in the procrystal refinement to within 0.015 A,
suggesting that charge density distribution in BeO has a
dominant atomic component. Despite traditional de-
scriptions of the structure of BeO as a hcp array of large
oxide ions with the smaller Be atoms tucked away in the
available tetrahedral voids, the bonded radii obtained in
Down's (1991) review supports O'Keeffe's (1977) argu-
ments that oxide ions in structures like BeG should be
described as eutactic close packed rather than just close
packed and making contact (O'Keeffe and Hyde, 1985).
A description of such structures with the oxide ions in
contact is clearly wrong insofar as the electron density
distribution of the crystals is concerned. The close agree-
ment in promolecule and procrystal bonded radii ob-
tained for both NaCI and BeO provides support for the
assertion that accurate radii can be obtained for crystals
by completing a calculation for coordinated polyhedra
with the bond lengths and angles clamped at the observed
values.

As observed earlier, Tosi and Fumi (1964) published
a list of radii for the alkali halides that match bonded
radii obtained from experimental electron density maps
significantly better than they match traditional ionic ra-
dii. To learn how well the Tosi-Fumi radii agree with
pro molecule radii, radii were calculated for XY6 octahe-
dra where X = Li, Na, K, and Rb and Y = F, Cl, Br, and
I with R (XY) set at values observed for the alkali halides.
The resulting pro molecule radii are plotted against the
Tosi-Fumi radii in Figure 7. A linear regression analysis
of these data shows that 99% of the variation of the Tosi-
Fumi radii for the alkali halides can be explained in terms
of a linear dependence on the calculated promolecule ra-
dii. With the exceptions of NaF and RbCl, whose pro-
molecule radii depart by 0.07 A from the Tosi-Fumi crys-
tal radii, all the remaining promolecule radii agree with
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Fig. 7. Tosi-Fumi radii calculated for XY alkali-halide crys-

tals with the rock salt structure vs. promolecule radii calculated
for XY, coordinated polyhedra with a geometry matching that
in the crystal. The Tosi-Fumi radii were taken from Table 3 of
Tosi and Fumi (1964).

the Tosi-Fumi radii for the alkali halides with an ese of
0.03 A. This result suggests, as asserted by Slater (1965),
that the electron density distributions in the alkali halides
have a large atomic component. The observation by Tre-
fry et al. (1987) that the electron density distributions
calculated for LiCl and NaF crystals with atomic wave
functions are strikingly similar to those calculated for the
crystals with ionic wave functions provides additional
support for Slater's assertion. That is, that the electron
density distributions in each of these crystals can be re-
garded as similar to that of the procrystal. Trefry et al.
(1987) also observed that a calculation of the electrostatic
energies for the alkali halides, assuming procrystal mod-
els for the electron density distributions, yields energies
that match observed cohesive energies with an ese ofO. 70
eV compared with those estimated with calculated Ma-
delung energies, which show an ese of 1.38 eV. It is note-
worthy that the Madelung energies calculated for the al-
kali halides systematically overestimate cohesive energies,
whereas procrystal electrostatic energies are more ran-
domly distributed around the cohesive energies and pro-
vide better estimates.

In an examination of the extent to which promolecule
radii correlate with bonded radii obtained from experi-
mental electron density maps in general, promolecule ra-
dii were also calculated for the coordinated polyhedra in
coesite, stishovite, MgO, NiO, CuCl, CuBr, BeO, and
CaF2, crystals for which experimental total electron den-
sity maps have been published. The resulting radii, to-
gether with those calculated for the alkali halides with the
rock salt structure, are plotted in Figure 8 against the
bonded radii obtained from electron density maps. A lin-
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Fig. 8. Bonded radii, rb, obtained from experimental electron
density distributions measured for NaCl, RbCl, LiF, KCl, KBr,
coesite, stishovite, MgO, NiO, CuCl, CuBr, BeO, and CaF, vs.
promolecule radii, rp, calculated for the nonequivalent coordi-
nation polyhedra in each of these crystals with the bond lengths
and angles fixed at observed values.

ear regression analysis of these data shows that 97% of
the variation in the bonded radii can be explained in
terms of a linear dependence on the calculated promole-
cule radii. As the ese is 0.05 A, we conclude that the
electron density distribution in each of these crystals is
also indicated to have a large atomic component, like that
of the procrystal.

In their derivation of a list of crystal radii for the ox-
ides, Shannon and Prewitt (1969) and Shannon (1976)
obtained a crystal radius of 0.40 A for fourfold-coordi-
nate Si and a radius of 0.54 A for sixfold-coordinate Si,
requiring the SiO bond length in an octahedron to be 0.14
A longer, on average, than it is in a tetrahedron. In con-
trast, the radius of the oxide ion obtained in their study
shows a much smaller increase (0.02 A) for a change in
coordination number from 2 to 3. As observed above,
the total electron density maps recorded for the silica
polymorphs indicate that the bonded radius of the 0 atom
increases 0.12 A with an increase in its coordination
number from 2 to 3, whereas that of the Si atom is in-
dicated to increase by only 0.04 A with an increase of
coordination number from 4 to 6. In other words, it is
the bonded radii of the oxide anion that show the larger
increase in size with increasing coordination number,
whereas in the case of crystal radii, the reverse seems to
be true, with the cations showing the larger increase in
size with coordination number. On the other hand, bond-
ed radii recorded for Sand 0 increase at about the same
rate in S-containing hydroxyacid molecules with increas-
ing coordination of Sand R (SO) (Lindsay and Gibbs,
1988).
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As observed earlier, Q'Keeffe (1979) has shown that
the apparent radius of sixfold-coordinate N correlates lin-
early with the length of the XN bond. A similar result
obtains for bonded radii observed for the 0 atoms in the
silica polymorphs, for the 0, S, and N atoms in hydroxy-
acid, hydrosulfide, and hydronitride molecules, and for
the H atom in a variety of hydride diatomic molecules.
A calculation of the promolecule radii for the nitride an-
ion in VN, CrN, TiN, and ScN yields radii of 1.01, 1.02,
1.03, and 1.09 A for XN bonds oflength 2.06, 2.07, 2.12,

and 2.22 A, respectively. Although these radii are -0.25
A smaller than those derived by O'Keeffe (1979), they
are positively correlated with bond length, as observed,
with an r2 value of 0.99. These results support the obser-
vation by O'Keeffe (1977, 1979, 1981) that "it seems
quite clear that one should not ascribe a constant radius
to an ion, particularly to anions such as 02- and N3-."

DISCUSSION

Despite the successful use of lists of ionic radii in cor-
relating physical and chemical properties and in gener-
ating structural field maps, O'Keeffe (1981) argued that
these lists are little more than lists of bond lengths for
estimating the average separations between bonded at-
oms in coordinated polyhedra. He continued by asserting
that little significance should actually be attached to the
values of these radii other than that they are ordinal. It
is, after all, the bond lengths that are well known, not the
radii. Thus, it is the averaged bond lengths provided by
such lists that should be used to ascertain whether one
atom will substitute for another in a coordinated poly-
hedron without destabilizing a structure. For the same
reason, such bond lengths, rather than the radii them-
selves, should also be used to generate structural field
maps. Furthermore, the determination of coordination
numbers from radius ratio considerations is questionable
at best, particularly when the radius of the anion is not
constant but shows significant variations.

More than 30 years ago, Mooser and Pearson (1959)
showed that the coordination numbers adopted by the
atoms in a variety of binary compounds are related to
the average principal quantum number of the valence
electrons of a pair of bonded atoms and their electronega-
tivity difference rather than to radius ratio considera-
tions. More recently, Phillips (1970) showed that the co-
ordination numbers adopted by cations in a variety of
Xn}'B-n compounds appear to be governed in large part by
the fractional ionic character of their bonds. By plotting
the covalent energy gap widths against the ionic energy
gap widths for a large number of compounds, he found
that fourfold-coordinate compounds could be separated
from sixfold-coordinate compounds into disjoint sets, with
compounds with large covalent gaps adopting fourfold-
coordinate structures. An examination of compounds with
the CsCl-structure type with eightfold-coordinate cations
shows that these compounds can also be separated from
fourfold- and sixfold-coordinate compounds into another
disjoint set with large ionic band widths. As radius ratio

arguments fail to predict the observed coordination num-
bers for a number of the alkali halides as well as many
others (Phillips, 1974; O'Keeffe, 1977; Tossell, 1979), an
effort should be made to purge from textbooks the notion
that the coordination number of a cation in a coordinated
structure is governed by the relative sizes of the cation
and anion that make up the coordinated polyhedra. In
fact, Burdett (1982) finds it surprising that the radius ra-
tio rule is still being used as a predictive tool in crystal
chemistry, particularly in light of its utter failure to pre-
dict the correct coordination number for more than 40%
of the alkali halides (Phillips, 1974).

Bonded radii obtained from electron density maps show
that it is unreasonable to assume a unique radius for an-
ions like 02-, S2-, and N3- inasmuch as each is observed
to increase in a regular way with bond length. As ob-
served by O'Keeffe (1981), the term radius implies that
the electron density distribution of an atom is spherical
and that it is the same in all directions. However, the
bonded radius of an atom, as the term implies, refers to
the outer extent of the atom as measured by the mini-
mum in the electron density in the direction of a bond.
It does not, however, provide a measure of the outer ex-
tent of an atom in other directions. Since the distance to
the minimum depends on the nature of the atom to which
it is bonded, often the atom is not spherical but may
exhibit several different "radii" rather than just one. It is
doubtful whether the electron density distribution about
an atom in a molecule or a crystal will ever be spherical.
Undoubtedly, it will be compressed by the atoms to which
it is bonded and extended toward the more empty regions,
as observed by Kurki-Suonio and Meisalo (1966) for the
fluoride ion in CaF2. The term radius is clearly unsatis-
factory when used in this context, as argued by O'Keeffe,
but its niche is so well carved into the parlance of crystal
chemistry that it would seem counterproductive to dis-
card it at this late date in favor of another term.

Finally, the determination of accurate bonded radii from
the electron density distribution in a crystal using X-ray
diffraction data is a nontrivial and difficult undertaking
that requires a variety of favorable experimental condi-
tions and utmost care in data reduction (Downs, 1991).
Nonetheless, as demonstrated in this study, promolecule
radii calculated for the component-coordinated polyhe-
dra in a crystal reproduce bonded radii obtained from
experimental electron density maps to within -0.05 A.
As such radii are easy to calculate, they can be obtained
for any coordinated structure, providing the structure is
known. In addition to providing a meaningful measure
of atomic size, such radii provide a basis for understand-
ing and correlating physical and chemical properties.
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ApPENDIX 1.

The goal of this appendix is to present a strategy for
calculating the electron density distribution for a promol-
ecule, i.e., an array of atoms whose electron density dis-
tributions have each been spherically averaged and are
independent of one another. Suppose that the wave func-
tion of an electron on an atom isolated from this array is
defined by Rn,(r)Y'm(O,~), then the charge density of the
electron, R~/(r)Yfm(O,~), can be spherically averaged over
the values of the polar angles 0 and ~ for a given value
of r by evaluating the integral

12n In R~/(r)nm(O,~)r2sin 0 dO d~

(p(r) = 2n n

1 1 r2sin 0 dOd~

R~/(r)r212n In nm(O,~)sin 0 dOd~

r212n In sin 0 dOd~

Since

r2 12n In sin 0 dO d~ = 47rr2

defines the surface area of a sphere of radius r, and since
the spherical harmonics, Y1m(O,~),are normalized

it follows for a single electron that

( )
r2Rl(r) Rl(r)

(p r )
=

_
4 2 =

_
4

.
7rr 7r

As the independence of nand l is irrelevant because the
charge density has been spherically averaged, both terms
can be consolidated into a single term, t = nl, where t
defines electron type (i.e., Is, 2s, 2p, etc.). When more
than one atom is considered, the Rt associated with an
electron of some atom a will be denoted by Rat.

According to the discussion in Clementi and Roetti
(1974), given an atom a and one of its electrons of type
t, Rat can be expressed as a linear combination of Slater
type orbitals, denoted (STO),p(r):

Rat(r) = ~ c"p(STO),p(r)
Ap

for choices of the parameters Aand p that are appropriate
for an atom a and a type of electron t. The expression for
(STO)AP(r) is given by (Slater, 1930)

The values of tp and CAPwere determined in SCF calcu-
lations that minimize the total energy of the atom a. The
resulting ~AP and c"p values used in this study to calculate
promolecule charge densities for ground-state neutral at-
oms with Z ::::;54 are given by Clementi and Roetti (1974).

Given an array of independent atoms a with types of
electrons t, the promolecule electron density function pep)
for this array can be calculated at each point in space,
represented by the end point of a vector p emanating
from a chosen origin. This is done with the formula

where Nat is the number of electrons of type t in atom a
and da(p) is the distance from the center of any atom a
in the promolecule to the end point of p.

To accomplish the calculations presented in this paper,
a Fortran 77 program called Promin was written. Given
any two atoms, a, and a2, in a promolecule, Promin finds
the point along the line between a, and a2 at which pcp)
is minimum, yielding the promolecule radii of a, and a2.
An analytic gradient is calculated at this minimum point
to determine whether it qualifies as a (3, -1) or a bond
critical point in a three-dimensional ball around the point
(Bader, 1990).


