The crystal structure of aravaipaite

Anthony R. KAMPF*

Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, U.S.A.

Abstract

The crystal structure of aravaipaite, $\mathrm{Pb}_{3} \mathrm{AlF}_{9} \cdot \mathrm{H}_{2} \mathrm{O}$, monoclinic, $P 2_{1} / n, a=25.048(4), b=5.8459(8)$, $c=5.6805(7) \AA, \beta=94.013(3)^{\circ}, V=829.7(2) \AA^{3}, Z=4$, was solved by direct methods and refined by full-matrix least-squares techniques to $R=0.049$ for 1170 observed reflections $\left[F_{\mathrm{o}}>4 \sigma\left(F_{\mathrm{o}}\right)\right.$] and $R=$ 0.089 for all 1820 reflections collected using MoK α X-radiation and a CCD-based detector. The structure of aravaipaite contains a square-packed layer of F atoms on either side of which are bonded Pb atoms in a fluorite $\left(\beta-\mathrm{PbF}_{2}\right)$-type configuration. This layer parallel to $\{100\}$ serves as a template to which on both sides are attached AlF_{6} octahedra and $\mathrm{PbF}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ polyhedra. The resulting thick slabs are connected via $\mathrm{Pb}-\mathrm{O}-\mathrm{Pb}$ and $\mathrm{Al}-\mathrm{F}-\mathrm{Pb}$ bonds. The two nonequivalent Pb atoms in the fluoritetype layer are each coordinated to 11 F atoms and exhibit typical lone-pair behavior.

Aravaipaite was originally reported to be triclinic. The structure analysis yielded the new monoclinic cell provided above and required the following revisions in the mineral's description. Morphology: forms $\{100\}$ and $\{401\}$; lamellar on $\{100\}$. Twinning: polysynthetic on $\{100\}$. Cleavage: $\{100\}$ perfect micaceous, $\{011\}$ good, $\{010\}$ and $\{001\}$ fair. Density (calc.): $6.703 \mathrm{~g} / \mathrm{cm}^{3}$. Optical orientation: $\mathrm{X}=b ; \mathrm{Z} \wedge a=24^{\circ}$ in the obtuse angle β. A powder pattern calculated from the structure data is also provided.

INTRODUCTION

Aravaipaite is one of six new lead-fluoride minerals from the Grand Reef mine in the Aravaipa mining district of Graham County, Arizona; the others are grandreefite, pseudograndreefite, laurelite, artroeite, and calcioaravaipaite (Kampf et al. 1989; Kampf and Foord 1995; Kampf and Foord 1996). The solution of the structure of grandreefite (Kampf 1991) and the partial solution of the structure of pseudograndreefite have shown these minerals to contain layer fragments of the $\beta-\mathrm{PbF}_{2}$ (fluorite) structure. Based upon cell dimensions, Kampf et al. (1989) and Kampf and Foord (1996) suggested that the minerals aravaipaite and calcioaravaipaite probably also contain such layer fragments. The present study was undertaken to determine the crystal structure of aravaipaite.

Experimental Methods

Cell determination

Single-crystal X-ray diffractometer studies were conducted on a thin tabular crystal fragment of aravaipaite from the Grand Reef mine provided by William W. Pinch. The fragment showed no evidence of twinning under either optical or diffraction study. This study showed aravaipaite to be monoclinic, rather than triclinic as originally reported by Kampf et al. (1989). The poor quality and twinning of the crystals used in the original study contributed to the misinterpretation of the crystal symmetry. The new cell parameters refined from the peak positions ob-

[^0]tained from the structure data collection are provided in Table 1 along with the original cell parameters. Also reported in Table 1 are other descriptive data which require revision in light of the new cell.

Structure determination

X-ray intensity data were collected using a Bruker PLATFORM 3-circle goniometer equipped with a 1K SMART CCD detector. A full sphere of three-dimensional data were collected. Fifty duplicate frames acquired at the end of the data collec-

Table 1. Descriptive data for aravaipaite

	This study*	Kampf et al (1989)
Cell parameters	Monoclinic, $P 2_{1} / n$	Triclinic, P1 or $P{ }^{-1}$
	$a=25.048(4) \AA$	$a=5.842(2) \AA$
	$b=5.8459(8) \AA$	$b=25.20$ (5) A
	$c=5.6805(7) \AA$	$c=5.652(2) \AA$
		$\alpha=93.84(4)^{\circ}$
	$\beta=94.013(3)^{\circ}$	$\beta=90.14(4)^{\circ}$
		$\gamma=85.28(4)^{\circ}$
	$V=829.7(2) \AA^{3}$	$V=827(2) \AA^{3}$
	$Z=4$	$Z=4$
Morphology	forms $\{100\}$ and $\{401\}$;	forms $\{010\}$ and $\{041\}$;
Twinning	polysynthetic on $\{100\}$	polysynthetic on $\{010\}$
Cleavage	\{100\} perfect micaceous,	
	\{011\} good, $\{010\}$ and \{001\} fair	\{100\}, \{001\}, \{101\} and \{101\} good
Optical orientation	$\mathrm{X}=b ; \mathrm{Z} \wedge a=24^{\circ} \mathrm{in}$	Euler angles: $\phi=67^{\circ}, \psi$
	the obtuse angle β	$60^{\circ}, \theta=76^{\circ}$
Density (calc)	$6.703 \mathrm{~g} / \mathrm{cm}^{3}$	$6.37 \mathrm{~g} / \mathrm{cm}^{3}$
* Morphology, twinning, and optical orientation were obtained by transforming the data reported by Kampf et al. (1989); cleavage data are based on new observations; density is based on structural formula.		

tion indicated that no significant decay had taken place. The measured intensities were corrected for Lorentz and polarization effects using the program SAINT and an empirical absorption correction was applied using the program SADABS.

The SHELXL97 software (Sheldrick 1997) was used for the determination and refinement of the structure. The metal atoms (Pb and Al) and several of the F atoms were readily located by direct methods. The positions of the remaining F and O atoms were obtained from subsequent difference-Fourier

Table 2. Data collection and structure refinement details for aravaipaite

Diffractometer	Bruker SMART Platform CCD
X-ray radiation / power	MoK $\alpha(\lambda=0.71073 \AA) / 50 \mathrm{kV}$, 45 mA
Temperature	301(2) K
Absorption coefficient	$60.948 \mathrm{~mm}^{-1}$
F(000)	1400
Crystal size	$0.10 \times 0.10 \times 0.02 \mathrm{~mm}$
Frame number / width /time	$2100 / 0.3^{\circ}$ in $\omega / 30 \mathrm{~s}$
θ range	1.63 to 28.22°
Index ranges	$-26 \leq h \leq 30,-3 \leq k \leq 7,-7 \leq 1 \leq 3$
Reflections collected	3600
Independent reflections	1820 [$\left.R_{\text {int }}{ }^{*}=0.0384\right]$
Reflections, $F_{0}>4 \sigma\left(F_{0}\right)$	1170
Completeness to $\theta=28.22^{\circ}$	89.0\%
Refinement method	Full-matrix least-squares on F^{2}
Parameters refined	127
$R_{\text {int }}$ before / after abs. corr.	25.0 / 13.3\%
GooF \dagger	0.954
R indices [$F_{0}>4 \sigma\left(F_{0}\right)$]	$R(F) \ddagger=0.049, \mathrm{w} R\left(F^{2}\right) \S=0.115$
R indices (all data)	$R(F)=0.089, \mathrm{w} R\left(F^{2}\right)=0.131$
Largest diff. peak / hole	+4.03/-3.54e/ ${ }^{3}$
${ }^{*} R_{\text {int }}=\Sigma \mid F_{0}^{2}-F_{0}^{2}($ mean $) \mid / \Sigma\left[F_{0}^{2}\right]$.	
\dagger GooF $=S=\left\{\Sigma\left[w\left(F_{o}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] /(n-p)\right\}^{1 / 2}$.	
$\ddagger R(F)=\Sigma\| \| F_{0}\left\|-\left\|F_{\mathrm{c}}\right\|\right\| / \Sigma\left\|F_{\mathrm{o}}\right\|$	
$\S w R\left(F^{2}\right)=\left\{\Sigma\left[w\left(F_{o}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{o}^{2}\right)^{2}\right]\right\}^{1 / 2}$.	
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(a P)^{2}+b P\right]$	where P is $\left[2 F_{c}^{2}+\operatorname{Max}\left(F_{0}^{2}, 0\right)\right] / 3$.

TABLE 3. Atomic coordinates and equivalent isotropic displacement parameters for aravaipaite

x				y
z	$U_{\text {eq }}$			
Pb1	$0.06747(4)$	$0.83423(13)$	$0.69379(14)$	$0.0150(2)$
Pb2	$0.19124(4)$	$0.82727(14)$	$0.24796(16)$	$0.0179(2)$
Pb3	$0.19100(4)$	$0.36170(14)$	$0.72273(15)$	$0.0156(2)$
Al	$0.0960(3)$	$0.3161(11)$	$0.2001(11)$	$0.010(1)$
F1	$0.1124(5)$	$0.149(2)$	$0.943(2)$	$0.026(3)$
F2	$0.1678(5)$	$0.368(2)$	$0.259(2)$	$0.026(3)$
F3	$0.0261(5)$	$0.271(3)$	$0.141(2)$	$0.027(3)$
F4	$0.0847(6)$	$0.464(2)$	$0.472(2)$	$0.024(3)$
F5	$0.1038(6)$	$0.055(2)$	$0.379(3)$	$0.032(4)$
F6	$0.0942(7)$	$0.571(2)$	$0.033(3)$	$0.037(4)$
F7	$0.2542(4)$	$0.580(2)$	$0.497(1)$	$0.012(3)$
F8	$0.2514(5)$	$0.577(2)$	$0.997(1)$	$0.015(3)$
F9	$0.1653(6)$	$0.764(2)$	$0.683(3)$	$0.029(4)$
O	$0.9925(7)$	$0.778(3)$	$0.344(3)$	$0.021(4)$

syntheses. In subsequent refinement cycles, anisotropic displacement parameters for all non-H atoms were refined. Hydrogen atoms could not be located, but hydrogen bonds were surmised based upon valence-bond and geometrical considerations.

Table 2 gives the details of the collection and refinement, Table 3 the final fractional coordinates and equivalent isotropic displacement parameters, Table 4 the anisotropic displacement parameters, Table 5^{1} the observed and calculated structure factors, Table 6 interatomic distances and angles, Table 7 the bond valences, and Table 8 the powder pattern calculated from the structure data.

DESCRIPTION OF THE STRUCTURE

The structure of aravaipaite contains a square-packed layer of F atoms on either side of which are bonded Pb atoms in a fluorite $\left(\beta-\mathrm{PbF}_{2}\right)$-type configuration. This layer parallel to $\{100\}$ serves as a template to which on both sides are attached AlF_{6} octahedra and $\mathrm{PbF}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ polyhedra. The resulting thick slabs are connected via $\mathrm{Pb}-\mathrm{O}-\mathrm{Pb}$ and $\mathrm{Al}-\mathrm{F}-\mathrm{Pb}$ bonds. The structure down [010] is shown in Figure 1.

Fluorite ($\beta-\mathrm{PbF}_{2}$) -type layer

The fluorite $\left(\mathrm{CaF}_{2}\right)$ structure consists of square close-packed layers of F atoms with Ca atoms in alternating pockets above and below. Each Ca atom, sandwiched between successive F layers, is coordinated to eight F atoms at the corners of a cube. The edges of the resulting cubic unit cell are $a=5.463 \AA$. In isostructural $\beta-\mathrm{PbF}_{2}$, the lattice expands uniformly ($a=5.940$ \AA) to accommodate the larger Pb atoms and the F atoms are "forced" farther apart.

The fluorite-type layer parallel to $\{100\}$ in aravaipaite (Fig. 2) has layer dimensions $b=5.8459$ and $c=5.6805 \AA$. The smaller dimensions compared to those in $\beta-\mathrm{PbF}_{2}$ can be envisioned as resulting from a shift by the Pb atoms $(\mathrm{Pb} 2$ and Pb 3$)$ away from the plane of the F atoms (F7 and F8), thereby allowing the F atoms in the layer to move closer together.

[^1]Table 4. Anisotropic displacement parameters for aravaipaite

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Pb1	$0.0178(5)$	$0.0126(4)$	$0.0148(4)$	$0.0012(4)$	$0.0016(3)$	$-0.0001(4)$
Pb2	$0.0179(5)$	$0.0148(4)$	$0.0209(4)$	$-0.0008(4)$	$0.0009(4)$	$-0.0010(4)$
Pb3	$0.0184(5)$	$0.0139(4)$	$0.0146(4)$	$-0.004(4)$	$0.0013(3)$	$-0.0018(4)$
A1	$0.012(3)$	$0.011(3)$	$0.008(3)$	$0.004(3)$	$0.002(3)$	$-0.003(3)$
F1	$0.014(7)$	$0.041(8)$	$0.023(7)$	$-0.021(7)$	$0.005(6)$	$-0.007(7)$
F2	$0.012(7)$	$0.029(7)$	$0.037(7)$	$-0.004(7)$	$-0.005(6)$	$-0.008(6)$
F3	$0.011(7)$	$0.053(9)$	$0.015(6)$	$0.004(7)$	$-0.006(6)$	$-0.003(7)$
F4	$0.040(9)$	$0.011(5)$	$0.021(7)$	$-0.008(6)$	$0.003(7)$	$-0.004(6)$
F5	$0.038(9)$	$0.019(6)$	$0.043(9)$	$0.018(7)$	$0.025(8)$	$0.013(7)$
F6	$0.045(10)$	$0.029(7)$	$0.036(7)$	$0.014(8)$	$0.006(8)$	$0.006(8)$
F7	$0.003(6)$	$0.014(6)$	$0.020(7)$	$-0.001(5)$	$0.002(5)$	$0.004(5)$
F8	$0.017(7)$	$0.012(6)$	$0.016(7)$	$0.003(5)$	$-0.003(6)$	$-0.003(5)$
F9	$0.033(9)$	$0.019(6)$	$0.038(8)$	$-0.008(7)$	$0.02017)$	$-0.005(6)$
O	$0.023(9)$	$0.023(8)$	$0.018(8)$	$0.005(8)$	$0.001(7)$	$-0.001(8)$

Table 6. Bond lengths (\AA), AlF $_{6}$ octahedral edge lengths (\AA), and bond angles in aravaipaite

Al-F6	1.76		Pb1-F5	2.43	Pb2-F8	2.45	Pb3-F9	2.45
Al-F3	1.78		Pb1-F9	2.49	Pb2-F7	2.50	Pb3-F8	2.45
AI-F4	1.81		Pb1-F6	2.52	Pb2-F7	2.51	Pb3-F7	2.46
Al-F1	1.83		Pb1-F1	2.54	Pb2-F8	2.60	Pb3-F8	2.58
Al-F2	1.83		Pb1-F4	2.55	Pb2-F9	2.63	Pb3-F7	2.61
Al-F5	1.84		Pb1-O	2.66	Pb2-F5	2.71	Pb3-F2	2.66
AI-F	1.81		Pb1-F3	2.66	Pb2-F2	2.75	Pb3-F1	2.71
F2-F6	2.47	86.9°	Pb1-O	2.72	Pb2-F6	3.04	Pb3-F4	2.99
F4-F5	2.51	86.8°	<Pb-F>	2.53	Pb2-F1	3.16	Pb3-F2	3.14
F1-F2	2.54	87.9°	< $\mathrm{Pb}-\mathrm{O}$ >	2.69	Pb2-F2	3.22	Pb3-F6	3.33
F2-F4	2.54	$88.4{ }^{\circ}$			Pb2-F9	3.25	Pb3-F5	3.35
F3-F6	2.55	92.0°			<Pb-F>	2.80	<Pb-F>	2.79
F1-F5	2.56	$88.6{ }^{\circ}$						
F2-F5	2.56	$88.4{ }^{\circ}$						
F1-F6	2.56	$91 .{ }^{\circ}$			O-H1..F4	2.67		
F3-F4	2.57	91.3°			O-H2..F3	2.78		
F4-F6	2.60	$93.2{ }^{\circ}$			F3-O-F4	104.8°		
F1-F3	2.60	$92.5{ }^{\circ}$						
F3-F5	2.62	$92.8{ }^{\circ}$						
F-F	2.56	90.0°						

Note: Standard deviations for bond distances are 0.01 to 0.02 for $\mathrm{Pb}-\mathrm{F}, \mathrm{Pb}-\mathrm{O}$ and $\mathrm{Al}-\mathrm{F}$ and 0.02 for $\mathrm{F}-\mathrm{F}$ and $\mathrm{F}-\mathrm{O}$. Standard deviations for bond angles are 0.7 to 0.8°.

TABLE 7. Bond valences for aravaipaite

	F1	F2	F3	F4	F5	F6	F7	F8	F9	O	$\Sigma_{\mathrm{c}} v$
Pb1	0.253		0.183	0.243	0.336	0.265		0.289	0.425	1.993	
Pb2	0.048	0.184			0.160	0.066	0.556	0.540	0.237		
Pb3	0.160	0.234		0.075	0.028	0.030	0.520	0.549	0.326	1.791	
AI	0.468	0.458	0.532	0.486	0.453	0.554			1.923		
H1			0.190							0.810	
H2				0.210					1.000		
$\Sigma_{\mathrm{a}} v$	0.929	0.876	0.905	1.013	0.977	0.914	1.077	1.090	0.852	2.025	1.000

Notes: Constants from Brese and O'Keeffe (1991). Hydrogen bond valence based upon Brown and Altermatt (1985).

TABLE 8. Calculated powder pattern for aravaipaite

1	d	$h k l$	I	d	hkl
100	12.4930	200	27	2.2615	720
5	5.6922	110	4	2.2365	$\overline{6} 21$
10	5.6116	101	23	2.1756	$\overline{8} 02$
13	5.2949	210	7	2.1341	820
9	4.8454	$\overline{3} 01$	6	2.1159	612
6	4.7849	310	3	2.0592	11.0.1
10	4.5396	301	40	2.0360	$\overline{1} 22$
9	4.2683	410	11	2.0344	022
4	3.9843	111	18	2.0290	802
8	3.8853	501	5	2.0272	$\overline{11} \cdot 1 \cdot 1$
6	3.8128	211	4	2.0241	222
3	3.7985	510	11	2.0195	122
32	3.7305	$\overline{3} 11$	26	2.0130	920
5	3.6243	501	6	1.9664	821
81	3.5855	311	5	1.9615	$12 \cdot 1 \cdot 0$
46	3.4905	$\overline{4} 11$	3	1.9427	130
8	3.3918	610	8	1.9426	$\overline{10} \cdot 0.2$
46	3.3336	411	10	1.9422	11.1.1
89	3.2358	511	6	1.8925	$\overline{1} \overline{2} \cdot 1 \cdot 1$
54	3.1233	800	5	1.8435	$\overline{10} \cdot 1 \cdot 2$
47	3.0803	511	7	1.8169	12.1-1
9	2.9862	$\overline{6} 11$	23	1.7784	$\overline{4} 31$
4	2.9292	701	15	1.7726	$\overline{1} \overline{3} \cdot 1 \cdot 1$
12	2.9230	020	3	1.7626	213
46	2.9032	120	3	1.7587	$\overline{4} 13$
40	2.8333	002	20	1.7566	431
14	2.8058	202	14	1.7333	313
5	2.5977	021	11	1.7305	722
3	2.5650	$\overline{9} 01$	16	1.7283	513
8	2.5295	$\overline{2} 12$	3	1.7104	730
6	2.5272	221	10	1.7051	13.1.1
3	2.5028	$\overline{3} 21$	4	1.6995	$\overline{6} 31$
10	2.4986	10.0.0	4	1.6975	413
4	2.4576	321	4	1.6917	$\overline{6} 13$
4	2.3313	512	14	1.6818	$\overline{9} 22$
3	2.3102	412	5	1.6030	922
8	2.2975	10.1.0	5	1.5616	16.0.0
12	2.2698	602			

Figure 1. The structure of aravaipaite viewed along the b axis. Stippled octahedra are AlF_{6}, small shaded circles are Pb , large unshaded circles are F , large cross-hatched circles are $\mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)$, dotted lines are presumed hydrogen bonds.

Figure 2. The fluorite-type layer parallel to $\{100\}$ in aravaipaite. Broken circles indicate the positions of non-layer F9 and F2 atoms. Circles are drawn to scale $\left[\mathrm{R}\left(\mathrm{Pb}^{2+}\right)=1.19 \AA, \mathrm{R}\left(\mathrm{F}^{-}\right)=1.33 \AA\right]$.

The fluorite-type layer in aravaipaite not only defines the a and c cell parameters, it also provides a foundation or template for the organization of the other structural elements. The pockets between the Pb 2 and Pb 3 atoms above and below the squarepacked layer of F atoms (see Fig. 2) are alternately occupied by isolated F atoms (F9) and apical F atoms (F2) of the AlF_{6} octahedra. The opposite apex (F3) of the octahedron is thus constrained to point approximately away from the fluorite-type layer. The Pb 1 atoms then nestle between the AlF_{6} octahedra.

AlF $_{6}$ octahedron

In the AlF_{6} octahedron, the $\mathrm{Al}-\mathrm{F}$ bonds range from 1.76 to $1.84 \AA$ and the F-Al-F angles range from 86.8 to 93.2°. The F6, F3, and F4 atoms, forming the same octahedral face, corre-
spond to the three shortest Al-F bonds (1.76, 1.78, and $1.81 \AA$, respectively). The Al atom is, therefore, shifted toward this side of the octahedron and especially toward the F6-F3 edge. The shift is away from the Pb 2 and Pb 3 atoms of the fluorite layer and the non-layer Pb 1 , suggesting that cation-cation repulsion may be responsible.

Pb polyhedra

Pb 1 is coordinated to eight ligands, six F atoms, and two O atoms of $\mathrm{H}_{2} \mathrm{O}$ groups. Five of the F atoms (F1, F3, F4, F5, and F6) represent corners shared with five different AlF_{6} octahedra. The remaining ligand is an "isolated" F atom (F9) not contained in the fluorite-type layer. The $\mathrm{Pb} 1-\mathrm{F}$ distances range from 2.43 to $2.66 \AA$ with an average of $2.53 \AA$ and the $\mathrm{Pb} 1-\mathrm{O}$ distances are 2.66 and $2.72 \AA$, average $2.69 \AA$. Pb 1 is not shifted in its coordination polyhedron, indicating that the Pb^{2+} lone electron pair is not stereoactive. The $\mathrm{Pb}-\mathrm{F}$ and $\mathrm{Pb}-\mathrm{O}$ distances are consistent with those found in other $\mathrm{Pb}-\mathrm{F} / \mathrm{O}$ coordinations in which Pb^{2+} directional inert-pair ("lone-pair") electrons are not a factor. For example, the $\mathrm{PbF}_{4} \mathrm{O}_{4}$ polyhedron in grandreefite exhibits $\mathrm{Pb}-\mathrm{F}$ distances between 2.39 and $2.71 \AA$, average 2.55 \AA, and $\mathrm{Pb}-\mathrm{O}$ distances between 2.54 and $2.84 \AA$, average 2.70 \AA. The Pb 1 polyhedron $\left(\mathrm{PbF}_{6} \mathrm{O}_{2}\right)$ in aravaipaite (Fig. 3) approximates a bicapped trigonal prism, similar to the $\mathrm{PbF}_{4} \mathrm{O}_{4}$ polyhedron in grandreefite. The bond valence sum for Pb 1 is 1.99 v.u., very close to the ideal value.

Both Pb 2 and Pb 3 are coordinated to eleven F atoms at distances ranging from 2.44 to $3.35 \AA$. In each coordination, there are four short bonds to F7 and F8 atoms in the fluorite-type layer and one additional short bond to F9, the only other F atom not in the AlF_{6} octahedron. These short bonds are all within the range 2.44 to $2.63 \AA$. Except for one additional long $\mathrm{Pb} 2-\mathrm{F} 9$ bond ($3.24 \AA$), all other $\mathrm{Pb}-\mathrm{F}$ bonds are to F atoms in the AlF_{6} octahedra and these $\mathrm{Pb}-\mathrm{F}$ distances range from 2.66 to $3.35 \AA$. The Pb 2 polyhedron shares the $\mathrm{F} 1-\mathrm{F} 2-\mathrm{F} 5$ face with one AlF_{6} octahedron (at Pb-F distances of $3.16,3.22$, and $2.71 \AA$, respectively) and the F2-F6 edge with another (at 2.75 and 3.04 \AA, respectively). The Pb 3 polyhedron shares the F1-F2-F6 face with one AlF_{6} octahedron (at $2.71,3.14$, and $3.33 \AA$, respectively) and the F2-F4-F5 face with another (at 2.66, 2.99, and $3.35 \AA$, respectively). The bond valence sums for Pb 2 and Pb 3

Figure 3. Pb coordinations in aravaipaite with $\mathrm{Pb}-\mathrm{F}$ and $\mathrm{Pb}-\mathrm{O}$ bond distances shown. Orientations are the same as in Figure 1.
are 1.79 and 1.92 v.u., respectively. In both cases, extending the $\mathrm{Pb}-\mathrm{F}$ bond distance limit would bring the bond valence sums only slightly closer to the ideal value. The coordinations of Pb 2 and Pb 3 become twelve if the additional bonds $\mathrm{Pb} 2-\mathrm{F} 2$ (3.54 \AA) and Pb3-F9 ($3.56 \AA$) are included.

As described above, Pb 2 and Pb 3 are effectively shifted significantly off-center in their coordination polyhedra. Such behavior is typical of Pb atoms with lone-pair electrons. The positions of Pb 2 and Pb 3 suggest that their lone-pair electrons are directed away from the fluorite-type layer and toward the interlayer region containing the AlF_{6} octahedra and Pb 1 polyhedra.

ACKNOWLEDGMENTS

Structure data collection was performed in the X-ray Crystallography Laboratory of the University of California, Los Angeles, Department of Chemistry and Biochemistry. Saeed Khan of that laboratory is acknowledged for technical assistance. William W. Pinch provided the crystal used in this study. Marco Pasero (Università di Pisa) provided helpful comments.

REFERENCES CITED

Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192-197.
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic structure database. Acta Crystallographica, B41, 244-247.
Kampf, A.R. (1991) Grandreefite, $\mathrm{Pb}_{2} \mathrm{~F}_{2} \mathrm{SO}_{4}$: Crystal structure and relationship to the lanthanide oxide sulfates, $\mathrm{Ln}_{2} \mathrm{O}_{2} \mathrm{SO}_{4}$. American Mineralogist, 76, 278-282.
Kampf, A.R., Dunn, P.J., and Foord, E.E. (1989) Grandreefite, pseudograndreefite, laurelite, and aravaipaite: Four new minerals from the Grand Reef mine, Graham County, Arizona. American Mineralogist, 74, 927-933.
Kampf, A.R. and Foord, E.E. (1995) Artroeite, $\mathrm{PbAlF}_{3}(\mathrm{OH})_{2}$, a new mineral from the Grand Reef mine, Graham County, Arizona: Description and crystal structure. American Mineralogist, 80, 179-183.
Kampf, A.R. and Foord, E.E. (1996) Calcioaravaipaite, a new mineral, and associated lead fluoride minerals from the Grand Reef mine, Graham County, Arizona. Mineralogical Record, 27, 293-300.
Sheldrick, G.M. (1997) SHELXL97. Program for the refinement of crystal structures. University of Göttigen, Germany.

Manuscript received November 17, 2000
MANUSCRIPT ACCEPTED MARCH 12, 2001
Manuscript handled by James W. Downs

[^0]: * E-mail: akampf@nhm.org

[^1]: ${ }^{1}$ For a copy of Table 5, document item AM-01-067, contact the Business Office of the Mineralogical Society of America (see inside front cover of recent issue) for price information. Deposit items may also be available on the American Mineralogist web site (http://www.minsocam.org or current web address).

