THE

ANNALS

OF

PHILOSOPHY.

NEW SERIES.

JANUARY TO JUNE, 1823.

AND TWENTXOFIRST FROM THE COMMENCEMENT.
\geq

Minion:

Printed by C. Baldwin, New Britge-streel;
FOR'BALDWIN, CRADOCK, AND JOY,
PATERNOSTER-ROW.

$\mathbf{O s}_{5,1}, \quad$...

$$
\begin{aligned}
& \text { Sulphate of irom } 48 \cdot 84 \text { - } \\
& \text { Salphate of alamina. } 18.88
\end{aligned}
$$

$$
\begin{aligned}
& \text { 100:00 ... }
\end{aligned}
$$

Article IX.

On the Crystalline Forms of Artificial Salts. By H. J. Brooke, Esq. FRS.

(To the Editor of the Annals of Philosophy.)

DEAR SIR,

The introductory volume to the Science of Crybtalilography an which I have been for several months engaged; having pabeed through the press, I propose now to resume an examination of the crystallime forms of the artificial salts, a subject which has been hitherto much neglected, and of which, during the loget two years, we have frequently spoken.

As an evidence of the neglect with which the crystallagraphical characters of the productions of the laboratory have been treated, I may refer to the recent edition of Dr. Henry's Chen mistry; and I do this, not to impeach in the slightest degree the value of that work, but merely to rematk, that instances of imperfect and useless descriptions of crystalline forms are admitted into volumes otherwise of great worth.

The crystalline characters of the artificial salts will, if strictly attended to, frequently assist the researches of the chemist.

An examination of the forms, tand measurements of the angles of the crystalline deposits from his experimental processes, will immediately inform him whether his experiments have produced such results as he had anticipated, or whether his componds are new and unexpected. For this purpose, however, the reflective goniometer must be added to his other implements, and he will not fail soon to discover its value in reference to his pursuits.

Buit to be provided with the meats of effectually applyinge' this instrument, he must be acquainted with the forms, and the measurements of the angles of all the known crystals of those salts. During the last summer, I measured a considerable number of these, most of which I have to thank you for procuring for me, and for some others I am indebted to the kindness of Mr. 'Teschemacher. :Several I also prepared myself; and I shall still feel obliged to you, or to any of your frionde, for measurable crystals of any of these artificial compounds.

New Series, vol. v.

With a view to render the descriptions of these afisimpliand as practical－as possible，it is npt my intention to cepasider tham mathematically，and in relation to the theory of degrements． The information the cliemipt requires to be posssasped of cont cerning the crystals which may be formed during his operatiomp， is the character of their simplest or primary forms；＂their cleans ages where they can be given；their modified or secondary forms；the angles at which their planes severally incline to each other；with occasional notices on their predominating charaç ters，and on any peculiar habitudes which may be observed to belong to particular crystals．
Descriptions of several of the artificial salts，founded on these characters，will form the substance of this and some following communications．Thene will be accompanied by tigures whigh are not drawn with geometrical truth，and are intended meerely as diagrams to which the measurements of the crystals may be more conveniently referred，and which will，at the same tipee， comvey a general idea of the form of the substance desqizized！

Crystals deposited from the Oil of Cubebs．
Of the chemical nature of the sabstance of these crystala； which I received from Mr．Teschemacher，I know nothing．

The predominating form of the crystals is that of an octahedron with a rhombic base， as shown in fig． 1 ，measuring as follows：

$$
\begin{aligned}
& \text { P on } \mathbf{P}^{\prime} \text { about........ } 115^{\circ} 45^{\prime} \\
& \text { P over plane } v \quad 74 \\
& \text { P on } \text { P }^{\prime \prime} \text {............. } 145 \\
& \text { P on } \mathrm{P} \text { …........ } 14540 \\
& \boldsymbol{n} \text { onor.o........... } 165 \quad 0 \\
& \text { nonn n.:.............. } 151 \text {. } 0 \\
& \text { uon ai.. 90., } 0 \text {, }
\end{aligned}
$$

Arseniate of Potash．

The primary form of this substance may be regarded as a right square prism．
In the＇crystals I have measured，the termipal edges of the prism are replaced，as seen in fig． 2 ，measuring as follows：

$\left.\begin{array}{l} \mathbf{M}^{\prime} \text { on } \boldsymbol{c}, \\ \mathbf{c}^{\prime} \end{array}\right\} \ldots . .$

The prodominating form of of the：

Fig． 1.

Tig． 4.
n．． 4
 are uscid in the introductory piguma already qlhudpdifora；

 wicte the plane M^{\prime} is so much less than M as to confer on the crystal an appearance of the base being rectangular, but not square; thess efffording one of the namemus instances whickt will be found amolitg crystats, of de-
 vitution fronr regulatity and symmetry in their natural forms, by a disproportionate extension of some of their planes; a character which would frequently lead to and irimecentate deternination of their forms, if the goniometer were not resorted to. But the goniometer will generally correct thd erroneous conclusion derived from the appearance of the crys tal; as it has done in this instance, by showing that M on c, and \mathbf{M}^{\prime} 'on c^{\prime}, measure alike, which it is highly improbable they sthould do if the base of the prism were not square.

Chlorate of Potash.

The primary form is an oblique rhombic prism, some of the crystals being modified as in fig. 4. The cleavage is easy parallel to the planes M and \mathbf{M}^{\prime}, and the cleavage planes are brilliant, but the only erystals I have are 'too thin to obtain a cleavage plane parallel' to \mathbf{P}. The measurements are as follows :

Flg. 4.

Tartrate of Potash and Soda.-Rochelle, Sall.
The form derived from clearage is a right rhombic prism. This is modified in the crystals measured, as shown in fig. 5.

Fig. 5.

There is a peculiarity in all the crystals I have seen of this substance which I do not recollect to hadve observed in'sny others. They are, produced nearly in halves, and appear ta have rested of been forimed on planes which would have passed through the middle of the entire iryytaly One of these natural segments is shown in fig. 6. In

[^0] the plane f being then uppermost. In some of the segments, however, there is a slight deviation from this exactness of position of the planes f or h.

Nitrate of Soda.

The primary form is an obtuse rhomboid.

$$
\begin{aligned}
& \text { P on' } \mathrm{P}^{\prime} \ldots \\
& \text { P on } \mathbf{P}^{\prime \prime} \text {... } 7330
\end{aligned}
$$

knd there are not any modifications on the crystals measured. Oome of these are lengthened into apparently oblique chombic prisms, as shown by the prodiceed dotted lines in fig. 7 , but this disproportionate extension of some of the primary planes has been alroady stated not to be unfrequent among crystala.

1 am, dear Sir, yours truly;
Н. Ј. Вдооге.

I have just learned that Mr. Lery has very recently taken up this subject, and has measured and determined with a view to publica-
 tiou, the forms of many of the artificial crystals, "without" being aware of my having previously occupied myself in a similar manner. He has proceeded mathetnatically, and will probably still give his results to the public; and there can be no doubt that he will confer an additional interest on the inquiry.

These, however, are by no means so numerous or striking as those afforded by the greywacke of North Devon, a circumstance apparently adverse to the theory which would attribute these singular configurations to the agency of heat ; for we might certainly expect that the killas, which is easily affected by that agent, near as it is to the central granite, and traversed in all directions by various dykes and veins, would have exhibited more frequent traces of this nature than the refractory and unbending sandstones. But this is a question of mere hypothesis. This portion of the inferior slate does not (so far as my knowledge extends) contain any imbedded minerals; near Camelford, and at some other spots, 1 have observed in it small contemporaneous veins or nests (vugs, as they are provincially termed) of crystallized felspar and chlorite. Most of its varietics are readily fusible.
(To be continued.) -

Article IX.

On the Crystalline Forms of Artificial Salts. By H. J. Brooke, Esq. FRS.

(Continued from vol. v. p. 452.)
In my last communication I noticed the irregularity that frequently occurs in the forms of crystals, whether natural or produced by art, occasioned by an enlargement of some of the planes, and a consequent comparative diminution of others. This irregular character may be said to be almost general, and very frequently might lead to an erroneous determination of the true forms of crystals, if we do not attend sufficiently to the positions of their planes, to their cleavages, and to the measurements of their angles. Another circumstance will also tend to mislead us with regard to the forms of crystals, when compared with the drawings by which they are represented: this is the manner of their attachment to the mass to which they are united; sometimes they are attached by a lateral edge or plane of the figure exhibited in the drawing, and sometimes by the upper summit; in which latter case, the crystal would appear to be inverted, and the order of the lateral planes of several of the classes of prisms, when observed from left to right, would be reversed.

The measurement of corresponding planes on different crystals will frequently differ more than half a degree, and may occasion a difficulty in determining particular planes by measurement, when they meet at nearly the same angle. The angles given here are generally the mean of a considerable number of measurements.

The pritnary form deduced from cleavage is an oblique rhembic prism, the cleavages being parallel to the planes P, M, and M^{\prime}, of the annexed figure, Some or all of the secondary planes on that figure occur on many of the crystals. On some crystals only the planes k, or k and f, accompany the primary planes, and on ofhers only the planes a and g, with the addition sometimes of the planes h.

All the planes except f have been measured by the reflective goniometar.

\mathbf{P} on M		25^{\prime}
P on f.	136	nearly
P on a^{\prime}	103	35
\mathbf{M} on M^{\prime}	84	30
M on k.	137	45
M on h	132	15
M on g	156	54
M on g	135	50

Acetate of Zinc.

The crystals are very thin, flexible, and soft, and fissile parallel to P, but do not afford any other measurable cleavage planes.

The primary form indicated by the natural planes of the crystals is an oblique rhombic prism, measuring as follows :
P on M, or M^{\prime} 112° 28^{\wedge}
M on M^{\prime} $67 \quad 24$
P on h. 133 30
P on c. 100 00
P on c^{\prime} $80 \quad 00$
P on g, or $g^{\prime} \ldots . . .75$ 30

Binacetate of Copper.

The primary form developed by cleavage is an oblique rhombic prism, the cleavages being parallel to the planes $\mathbf{P} ; \mathbf{M}$, and \mathbf{M}^{\prime}, of the subjoined figure; the secondary planes c and g are the only ones I have observed on the crystals, which are sometimes produced in pairs, and united by the planes c, in such a manner as to exhibit a second entire plane P, joined by an acute angle to the lower acute angle of that which

is exhibited in front of the flgure, but inverted in its position so as to be terminated at its lower extremity by the planes g and c.

$$
\begin{aligned}
& \text { Pon M, or } \mathbf{M}^{\prime} \ldots \ldots . . \text {. } 105^{\circ} 30^{\circ} \\
& \mathbf{M} \text { on } \mathbf{M}^{\prime} \\
& 7200 \\
& \text { P on } c^{\prime} \\
& \text { P on } g \text {, or } g^{\prime} \ldots \ldots
\end{aligned}
$$

The planes \mathbf{M} and \mathbf{M}^{\prime} are generally curved, and the cleavage planes parallel to these partake also of the same character.

Sulphate of Magnesia.

The primary form of this substance has been given by the Abbe Haiuy as à right prism with a square base: Butorom the measurement of several crystals, and from the character of the secondary forms of some of those, the primary may be regarded as a right prism with a rhombic base, whose angles are $90^{\circ} 30^{\prime}$ and $89^{\circ} 30^{\prime}$.

I have found only one cleavage, which is parallel to the short diagonal of the prism, and consequently to the plane h of the accompanying figures.

Fig. 1 represents a crystal of a form which frequently occurs, and of which the following are the measurements :

$$
\begin{aligned}
& \text { M on } \mathrm{M}^{\prime} \text {. } 90^{\circ} \cdot 30^{\prime} \\
& \text { M on } h \\
& \text { M on e.......... } 12900 \\
& a \text { on } a^{\prime} \text {. } 120 \text { nearly . }
\end{aligned}
$$

Fig. 2 represents a form under which the crystals also frequently appear. In this form, only two of the four planes e are seen on each summit, and alternating in position

Fig. 1.

Fig. 2
 as shown in the figure.

On some of the crystals, however, which resemble this figure, the two other planes e may be perceived, but they are very minute.

Tartrate of Potash and Antimony-Emetic Tartar.

The general character of the crystals of this compound is that of an octahedron with a rhombic base. I cannot discover more than one distinct cleavage, which is parallel to the plane a of the accompanying figure.

The following are the nearest to coinciding measurements taken on several crystals:
P on P^{\prime} $108^{\circ} 16^{\prime}$
P over the edge onthe left.104
P on z^{2} 166
P on x_{2} 165 40 nearly15
a on P , or P^{\prime} 122 00
a o $\mathrm{n} y$ 90 00

The planes x and y are generally striated, and afford imperfect reflections; and the crystals are frequently elongated in the direction of one of the edges of the base, so
 that the plane P terminates in an edge instead of a point, an irregularity of figure common to all the classes of octahedrons.

Sulphate of Potash and Magnesia.

I have not found any cleavage of these crystals, but the predominating form, and which may be regarded as the primary, is an oblique rhombic prism, modified by the planes c, e, and h, and measuring as follows :
\mathbf{L} on \mathbf{M}, or \mathbf{M}^{\prime} 102° 20^{\prime}
M on M^{\prime}. 108 45
P on ϵ^{\prime} 116 45
\mathbf{P} on e, or e^{\prime} 154 30
P on h. 105 8

Ferroprussiate of Potash.

The crystals are soft, flexible, and very fissile parallel to the plane P of the annexed figure, and there is not any distinct cleavage that I have been able to perceive in any other direction. There are, however, in some crystals, apparent natural
 joints parallel to the planes P of this figure; these would give an octahedron for the primary form, which, from the angles of the secondary planes, is found to have a square base. The most distinct measurements are the

P on $\mathrm{P}^{\prime \prime}$	137°	00^{\prime}
\mathbf{P} or \mathbf{P}^{\prime} on ${ }^{\text {c }}$	111	30
a on l.	119	9
a on	90	0
e on e^{\prime}.	90	0

Bicarbonate of Potash.

The primary form of this substance is a right oblique-angled prism, which is not readily traced in the secondary crystals, but may be derived from cleavage, and is shown in fig. 1. There is also a cleavage parallel to a plane passing through the diagonals marked on the terminal planes.

| P on M, or T | 90° | 00° |
| :--- | :--- | :--- | :--- |
| M on the diagonal plane | 53 | 15 |
| M on T. $\ldots \ldots$. | 103 | 25 |

The planes which appear on the crystals are represented in fig. 2; but the planes e are sometimes very disproportionately extended, so as nearly to efface T and f, giving to the crystals the character of another primary form.

The planes T do not commonly occur on the crystals, and without these they nearly resemble a secondary form of the right rhombic prism; they may, however, be distinguished by the unequal inclination of M on the two adjacent planes. On cleaving

Fig. 2.
 or otherwise breaking the crystal, water may be observed between the laminæ, which probably occasions the measurements on the cleavage planes not accurately to agree.

This is also the case with many other of the factitious salts.
M on plane parallel to $f \ldots \ldots . . .127^{\circ} \cdot 35^{\prime}$
M on e 12645
T on e.............................. 15650
T on f. 128 50
e onf............................... 105 . 40
M on d 11100
d on $d^{\prime} .$.
Cyanuret of Mercury.
I have received for examination from Mr. Cooper, of Lambeth, some crystals obtained from oil of bitter almonds by digesting it with red oxide of mercury.

Mr. C. has also supplied me with some crystals of cyanuret of mercury, procured in the ordinary way by boiling the red oxide with prussian blue. The crystals derived from both of these sources correspond perfectly in their crystalline forms.

I have not succeeded in cleaving them, but from their measurements and modifications, a right square prism may be regarded as the primary form.

Fig. 1 represents the prism with the modifying planes which I have observed on two or three crystals, and on these only, out of a considerable number that I have examined.
Their general form is that shown in fig. 2, in which two of the planes a alternately efface all the other terminal planes at the two extremities of the prism. There are also many crystals which nearly resemble fig. 2, but in which the planes a and $a^{\prime \prime}$ are visible, although very minute. This irregularity of form is of the same character as has been already noticed as belonging to sulphate of magnesia. The measured angles are as followi:

Fig. 2.

Article X.

Astronomical Observations, 1823.
By Col. Beaufoy, FRS.
Bushey Heath, near Stanmare.
Latitude $51^{\circ} 37^{\prime} 44 \cdot 8^{\prime \prime}$ North. Longitude West in time $1^{\prime} \mathbf{2 0} 9 \mathbf{9 3}^{\prime \prime}$.

May-18. Emersion of 6 Leonis from the moon 15h $41^{\prime} 18^{\prime \prime}$ Siderial Time.

Article VI.

On the Crystalline Forms of Artifcial Salts.

 By.H, J. Brooke, Esq, FPS,(Ctontinued from p. 48.)
The crystallographical characters of natural and artificial pro\$uctions appear to have received leag general attention than thea pther branches of science connected with mineralogy. : have already alluded to the inadequate descriptions of crystalline forms contained in Dr. Henry's excellent wark on Chemistry ; and I may refer to another recent and yaluable publicatipy which happens to lie before me, Dr, Ure's Dictignary, fof abunt dant evidence of the neglect which the crystallographical character has experienced among chemists of the first rank.

Crystalline forms which are incompatible with each other are frequently quoted in these worka as belonging to the sama substance; and sometimes. those forms are deacribed in terms to whieh no very definita meaning can be attached; as wheye Andse lusite is said, in Dr, Ure's work, to cryatalize pecaaionally in rectangular four-sided prisms verging on thomboids.
The crystalline form of mopphia is given in. Dr. Henvy's work, on the authority of three different chemists, as a rectangular prism with a rhomboidal base; as a regular parallelopiped with oblique faces; and as a four-sided rectangutar prism; and Dr. Ure quotes the form given by Ohoulant, as a double four-sided pyramid with square or rectangular bases. The first of these forms is impossible, unless we suppose the base ollique to the axis of the prism, and then it is incompatible with the third and fourth. The second is not very intelligibly desoribed. The last two are not incompatille with that which is given below.
If we inquire into the causes which have oocasioned this neglect of a science, not really difficult ip itself, we shall perhaps find that it is owing chiefly to the very profound manner in which it has been treated hy the late Abbé Haüy, in whose. hands the subject first, assumed a striotly scientific form. His complicated analytical operations were prabably repulsive to ${ }^{*}$ most readers, and so much sa, that even in France there are scarcely, as I have been very recently informed by one of his friends, a dozen persons who have fallowed him in hig re-searches.
Another cause of the little acquaintance which appeans generally to exist with even the farms of crystals, may, perhaps, be traced to the nomenclature which the late Abbé established todesignate them ; by this they were presented to the reader as
independent rather than related forms, and the mind was thus led away from the consideration of their relations to each other, rather than assisted in cpmprehending them.
It is probable that the study of crystals will be much assisted by a general series of forms, serying as a type, with which all the crystals of different substances might be readily compared. This series I have attempted to supply in the volume already alluded to, which contains tables of all the modifications of which the simple crystalline forms are susceptible. -i
The letters placed on the figures which accompany these remarks correspond with those used in the tables here referred to; and by means of these, the reader may trace the relations of all the planes on these figures, to the simple primary form from which they are supposed theoretically to be derived: I have, therefore, omitted, in most instances, to give a figure of the primary form of the substances described.

Morphia.

These crystals are very minute, and have only one cleavage that I can perceive, parallel to the plane h. The primary form is a right rhombic prism, only the dateral planes of which appear on the crystals. For these I am indebted to Mr. R. Howard; of Stratford.

$$
\begin{aligned}
& \text { M on M'............. } 127^{\circ} 20^{\prime} \\
& \text { M on } h \text {. } 11620 \\
& h \text { on } c13220 \\
& \text { con } \boldsymbol{c}^{\circ} \\
& 9520
\end{aligned}
$$

Tartaric Acid. .

The crystals from which this form has been determined, were also given to me by Mr. R. Howard. I have not succeeded in cleaving them, but the primary form is an oblique rhombic prism. Fig. 1 exhibits the crystal as usually modified, with the planes symmetrically placed. Fig. 2 exhibits the same modified form, with the planes irregularly disposed as they appear in most of the crystals, the corresponding planes in both being marked with the same letters. This affords another instance of irregularity, which renders it not easy immediately to perceive. the relations of the several planes to each other.

	Pon M; or \mathbf{M}^{\prime}.....': 99°
	P on e, or $e^{\prime} \ldots \ldots \ldots \ldots{ }^{128}$
	P on a. ${ }^{134} 80$

Gallic Acid.

These crystals, which were prepared by Mr. R. Phillips, and are very minute, have one distinct cleavage parallel to the plane P, and apparently another parallel to M. The primary form is a doubly obloque prism, and the measurements are as follows:

Oxalic Acid.
The primary form is an oblique rhombic prism. There are distinct cleavages parallel to the planes M and M^{\prime}, but I have not observed any other. The crystals are usually attached by one of the lateral ends of the figure, in consequence of which the planes P, a, and c, appear like lateral planes of a prism, and $\mathbf{M}, \mathbf{M}^{\prime \prime}$, as its dihedral termination.

Fig. 1 exhibits the common form of the crystals; and fig. 2 a modified form which sometimes occurs, and not unfrequently with only one of the planes e apparent at the lateral extremity, the other not being visible.

$$
\begin{aligned}
& \text { P on M, or } \mathrm{M}^{\prime} \ldots . .8^{\circ} 30^{\prime} \\
& \text { M on } \mathrm{M}^{\prime} \text {. } 63 \text { - } 5 \\
& \text { P on a. } 12920 \\
& \text { P on } c^{\prime} \text {........... } 10315 \\
& \text { P on } e \text {; or } e^{\prime} \text {. } 107 \quad 00
\end{aligned}
$$

Fig. 1.

Fig. 2.

Citric Acid.
Cleaves readily parallel to the planes $\mathrm{M}, \mathrm{M}^{\prime}$, and h, of the annexed figure, but 1 can observe no cleavage in any other diraction.

From the character of the secondary planes, the primary form is a right rhombic prism, and the measurements taken chiefly on a crystal I received from M. Teschemacher, are nearly those
which follow. The arystals, however, se speadily lose their brilliant surfaces when exposed to the air, or even when inclosed in a bottle, that the measured angles of the secondary faces are less to be relied upon than those afforded by the eleavage planes.

Sulphate of Iron.-Sulphate of Cobalt.*

The erystalline form assigned by the Abbé Haüy to sulphate of iron is a rhomboid; but it was, I believe, first abserved by Dr. Wollaston, that its true form was an oblique rhombic prism. I do not find any published account of the ordinary figure of the crystals, or of the measurements of the planes; and as its form approaches very nearly to that of sulphate of cobalt, I am induced to give the measurements of both substances in reference to the annexed figure.

In sulphate of cobalt another plane sometimes appears as e_{s}, which measures about
 124° with P. And in both these sulphates there are also other planes a and e, which occur on some of the crystals.

Sulphate of iron. Sulphate \boldsymbol{q} cobrris.

The primary form has been determined from some very perfect and brilliant crystals which I have reeeived from M. Teschemacher, and the measurements given below have very nearly coincided on several of these.

Thene is a distinot cleavage parallet to the plane h, but apparently in no other direction. The primary form inferred from that of the crystals, as shown in fig. 1 , is a right rhombic prism.

> - For thin salt I am indebted to Mr. Coopes.

ㄷ. He 1.

Tig. 2.

Fig. 2 represents one of the warieties of interseated cryatals which occur yery frequently among the single onea, the nature of which will be readily understood from the similar lettem placed on the corresponding planes,

$$
\begin{aligned}
& \text { M on M'. } 107^{\circ} 26^{\prime} \\
& \text { M on } b \\
& \left.M^{\prime} \text { on } b^{\prime}\right\} \\
& 13352 \\
& \text { M on h................ } 12617 \\
& h \text { on } c \ldots, 11943 \\
& c \text { on } c^{\prime} \text {. } 120 \quad 34 \\
& c \text { on the lateral plane } \\
& c^{\prime} \text { fig. } 2 \text {................ } 11943
\end{aligned}
$$

Artiole ViI.

On the Constitution and Mode of Action of Volcanoes, in differeut Parts of the Eanth. By Alexander Von Humboldt.*

When we consider the influence which scientific travely into distant regions, and a more extended geographical knowledge, have for some centuries past exerted upon the study of nature, we soon discover how this influence has vasied aceording to the qbjeets of inquiry, which have been, on the one hand, the forms of the organic world, and, on the other, the inanimate formation of the earth ;the knowledge of rocks, their relative ages, and origin. Different forms of plants and animals enliven the earth in evory zone, as well in the plains, where the heat of the atmosphere is determined by the geographical latitude and the different inflexions of the isothermal lines, as where it changes suddenly on the steep decliyities of the mountains. Organic nature gives a peculiar phygiognomical character to every zone, which is not the case with the inorganic world where the solid crust of the earth is divested of its vegetable covering, The same rocks approaching

[^1]
Article IX.

On the Crystalline Forms of Artificial Salts. By H. J. Brooke, Esq. FRS.

(Continued from p. 288.)
Having dissolved and recrystallised several of the salts described in these communications, I have observed differences in the figures of what may be termed different crops of crystals obtained from the same solution. Having dissolved some chromate of soda, the crystals first deposited, or first crop, as we may term them, were all lengthened in the direction of the great diagonal of their terminal planes, so as to be almost acicular. These crystals having been taken out of the solution, a second crop was soon deposited, many of which nearly agreed in form with the engraved figure already given, but most of them were much ffattened or reduced in height, so as to become what has been termed tabular, and apparently bearing no relation to the slender crystals first produced.

The same difference of character is found to obtain in many other salts. When these varieties of figure occur, the goniometer will afford sufficient evidence that their differences are only apparent, and that they are really analogous forms whose character has been varied by a disproportionate extension of some of the planes of the crystals in particular directions.

Acetale of Lead.

I have received some brilliant crystals of this substance from Mr. R. Phillips, several of which have given measurements on the corresponding natural planes agreeing withim 3^{\prime} or 4^{\prime}, and affording an example of unusual regularity of form.

The crystals may be cleaved parallel to the lateral and terminal planes, of a right ablique angled prism, which may be regarded as its primary form. The only modification I have observed is exhibited in the annexed figure.

d on $d^{\text {d }}$	128°	0°
d on M	116	0
d on T	98	30
M on T		32

Oxalate of Ammonia.

I have not observed any distinct cleavage of the crystals of this salt, but their forms are referable to a right rhombic prism as the primary. They are subject, however, to an irregularity of
figure, analogous to some which have been before noticed; there being on some of the crystals only one of the planes b replacing each of the solid angles, gn which two are placed in the drawing, and these being the allernate planes. Many of the crystals present, however, the pairs of planes b, as shown in the figure.
P on M , or M^{\prime}. $90^{\circ} \quad 0^{\prime}$
Pon c, or c^{\prime} 14330
c on c^{\prime} 1070
c on h. 12630
\mathbf{M} on \mathbf{M}^{\prime} 1046
M on f 1423
M on h $127 \quad 57$
M on b 1210
M^{\prime} on 3 $97 \quad 21$

[^0]: - c is a dull plane, and occurs on only one of the crystals out of several that I have seen.

[^1]: - Read before the Royal Acadeny of Scieqpers of Belin, Jan. 94, 1893.

