Bull. Soc. fr. Minéral. Cristallogr. (1967). XC, 20-23.

Structure cristalline de la fresnoïte

PAR R. MASSE, J.-C. GRENIER ET A. DURIF, Laboratoire d'Électrostatique et de Physique du métal du C. N. R. S. (¹).

Résumé. — La structure de la fresnoïte Ba₂TiSi₂O₈ a été déterminée à l'aide de cristaux synthétiques. La maille quadratique : a = 8,52 Å, c = 5,21 Å contient deux unités moléculaires. Le groupe d'espace P₄bm a été retenu au cours de la détermination de la structure. Il s'agit d'un pyrosilicate. La formule chimique écrite : Ba₂TiOSi₂O₇ ferait mieux ressortir ses propriétés structurales.

Abstract. — The crystal structure of fresnoite, $Ba_2 TiSi_2O_8$, has been determined twodimensional Patterson and Fourier methods. The unit cell dimensions are : a = 8,52 Å, c = 5,21 Å. There are two molecules per unit cell and the space group is P4bm. In spite of its silicon oxygen ratio fresnoite is a sorosilicate. Its structural formula is $Ba_2 TiOSi_2O_7$.

La fresnoïte est un nouveau minéral récemment signalé par J. T. Alfors *et al.* (1965). Ces auteurs précisent que la maille est quadratique : a = 8,52 Å, c = 5,21 Å, qu'elle contient deux unités moléculaires, et donnent les trois groupes d'espace possibles : P $\overline{4}b2$, P4/mbm, et P4bm.

Nous avons préparé des cristaux de ce composé par synthèse d'un mélange d'oxydes en proportions convenables, porté à la fusion vers 1350° C et refroidi de 40° C par heure en moyenne. La réaction de synthèse serait :

$$2\text{BaO} + \text{TiO}_2 + 2\text{SiO}_2 \rightarrow \text{Ba}_2\text{TiSi}_2\text{O}_8$$

La forme cristallographique $\{110\}$ a été obtenue. Le caractère piézoélectrique de ces cristaux permet d'écarter l'hypothèse de la description du motif dans le groupe P4/mbm.

Données expérimentales.

Des diagrammes de Weissenberg des strates h k o et o k l ont été réalisés. Les taches de dif-

fraction ont été appréciées visuellement par comparaison à l'aide d'une échelle. La radiation utilisée est celle de la raie d'émission $K\alpha$ du molybdène. Les observations ont été corrigées des facteurs géométriques qui les affectaient, excepté du facteur d'absorption. Le coefficient de température moyen calculé est B = 0.4.

Étude cristallographique.

Une projection de Patterson dans le plan (001) a permis de localiser les atomes de baryum, de titane et de silicium respectivement en position 4 c, 2 a et 4 c du groupe spatial P4bm. Le groupe plan P4g associé au groupe P4bm est centrosymétrique. La contribution de l'atome de baryum étant élevée comparée à celle des autres éléments, nous avons supposé qu'elle déterminait le signe du facteur de structure F (hko) avec une forte probabilité.

Une projection de Fourier dans le plan (001) a confirmé les sites cristallographiques des éléments de baryum, titane et silicium et a fait apparaître ceux des atomes d'oxygène. Huit d'entre eux sont décrits par la position générale 8 d et les huit autres sont répartis suivant

⁽¹⁾ Rue des Martvrs, B. P. 319, 38-Grenoble.

FIG. 1. — Projection de Ca₂ZnSi₂O₇ dans le plan (001).

les positions 4 c, 2 b et 2 a. A ce stade, un rapprochement s'impose avec l'hardystonite : $Ca_2ZnSi_2O_7$ (Warren, 1930) (fig. 1). L'analogie des diagrammes de poudre précise ce rapprochement. L'affinement du modèle déduit de l'hardystonite conduit à un facteur de véracité :

$$\mathrm{R}=rac{\sum\left||\mathrm{F}_{o}\left(kh\mathrm{o}
ight)|-|\mathrm{F}_{e}\left(hk\mathrm{o}
ight)|
ight|}{\sum\left|\mathrm{F}_{o}\left(hk\mathrm{o}
ight)
ight|}=\mathrm{II}^{\circ\!\!/}_{0}.$$

La formule chimique de la fresnoïte écrite $Ba_2TiOSi_2O_7$ traduirait mieux ses propriétés structurales.

Une projection de Patterson dans le plan (100) a permis de déterminer les paramètres Z des atomes de titane et silicium par rapport à celui de l'atome de baryum, choisi égal à o. Les cotes des atomes d'oxygène se déduisent de considérations stériques. Un affinement sur l'ensemble des paramètres \boldsymbol{z} donne un facteur de véracité :

$$\mathbf{R} = \sum \left| \left| \mathbf{F}_{o} \left(\mathbf{o}kl \right) \right| - \left| \mathbf{F}_{c} \left(\mathbf{o}kl \right) \right| \right| / \sum \left| \mathbf{F}_{o} \left(\mathbf{o}kl \right) \right| = \mathbf{13} \frac{\mathbf{o}}{\mathbf{o}}.$$

Paramètres de position.

TABLEAU I.

POSITION	ÉLÉMENT	X	у	
4 C	$\begin{array}{c} \text{Ba} \\ \text{Ti} \\ \text{Si} \\ \text{O}_1 \\ \text{O}_2 \\ \text{O}_3 \\ \text{O}_4 \end{array}$	0,173	0,673	0,0
2 a		0,0	0,0	0,540
4 C		0,630	0,130	0,520
8 d		0,090	0,206	0,655
4 C		0,618	0,118	0,210
2 b		0,500	0,0	0,620
2 a		0,0	0,0	0,160

Les valeurs des paramètres de position sont précisées dans le tableau I.

Description de la structure.

L'ion Ba²⁺ possède un environnement de dix ions O²⁻ dont six sont des premiers voisins et quatre des seconds voisins. Les groupements pyrosilicates sont orientés parallèlement aux diagonales de base de la maille quadratique. Les distances interatomiques Si-O associées à l'atome d'oxygène de liaison des deux tétraèdres sont supérieures aux longueurs de liaison Si-O à l'intérieur d'un tétraèdre SiO₄²⁻. Les groupements Si₂O₇⁶⁻ déterminent autour de l'ion Ti⁴⁺ un voisinage carré d'ions O²⁻ auquel s'ajoute un ion O²⁻ en position 2 a : ce qui définit pour l'ion Ti⁴⁺ un entourage de cinq premiers voisins (fig. 2).

Distances interatomiques.

FIG. 2. — Projection de Ba₂TiSi₂O₈ dans le plan (001).

		TABL	EAU III.		
hko	$ \mathbf{F}_{o} $	$ \mathbf{F}_{\mathbf{c}} $	h k o	$ \mathbf{F}_{o} $	$ \mathbf{F}_{c} $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7,2 6,3 15,9 3,2 3,4 8,7 13,7 16,5 6,3 6,4 4,6 8,7 10,4 3,7 9,8 4,7	0,1 0,6 14,9 3,0 3,1 7,4 12,2 14,9 6,5 5,1 9,0 9,4 3,1 8,5 5,8	4 0 5 4 0 7 4 0 6 3 0 9 4 0 5 5 0 9 5 0 6 5 0 9 5 0 8 5 0 8 6 0 8 7 0 8 8 0 8 8 0	7,7 8,1 9,4 4,6 2,6 3,9 3,0 5,6 5,1 3,8 7,9 8,1 12,1 4,9 5,1 6,9	8,1 8,2 9,3 3,0 2,4 3,8 2,4 6,6 4,0 4,3 7,5 7,5 12,2 4,1 6,0 7,9
5 2 0 6 2 0 7 2 0 8 2 0 9 2 0	4,7 3,1 11,0 7,3 5,3	5, 8 3, 2 10, 9 6, 6 4, 7	5 1 0 7 1 0 4 3 0 8 3 0	0,9 0 0 0 0	7,9 0,7 2,0 1,2 2,1
10 2 0 11 2 0 3 3 0 5 3 0 7 3 0 9 3 0 11 3 0	2,9 5,3 15,4 8,8 7,6 6,1 6,9	2,3 5,3 15,0 9,4 6,6 6,6 6,1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0	0,2 2,0 1,5 0,1 0,3 0,1 1,6

Facteurs	de	structure observés	et	calculés		
pour Ba, TiSi, O.						

TABLEAU IV.

okl	$ \mathbf{F}_{o} $	$ \mathbf{F}_{c} $	o k	l	$ \mathbf{F}_o $	$ \mathbf{F}_e $
$ \begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 4 \end{array} $	13,2 29,3 17,8 20,4	13,8 28,1 17,0 19,7	0 6 0 6 0 8 0 8	5 6 0 1	11,2 9,4 3,5 17,3	11,5 10,4 4,1 15,5
0 0 5 0 2 0 0 2 1 0 2 2	14,0 11,0 21,1 12.8	12,0 8,3 17,1	0 8 0 8 0 8 0 8	3	6,5 16,1 4,5 9,3	7,1 14,8 6,0 9,4
0 2 3 0 2 4 0 2 5	12,0 15,3 8,2 8,6	14,5 8,8 8,2	0 8 0 12 0 12	,0 1	5,3 8,8 8,9	6,3 8,6 8,8
0 2 6 0 4 0 0 4 1 0 4 2	6,2 10,9 9,8 8,9	7,0 9,1 7,2 6,7	0 12 0 12 0 12 0 12	2 3 4 5	9,1 9,3 7,9 5,8	8,8 8,3 6,5 7,3
0 4 3 0 4 4 0 4 6 0 6 0	2,8 8,4 4,6 21,1	4,4 8,4 5,2 20,3	0 4 0 10 0 10 0 10	5 0 1 2	0 0 0 0	3,6 2,1 3,4 3,1 1.8
0 6 2 0 6 3 0 6 4	20,3 13,3 16,1	14,2 19,6 11,3 14,7	0 10 0 10 0 10 0 10	· · · · · · · · · · · · · · · · · · ·	0 0 0	1,8 1,1 0,7

Un environnement du titane apparenté a été signalé dans le composé $BaTi_4O_9$ (Templeton, 1960).

Manuscrit reçu le 20 décembre 1966.

BIBLIOGRAPHIE

ALFORS, J. T., STINSON, M. C., MATTHEWS, R. A. et PABST, A. (1965). -- Amer. Mineralogist, 50, 314. WARREN, B. E. and TRAUTZ, D. R. (1930).
 Z. Kristallogr. Dtsch., 75, 525.
 TEMPLETON, D. H. and DAUBEN, C. H. (1960).
 J. Chem. Phys., U. S. A., 32, 1515.

· .