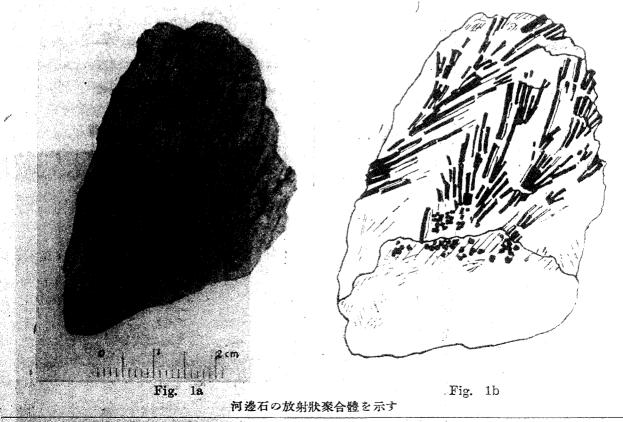
第56卷 第663號

地質學雜誌

1950年12月

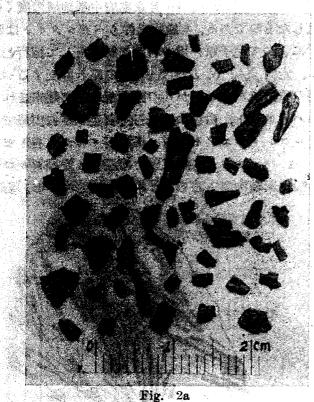

原著論文

含稀元素鑛物の研究(其の11) 京都府中郡河邊村白石産河邊石

田**久**保實太郎•鵜飼保郎•港 種雄

(1950年10月20日受理)

序言:本鑛物は京都府中郡河邊村河邊の東方 1.7km の地點で標高凡そ 160m の稜線上に露出す るペグマタイトに隨伴するもので著者の1人田久保が昭和24年10月京都府中郡地域に廣く分布す るペグマタイトに伴う稀元素鑛物を調査中發見したものである。本鑛物を伴うペグマタイトは昭和18 年3月から凡そ1ヶ年間信越化學工業株式會社によつて硝子原料用の石英を對象として稼行したもの で丘陵の斜面に沿い大規模の露天掘の跡がある。走向 N40°W 及び N40°E の略々直交するペグマタ イトの2脈が存在し N40°E 走向のものが後期の噴出であることが其の露頭部に於て觀察される。ペ グマタイトの主要構成鑛物は黑雲母,淡紅色のバーサイト,白色の曹長石,石英及び白雲母であるが 此の他茲に問題にせんとする河邊石の外變種ジルコン・チェフキン石・褐簾石・モナズ石・モノタイ ム・チタン鐵鑛・電氣石・黃鐵鑛を隨伴している。パーサイトは淡紅色で河邊石・變種ジルコン・褐 簾石・モナズ石・チェフキン石・ゼノタイムの稀元素鑛物は主としてこれと共生している。石英には



- 509 -

* 京都大學理學部地質學被物學教室 #質學課誌 第 56 卷 第 663 號 1950 年 12 月 **歴色石英及び白色石英があつて前者はベグマタイト岩漿の早期に晶出し屢々パーサイトど文象構造を** 示す。白色石英はベグマタイト岩浆固結の末期即ち熱水生成のもので塊状或は脈状を呈し硝子原料用 として稼行の對象になつたものである。其の周縁部には小規模に絹雲母が生成している。黄鐵鑛は専 ら此の石英に伴っているが其の量少く一般に褐鐵鑛に變化しているものが多い。

金駅及び性質: 河邊石は普通パーサイトと共生することは前述の通りであるが稀に煙色石英に伴 っている場合もある。徑 1~2mm の柱狀結晶でそれが放射狀或は樹枝狀の聚合體をなして産し Fig. 1a 及び Fig. 1b に示す様に恰も滋賀縣栗太郡田の上山地域のペグマタイト中に隨伴するイツトロタ ンタル石と其の産狀が似ている。

住状結晶の各個體は長さの方向に平行な凹溝が存在している。多數の柱状結晶を採つてこれを石膏
 の中に埋め石膏と共にこれを研磨して各の柱状結晶の斷面を擴大鏡下にて觀察したものは Fig. 2b に
 示す通りである。Fig. 2b の示す様に其の斷面が X 字形をなす双晶の平行連晶體であると考えられ

河邊石をパーサイト中から剝落したもの

る。色は黑色で新鮮な破面はフェルグソン石・ユークセン石 等の様に强い玻璃光澤を呈し質は脆い。本鑛物を包有するパ ーサイトは特に其の周線部に限つて濃紅色に着色され且つ軟 踢に分解されている。従つてペグマタイト中に其の所在を知 ること及びパーサイト中から針の先で本鑛物のみを剝落させ ることも極めて容易である。このことはペグマタイト中のこ の猿の蟻物の産狀と全く其の軌を同じくするものである。强 放射性鏡物であつて蟻物の細片を乾板上に並べ約 50 時間經 湯後に現像した乾光電異は Fig. 8 に示す通りである。又初 国物教授により計算管によつて測定した結果 Bohemia の

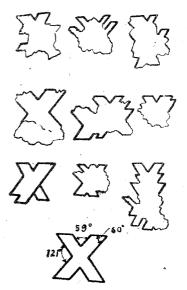
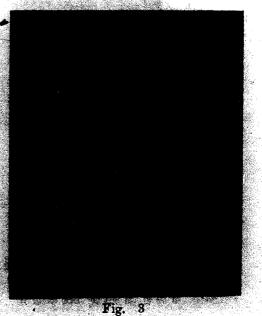



Fig. 2b 河邊石の柱狀結晶の斷面

Joachimstal 達瀝青ウラン鏡の凡そ5分の1の放射能强度を示す。薄片を檢鏡するに色は褐色で所謂 メタミクト狀態にあるが為めに種々の光學性の觀察は出來ない。 鏡物の細片を電氣爐で温度 900°C に於て 80min.間加熱してもメタミクト狀態の結晶化は殆ど起つていないことが顯微鏡的にも又 X 線的にも認められる。

化學分析 本鐵物を包有するバーサイト塊から針の先で丹念に本鑛物のみを剝取り且各鑛物の細片 は其の桂狀結晶の長さに平行な凹溝の中にバーサイトの分解物を附着するが故に更に細片の個々に就 て丹念に針の先で其の附着物を掻き取つた。新くして得た試料を適當の粒度に碎き比重3の重液で比 重3以下のものを浮游除去した。比重3以上の沈降した鑛物粒はよく洗滌し更に乾燥し擴大鏡下で觀 祭したるに大部分は黑色の本鑛物粒であるが尙極少量の恐く本鑛物の風化作用で變質したと思われる 黄褐色の鑛物粒が混在していた。然し特別にこれを選別分離することが困難であつたために其の儘細 末に粉碎して分析の試料に供した。本分析に於てTiO₂及び(Nb₂O₆+Ta₂O₆)の分離定量はそれら混 合酸化物の重硫酸曹達融成物を蓚酸アンモニウム溶液によつて處理した溶液に就て Schoeller 法¹⁾で 行い又 PbO の定量は Fenner 法²⁾に據つて行つた。分析の結果は次の通りである。試料1及び試料2 の分析値を比較して分析誤差範圍以上の相違は試料其の物の相違に由ることもあると思われる。即ち

本獲物は徑 1~2mm の柱狀結晶で純粹な 試料を 選別することが困難で前述の様に適當の粒度に碎 いて比重以上のものを採つて試料としたのであつ て兩試料が完全に同様であることは尤より期待出 來ない。從つて試料の相違に由ることも考えられ る。分析表に於て〔Ce〕はセル族稀土を示し〔Y〕 はイットリウム族稀土を示す。分析値の示す様に 稀土元素を多く含有する所謂イットリウム型の稀 土配分を示す簽物である。又 TiO₂を著量に含有 することから一見ポリクラス或はブロームストラ ンダイト類屬の礦物ではないかとも想像されるが 〔 (Nb₂O₂+Ta₂O₅)の含量が從來知られているこ れらと較べて著しく尠いことは茲に注目される點 である。

ALTERNATION OF A DESCRIPTION OF A DESCRIPT	A PARTY NAME AND PARTY AND PARTY OF TAXABLE PARTY.	
成 分	試料1	試料,2
CaO	1.15%	1.23%
MgO	0.53°	1.28
MnO	0.35	0.84
FeO	0,61	0.62
$\mathrm{Fe}_{2}\mathrm{O}_{3}$	9.67	12.93
Al_2O_3	2.69	0.34
Ce_2O_3	0.90	0.58
$[Ce]_2O_3$	0.05	1.63
$[Y]_2O_3$	23.91	22.21
${ m SiO}_2$	2.29	3.83
TiO_2	33.03	34.72
$(Nb_2O_5+Ta_2O_5)$	5.45	4.84
ThO_{2}	1.19	0.82
U_3O_8	12.64	9.95
H_2O^+	3.19	3.75
H_2O^{-}	0.92	0.44
PbO		0.13
計	98.57	100.14
	(港 分 析)	(田久保分析)

化學組成化學組成を決定するために特に上記試料2の分析に就て各成分の分子比を求めた。其の 場合4ットリウム稀土に就ては其れの硫酸鹽と酸化物の重量比から平均原子量を求めて計算した。

セル族稀土に就ては特に平均量を求めなかつたのであるがセル族稀土の原子量の平均値を採つて計算 した。尤よりこれでは不正確な値であるが元來セル族稀土の含量は尠いために其の誤差は殆ど無視す べき程度と思われる、ThO。分は其の含量尠いために一應無視した。各成分比の値は次の通りである

2 頃の麗基元素の酸化物	3 價の鹽基元素の酸化物
\mathbf{R}^{HO} : CaO	$R^{III}_{2}O_3: Fe_2O_3 \dots \dots$
MgO0:0817	Al_2O_3
- MnO	Ce_2O_3 0.0018 0.2079
F60	$[Ce]_2O_3^{\bullet} \dots 0.0039$
(UO ₂)O0.0854	$[Y]_2O_3$ 0.0841

日本元素の酸化物

冰分 H₂O⁺) ∲.....0.2083

弦に $R^{II}O_{3}$ $R^{III}_{2}O_{3}$ (TiO₂+SiO₂+Nb₂O₅+Ta₂O₅)及び $H_{2}O^{+}$ の分子比を比較すると次の結果となる。

 $\mathbf{R^{IIO}: R^{III}_{2}O_{3}: (TiO_{2} + SiO_{2} + Nb_{2}O_{5} + Ta_{2}O_{5}): H_{2}O^{\rightarrow}}$

=0.1094 : 0.2079 : 0.5155 : 0.2083

=1.05 : 2.00 : 4.96 : 2.00

-1:2:5:2

前記分析値に於て試料1に就き同様の比を求めると略々同様の結果となる。卽ち

 $\mathbf{R}^{\mathbf{II}}\mathbf{O}: \mathbf{R}^{\mathbf{III}}_{2}\mathbf{O}_{3}: (\mathbf{TiO}_{2} + \mathbf{SiO}_{2} + \mathbf{Nb}_{2}\mathbf{O}_{5} + \mathbf{Ta}_{2}\mathbf{O}_{5}) \mathbf{H}_{2}\mathbf{O}^{+}$

=0.0920: 0.1805: 0.4765: 0.1772

=1.02 : 2.00 : 5.28 : 1.96

-1:2:5:2

從つて本礦物の化學組成は次の結果となる。

 $\mathbf{R^{IIO} \bullet 2R^{II}}_{2}O_{3} \bullet 5 (\mathrm{TiO}_{2} + \mathrm{SiO}_{2} + \mathrm{Nb}_{2}O_{5} \bullet \mathrm{Ta}_{2}O_{5}) \bullet 2\mathrm{H}_{2}O$

= $\mathbf{R}^{\mathbf{II}}(\mathbf{R}^{\mathbf{III}}(\mathbf{OH}))_4 \cdot ((\mathbf{Ti}, \mathbf{Si}) \cdot \mathbf{O}_3, \{(\mathbf{Nb}, \mathbf{Ta})\mathbf{O}_3\}_2)_0$

上記の化學式が示す様に本鑛物は稀土元素・鐵・ウラン・カルシウム等のメタチタン酸・メタ珪酸・ メタニオブ酸及びメタタンタル酸鹽として正貧原子價の平衡が成立つているものと考えられる。 F. Machatschki³ はユークセン石ポリクラス系鑛物及びプリオール石ブロームストランダイト系鑛物に 就て XZ₂O₆ の一般式で示している。 茲に X は [Y], Ca, U 等の元素を示し Z は Ti, Nb, Ta 等 の元素を示す。今此の一般式の表し方に倣い本鑛物成分の X, Z 及び (0, OH) の値を計算すると次 の式で示されることになり略々 XZ₂O₆ の一般式に近似する。

試料 1. $X_{2788}Z_{6284}$ (0, OH)₁₈₁₄₃= $X_{0.89}Z_{2.00}$ (0, OH)_{5.77}

試料 2. $X_{2890}Z_{6395}$ (0, OH)₁₈₅₈₀ = $X_{0.90}Z_{2.00}$ (0, OH)_{5.31}

本研究に協力して頂いた初田甚一郎助教授に感謝する。又研究に要した費用は文部省科學研究費及び京都府地 下資源調査費に仰いだものであることを鼓に銘記して置く。

W. R. Schoeller; the Analytical Chemistry of Tantalum and Niobium, 1937, 54.
 C. N. Fenner, Amer. J. Sci, 5th Ser. 16 (1928), 369.

3) F. Machatschki, Chem. d. Erde, 7 (1932), 72.

4) W. C. Brögger, Min. südnorweg. Gronitpeg., 1906, 98.

Studies on the Minerals Containing Rare Elements (Part 11)

A New Mineral Found in Kobe-mura, Kyoto Prefecture, Japan

(Abstract)

Jitsutaro Takubo, Yasuo Ukai and Taneo. Minato

In a pegmatite croped in Kobe-mura, Kyoto prefecture, Japan, one of the writers (Takubo) had found a new mineral associated with rare element minerals such as tscheffkinite, allanite, monazite and xenotime. This mineral is prismatic in habit and the crystals are grouped in twin-like forms. Color black and luster vitreous. The chemical composition is expressed by a meta-titanate, niobate formula as shown as $R^{IIO} \cdot 2R^{III}_{2}O_{3} \cdot 5(TiO_{2}+SiO_{2}+Nb_{2}O_{5}+Ta_{2}O_{5}) \cdot 2H_{2}O =$ $R^{II}[R^{III}(OH)]_{4}[(Ti, Si)O_{3},[{Nb, Ta}O_{3}]_{2}]_{5}$ and it nearly corresponds to the general formula proposed by F. Machatschki for euxenite-polycrase and priorite-blomstrandite series. The content of TiO_{2} is, however, exceedingly high compared with that of polycrase or blomstrandite. So the writers propose here to call this mineral "Kobeite" after the name of the locality.