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Abstract: Tilkerodeite, ideally Pd2HgSe3, is a new platinum-group selenide from the Eskaborner
Stollen (Adit Eskaborn) at Tilkerode, Harz Mountains, Germany. Tilkerodeite crystals occur as euhedral
inclusions in tiemannite or as extremely fine-grained lamellar aggregates (grain-size up to 3 µm)
in a dolomite–ankerite matrix, together with clausthalite, tiemannite, jacutingaite, stibiopalladinite,
and native gold. Neighbouring Se-bearing minerals include tischendorfite and chrisstanleyite.
Tilkerodeite is opaque with a metallic luster, and is flexible in blade-like crystals, with perfect
basal cleavage {001}. In plane-polarized light, tilkerodeite is brownish-grey. It is weakly bireflectant,
and weakly pleochroic in shades of light-brown and grey. The anisotropy is weak, with rotation tints in
weak shades of greenish-brown and grey-brown. The range of reflectance is estimated in comparison
to clausthalite with 45–50%. Electron-microprobe analyses yield the mean composition (wt. %) Se
32.68, Hg 26.33, Pt 20.62, Pd 15.89, Pb 2.72, Cu 0.66, S 0.27, total 99.17 wt. %. The empirical formula
(based on six atoms pfu) is (Pd1.08Pt0.76Pb0.09Cu0.07)Σ2.00Hg0.95(Se2.98S0.07)Σ3.05. The ideal formula is
Pd2HgSe3. Tilkerodeite is trigonal, with Pt4Tl2Te6-type structure, space group P3m1, a = 7.325(9) Å,
c = 5.288(6) Å, V = 245.7(9) Å3, and Z = 2. It is the Pd-analogue of jacutingaite. Tilkerodeite
formed hydrothermally, possibly involving the alteration of tiemannite by low-temperature oxidizing
fluids. The new species has been approved by the IMA-CNMNC (2019-111) and is named after the
locality. Tilkerode is the most important selenide-bearing occurrence in Germany and type locality of
naumannite, eskebornite, and tischendorfite.

Keywords: tilkerodeite; Pd2HgSe3; jacutingaite; Pt2HgSe3; palladium; platinum; selenium; new
mineral; Tilkerode; Harz Mountains

1. Introduction

Tilkerode, in the eastern Harz Mountains, is the most important selenide deposit in Germany,
which was mined for iron (hematite) and native gold in the 18 and 19 Centuries [1]. It hosts 18 confirmed
selenides, and is the type locality for naumannite (Ag2Se), eskebornite (CuFeSe2), and tischendorfite
(Pd8Hg3Se9) [2].

This paper provides the description of a new platinum-group element (PGE) mineral, tilkerodeite,
ideally Pd2HgSe3, from Tilkerode. The new selenide was discovered as part of the re-examination of the
tischendorfite co-type material (14 newly mounted and polished thick sections taken from veinlet sample
No. 4154, Figure 1) and studied by polarized light microscopy (PLM), scanning electron microscopy
(SEM) combined with electron-probe microanalyses (EPMA), and electron back-scatter diffraction
(EBSD). This sample was collected from the Eskaborner Stollen (Eskaborn adit; 51◦38′3” North,
11◦19′4” East), at the 60-m level, 5 m north of the blind shaft IV [1].
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The new species and its name have been approved by the Commission on New Minerals,
Nomenclature and Classification (CNMNC) of the IMA, proposal n. 2019–111. The holotype polished
section is housed in the Mineral Collection at the Mineralogical Institute of the Technische Universität
Bergakademie Freiberg, Freiberg, Germany, under the inventory Number MiSa84670. The mineral
name is for the locality.

2. Materials and Methods

Tilkerodeite was studied for appearance and optical and physical properties by polarized light
microscopy (PLM). The tilkerodeite-containing sample was prepared for optical microscopy using
standard diamond polishing techniques. Sample preparation involved the following machinery and
materials: lapping and polishing machine type “Buehler Metaserv”, Buehler UK Ltd., Coventry, UK;
grinding and polishing machine type “Kent MK 2A”, Engis Ltd., UK; “Pellon” polishing chemotextile
type PAN-W, Hartfeld & Co., Allerød, Denmark; diamond suspension, water soluble (grain sizes
6 µm, 3 µm, 1 µm, 0.25 µm) type Gala-Tec GmbH, Kaiserslautern, Germany; and fixed abrasive steel
discs, consisting of diamond in steel-binding (grain sizes 600, 800, 1200 mesh). Optical studies were
performed using a “Leitz DMRM” polarizing microscope, Type 301-371-010, Leitz/Leica, Wetzlar,
Germany (air-objectives: PL Fluotar 50×, aperture 0.85 BD; PL APO 100×, aperture 0.90 BD; PL APO
150×, aperture 0.90 D). Digital photomicrographs were taken using a CANON EOS 70D camera
mounted on the microscope.
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of the new mineral and associated phases. Back-scatter electron (BSE) imaging was performed using 
a ZEISS 1550VP field emission SEM. EBSD analyses were performed using an HKL EBSD system on 
the ZEISS 1550VP SEM, operated at 20 kV and 6 nA in focused-beam mode with a 70° tilted stage and 
a variable pressure mode (25 Pa) using procedures described in Ma and Rossman (2008, 2009)[3,4]. 
The focused electron beam is several nanometers in diameter. The spatial resolution for diffracted 
backscatter electrons is ~30 nm in size. The EBSD system was calibrated using a single-crystal silicon 
standard. The structure was determined and cell constants were obtained by matching the 
experimental EBSD patterns with structures of Pd2HgSe3, Pt2HgSe3, other Pd−Hg−Se, and Pt−Hg−Se 

Figure 1. Cross section through Tilkerode sample No. 4154, the co-type specimen of the
tischendorfite- and chrisstanleyite-bearing dolomite/ankerite veinlet (partially reddish stained by
hematite), which forms a typical rubble breccia. The position of the gold-bearing Pt–Pd–Hg–Pb–Sb–Se
mineralization is marked by a green circle. Width of image 12 cm.

EPMA, high-resolution SEM, and EBSD were used to characterize the composition and structure
of the new mineral and associated phases. Back-scatter electron (BSE) imaging was performed
using a ZEISS 1550VP field emission SEM. EBSD analyses were performed using an HKL EBSD
system on the ZEISS 1550VP SEM, operated at 20 kV and 6 nA in focused-beam mode with a 70◦

tilted stage and a variable pressure mode (25 Pa) using procedures described in Ma and Rossman
(2008, 2009) [3,4]. The focused electron beam is several nanometers in diameter. The spatial resolution
for diffracted backscatter electrons is ~30 nm in size. The EBSD system was calibrated using a
single-crystal silicon standard. The structure was determined and cell constants were obtained by
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matching the experimental EBSD patterns with structures of Pd2HgSe3, Pt2HgSe3, other Pd–Hg–Se,
and Pt–Hg–Se phases. Quantitative wavelength-dispersive (WDS) elemental microanalysis was
performed using a JEOL 8200 electron microprobe (10 kV and 10 nA, focused beam). The focused
electron beam was ~120 nm in diameter. Analyses were processed with the CITZAF correction
procedure [5]. Mineral identification was also made by semi-quantitative energy-dispersive (EDS)
elemental analysis using a JEOL 8230 electron microprobe.

3. Results

3.1. Appearance

The selenides and native gold occur in a dolomite/ankerite vein, filling fractures and cementing
an older, strongly fragmented dolomite generation in a rubble breccia (Figure 1).

Tilkerodeite forms thin tabular or spindle-shaped crystals (up to 3 µm in length and 0.5 µm
in width); intersertal intergrowth with clausthalite (PbSe) and tiemannite (HgSe); and, more rarely,
stibiopalladinite (Pd5Sb2), jacutingaite (Pt2HgSe3), and native gold (Figures 2–5). Tilkerodeite crystals
of this association were studied for composition and structure. In the immediate vicinity of this
type of mineral assemblage occur tiemannite–(clausthalite) aggregates (of up to 2 mm in diameter),
which contain large quantities of tiny, oriented lamellae of what have been identified by EPMA-EDS
representing both tilkerodeite and jacutingaite (Figure 6). These aggregates have concave bulges
towards the adjacent dolomite, which show distinct corrosion features. This type of inclusion-rich
tiemannite is partially replaced by dolomite and/or clausthalite.
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Figure 2. Reflected plane-polarized light digital image in air showing tilkerodeite (til, crème-grey) with
clausthalite (cl, light-grey), jacutingaite (jac, crème-grey), native gold (light-yellow), and stibiopalladinite
(st, light crème-brown), in dolomite matrix (dark-grey). Width of image 75 µm.

3.2. Physical and Optical Properties

Tilkerodeite is black or grey in color and possesses a black streak. It is opaque in transmitted light,
exhibiting a metallic lustre. It is characterized by a distinct basal cleavage and parting parallel {001}.
The mineral is flexible, with distinct layered structure, forming laminated crystals that are partially
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curved. Cathodoluminescence was not observed. The relative polishing hardness of tilkerodeite in
comparison to clausthalite is estimated to ~3 Mohs.

Magnetic properties and density could not be measured owing to small grain size. Calculated
density is 9.67 g·cm−3, considering the empirical formula and EBSD unit-cell data reported in
Sections 3.3 and 3.4.
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Figure 5. SEM-BSE image of the area shown in the left rectangle in Figure 3.

In plane-polarized incident light, tilkerodeite is brownish-grey to greyish-white. In the assemblage
with clausthalite, it is weakly bireflectant, and weakly pleochroic in shades of brown and grey (Figure 2).
The anisotropy is weak, with rotation tints in weak shades of greenish-brown and grey-brown.
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Figure 6. Reflected plane-polarized light digital image in air of a tiemannite–clausthalite aggregate
containing a plethora of tiny, partly oriented lamellae of tilkerodeite and jacutingaite. The tiemannite
grain shows concave bulges towards the adjacent dolomite, and is partially replaced by clausthalite
(whitish-grey on the lower rim). Width of image 200 µm.
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Quantitative reflectance values could not be acquired due to grain-size restrictions. The range of
relative reflectance for tilkerodeite was estimated in comparison to clausthalite to 45–50%. Tilkerodeite
has a slightly lower reflectance compared to neighboring jacutingaite, likely related to its comparatively
larger Pd concentrations.

3.3. Chemical Composition

Table 1 compiles the analytical data for tilkerodeite (means of five spot analyses; ranges, 1δ
standard deviations (SD); and probe standards).

Table 1. Chemical data for tilkerodeite.

Constituent (wt. %) Mean Range SD Probe Standard

Pd 15.89 15.31–16.33 0.40 Pd
Pt 20.62 20.37–20.98 0.24 Pt
Pb 2.72 1.73–3.32 0.65 PbS
Cu 0.66 0.56–0.84 0.11 Cu
Hg 26.33 25.27–27.06 0.72 HgTe
Se 32.68 32.21–33.04 0.31 Se
S 0.27 0.26–0.30 0.02 PbS

Total 99.17 98.51–99.75 0.52

The mean chemical composition of type tilkerodeite is (wt. %) Se 32.68, Hg 26.33, Pt 20.62, Pd 15.89,
Pb 2.72, Cu 0.66, S 0.27, and sum 99.17. Considering structural data for jacutingaite [6], small quantities
of Pb and Cu are probably substituting for the platinum-group elements (PGE). Insignificant S
is replacing for Se. The empirical formula (based on 6 atoms pfu) is (Pd1.08Pt0.76Pb0.09Cu0.07)Σ2.00

Hg0.95(Se2.98S0.07)Σ3.05. The simplified formula is (Pd,Pt)2HgSe3. The ideal formula is Pd2HgSe3,
which requires Pd 32.72, Hg 30.85, Se 36.43, total 100 wt. %.

3.4. Crystal Structure

Grain size of the new mineral was too tiny to permit extraction of a fragment for conventional
single-crystal X-ray analysis. However, main parameters of crystal structure could be definitely resolved
by EBSD. The EBSD patterns of tilkerodeite (Figure 7) are indexed only by the P3m1 Pt4Tl2Te6-type
structure of synthetic Pd2HgSe3 [6] and jacutingaite Pt2HgSe3 [7]. The patterns give a best fit by a scaled
cell from endmember cells of Pd2HgSe3 [6] and Pt2HgSe3 [7] based on its empirical formula, with a
mean angular deviation of 0.45–0.50◦, revealing the cell parameters: a = 7.325(9) Å, c = 5.288(6) Å,
V = 245.7(9) Å3, and Z = 2. The general error of lattice parameters was estimated from its EBSD
indexing cell.
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X-ray powder diffraction data (Table 2, in Å for CuKα1, Bragg-Brentano geometry) were calculated
from the cell parameters of tilkerodeite, atomic coordinates of synthetic Pd2HgSe3 [6], and the
temperature factors of jacutingaite Pt2HgSe3 [7], with a formula of (Pd1.17Pt0.83)HgSe3 (simplified from
the empirical formula in this study), using Powder Cell version 2.4 [8].

Table 2. Calculated X-ray powder diffraction data for tilkerodeite (Irel > 1).

h k l d [Å] Irel h k l d [Å] Irel

1 0 0 6.3436 6 4 1 0 1.3843 1
0 0 1 5.2880 9 0 4 2 1.3600 2
0 1 1 4.0618 8 4 0 2 1.3600 10
1 1 0 3.6625 6 3 0 3 1.3540 1
2 0 0 3.1718 2 0 3 3 1.3540 1
1 1 1 3.0109 9 4 1 1 1.3392 1
2 0 1 2.7200 100 1 4 1 1.3392 1
0 1 2 2.4405 5 0 0 4 1.3220 1
1 0 2 2.4405 4 0 1 4 1.2942 1
2 1 0 2.3977 1 3 2 2 1.2750 1
1 2 1 2.1837 4 2 3 2 1.2750 1
3 0 0 2.1146 2 2 2 3 1.2700 10
0 2 2 2.0309 34 1 3 3 1.2452 2
2 0 2 2.0309 6 1 1 4 1.2435 3
3 0 1 1.9634 2 2 0 4 1.2203 2
0 3 1 1.9634 1 0 2 4 1.2203 1
2 2 0 1.8313 37 3 3 1 1.1895 1
1 2 2 1.7761 5 4 0 3 1.1790 1
2 1 2 1.7761 3 4 2 1 1.1692 15
0 0 3 1.7627 5 1 2 4 1.1577 1
3 1 0 1.7594 1 5 0 2 1.1439 1
2 2 1 1.7304 3 3 2 3 1.1223 2
1 0 3 1.6983 3 0 3 4 1.1210 1
3 1 1 1.6694 2 3 0 4 1.1210 1
1 1 3 1.5883 3 1 5 1 1.1138 1
0 2 3 1.5407 4 2 4 2 1.0918 9
0 4 1 1.5191 19 4 2 2 1.0918 1
1 3 2 1.4648 2 4 1 3 1.0887 1
3 1 2 1.4648 2 1 4 3 1.0887 1
3 2 0 1.4553 1 2 2 4 1.0719 2
2 1 3 1.4202 3 6 0 0 1.0573 6
2 3 1 1.4032 1

Note: The strongest diffraction lines are given in bold.

4. Discussion

4.1. Relation to Other Species

An unknown mineral of the presumed composition Pd2HgSe3 (no analytical data provided) has
been reported from Hope’s Nose, Torquay, Devon, UK [9]. It is associated with gold, chrisstanleyite,
and several other selenium species and coded as UM1998-//-Se:HgPd in the IMA-CNMNC list of
unvalid unnamed minerals [10].

Tilkerodeite constitutes the Pd-analogue of jacutingaite, ideally Pt2HgSe3. Table 3 summarizes
structural data for both species. Type jacutingaite from the Cauê iron-ore deposit, Itabira district,
Minas Gerais, Brazil, is associated with athenite Pd2(As0.75Hg0.25), potarite PdHg, and hematite and
has the mean empirical formula (Pt1.46Pt0.42Cu0.10Ag0.01)Σ21.99Hg0.98Se3.04. Tilkerode is the second
reported occurrence of jacutingaite, and the first reported occurrence of this species in original host
rock assemblage.
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Table 3. Comparative data for tilkerodeite and jacutingaite.

Mineral/Phase Tilkerodeite Synthetic Pd2HgSe3 Jacutingaite

formula (Pd,Pt)2HgSe3 Pd2HgSe3 Pt2HgSe3
crystal system trigonal trigonal trigonal
space group P3m1 P3m1 P3m1

a [Å] 7.325(9) 7.3096(2) 7.3477(2)
c [Å] 5.288(6) 5.2829(1) 5.2955(1)

V [Å3] 245.7(9) 244.45(1) 247.59(1)
Z 2 2 2

intense XRD lines
[d in Å (I) hkl]

5.2831 (15) 001 5.2917 (100) 001
2.7200 (100) 201 2.7151 (100) 201 2.7273 (16) 201

2.4376 (23) 012 2.4443 (10) 012
2.0309 (34) 022 2.0280 (53) 022 2.0349 (18) 022
1.8313 (37) 220 1.8274 (29) 220

1.7653 (37) 003
1.5191 (19) 041 1.5160 (15) 041
1.3600 (10) 402

1.3240 (11) 004
1.2700 (10) 223 1.2681 (11) 223
1.1692 (15) 421 1.1668 (13) 421

1.0449 (11) 025

reference this paper [6] [7]

4.2. Origin

A comprehensive discussion of the formation of the Pd–Pt–Hg–Pb–Sb–Se mineral assemblage at
Tilkerode will be the subject of a companion paper. Here, we will focus on the origin of just tilkerodeite.

The presence of tilkerodeite in association with, or even inside, tiemannite suggests that both
species are genetically related. Preliminary electron-probe microanalyses conducted in inclusion-poor
domains of the associated tiemannite infers concentrations up to 0.4 wt. % Pd and 0.3 wt. % Pt,
respectively. Thus, fluid-induced alteration of Pd–Pt-bearing tiemannite may have mobilized the PGE,
which subsequently were re-deposited as tilkerodeite and jacutingaite via dissolution–reprecipitation
reaction. The question of whether the amounts of PGE contained in HgSe were sufficient to account for
all the tiny but numerous grains of both species cannot yet be conclusively answered.

The physico-chemical conditions during tilkerodeite formation are not properly constrained.
The new species is most likely a secondary mineral and associated clausthalite and tiemannite have
large stability fields in terms of temperature and relative selenium–sulfur fugacities. Thermodynamic
data for the associated PGE species are lacking, as is the occurrence of T-critical minerals within
the assemblage.
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