Доклады Академии наук СССР 1962. Том 146, № 6

МИНЕРАЛОГИЯ

А. В. НИКИТИН, академик Н. В. БЕЛОВ

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА БАТИСИТА N $a_2BaTi_2Si_4O_{14} = Na_2BaTi_2O_2[Si_4O_{12}]$

Батисит — новый Na-, Ba-, Тi-силикат, обнаруженный С. М. Кравченко и Е. В. Власовой (¹) в щелочной провинции Центрального Алдана в 1957 г. Теми же авторами в соответствии с данными химического анализа А. В. Быковой предложена формула батисита: Na₂BaTi₂Si₄O₁₄.

В нашем распоряжении были любезно предоставленные нам Ю. А. Пятенко образцы батисита из сборов С. М. Кравченко и Е. В. Власовой в виде неограненных обломков размерами до 0,5 мм.

Предварительное рентгеновское исследование установило принадлежность батисита к ромбической системе (лауэ-класс *mmm*) с центрированной по объему решеткой и с периодами: a = 10,40 Å, b = 13,85 Å, c = 8,10 Å. Вдоль короткой оси *с* отчетливо выступил псевдопериод $c' = \frac{1}{2} c$. Приведенные данные хорошо согласуются с ранее опубликованными (²).

Кроме интегральных погасаний (все hkl с нечетной суммой индексов), вызванных объемноцентрированной решеткой, в зоне (h0l) систематически отсутствуют рефлексы с двумя нечетными индексами, что свидетельствует о характерном для *I*-решетки чередовании перпендикулярно к оси *у* плоскости скольжения *a* с плоскостью *c*. Наличие четко выраженного пьезоэффекта (³) позволило однозначно фиксировать федоровскую группу: $C_{2v}^{22} = Ima2 = Im(n)a(c)2$. В соответствии с удельным весом 3,432 г/см³ (²) в элементарной ячейке батисита 4 формульных единицы указанного состава.

При расшифровке структуры использовались в основном (кроме лауэграмм, рентгенограмм качания и вращения) вейсенберговские развертки 0—6 слоевых вдоль оси *a* и нулевых слоевых вдоль *b* и *c*; большинство из них получено на Мо-излучении и часть на Си-излучении (для фиксации рефлексов с малыми ϑ). За счет невысокого температурного фактора (B = 0,35) удалось зафиксировать рефлексы вплоть до значений sin $\vartheta/\lambda = 1,3$ Å⁻¹.

Наличие в ячейке 4 атомов бария при кратности общего положения, равной 8, обещало успешное применение метода тяжелого атома. Действительно, уже из патерсоновских проекций уг и ху были установлены координаты атомов Ва. Дальнейшая расшифровка структуры осуществлялась циклами последовательных приближений с чередующимися построениями проекций электронной плотности и расчетами структурных амплитуд по координатам максимумов, фиксированных на предыдущей ступени. В последовательных этапах были установлены положения сначала Ті и Si, а затем и атомов О и Na. Каждый шаг расшифровки контролировался фактором расходимости R, который монотонно снижался с 35-40% до значений, меньших 20%. На заключительной стадии для уточнения положения атомов был использован метод дифференциального синтеза. Полученные координаты всех атомов приведены в табл. 1. При 15 базисных атомах структура определяется 36 параметрами. Значения фактора R, полученные на заключительной стадии, были: для зоны h0l R = 16,5% по 283 ненулевым рефлексам и для зоны hk0 R = 18,3% по 134 ненулевым рефлексам. Максимальные sin θ/λ в обеих зонах 1,3 Å⁻¹.

11 ДАН, т. 146, № 6

1401

Таблица 1

Координаты атомов (в долях осей ячейки)

	x	y	z		x	y	z	
Ba	0,000	0,002	0,000	OIV	0,128	0,103	0,293	
Ti	0,000	0,220	0,2831	OV	0,367	0,190	0,312	
TiII	0,000	0,220	0,784	OVI	0,292	0,092	0,032	
Si	0,278	0,105	0,195	OVII	0,000	0,200	0,523	
SiII	0,278	0,104	0,798	OVIII	0,000	0,215	0,033	
O	0,367	0,182	0,727	NaI	0,250	0,250	0,484	
OII	0,128	0,115	0,740	NaII	0,500	0,072	0,528	
OIII	0,334	0,001	0,793					

Как отмечалось в (⁴), TiO₆-октаэдры имеют общие ребра (соединяются в колонки) лишь в тех соединениях (минералах), где содержание TiO₂ относительно велико (три модификации TiO₂ (⁵), рамзаит (⁶), баотит (⁴)). При меньших концентрациях TiO₆-октаэдры связываются друг с другом через одиночные общие вершины в цепочки [TiO₅]_∞ (нарсарсукит (⁷), сфен (⁵)).

Рис. 1. Проекция структуры батисита на плоскость xy. Кремнекислородные цепочки и цепочки из Ті-октаэдров перпендикулярны плоскости чертежа и видны лишь соответственные треугольные и квадратные торцы. Атомы Ва (большие кружки) и Na (менее крупные) заселяют полости каркаса из октаэдров и тетраэдров

Рис. 2. Проекция структуры батисита на плоскость *уг.* Видны кремнекислородные цепочки [Si₂₊₂O₁₂]_∞ и цепочки из Ті-октаэдров — [TiO₅]_∞

Эта закономерность выступает и в батисите. Отношение атомных количеств Ті и доминирующего Si составляет 1 : 2 и ТіО6-октаэдры сцепляются лишь вершинами в бесконечные цепочки, параллельные г. Между цепочками $[TiO_5]_{\infty}$ располагаются кремнекислородные цепочки с метасиликатной (Si : O = 1 : 3) формулой $[Si_{2+2}O_{12}]_{\infty}$, кратко отмечающей, что на период цепочки приходится 4 тетраэдра, разбивающихся на две пары. В батисите, в отличие от других силикатов, эти цепочки [Si₄O12]∞ индивидуальны, т. е. не входят как составная часть в более сложные кремнекислородные радикалы с тем же периодом $\sim 8 \text{\AA}$ (как например, в нарсарсуките (⁷), санборните (8) и др.) и потому представляют новинку в кристаллохимии силикатов. Создающийся из цепочек двух сортов каркас характеризуется тремя типами вместительных полостей (рис. 3), которые заселяются объемистыми катио-нами Ва и менее крупными — Na (рис. 1, 2). На период с приходится по 2 полости каждого типа. Полости I типа заселены через одну катионами Na; расположенные ступеньками полости II типа также заселены катионами Na, но уже в обоих этажах, т. е. можно говорить о цепочке из полиэдров II типа, поочередно отходящих в противоположные стороны от оси цепочки. Во всех 1402

полостях III типа (в обоих этажах) находятся атомы Ва, которые располагаются почти точно на центральной линии винтовой оси 21 и потому повто-

ряются через 1/2 c, что в двухэтажной структуре и создает отчетливо выраженный псевдопериод вдоль c. В батисите при отношении O : Si = 3 1/2, т. е. меньшем ортосиликатного, все же 1/7 атомов O не участвует в кремнекислородном радикале, подобно тому, что так характерно проявляется в рамзаите. Как и в последнем, так и в батисите кремнекислородный радикал метасиликатного типа с O : Si = 3. Не входящие в батиситовый

Рис. 3. Катионные полиэдры: І тип изолированный— 10-вершинник вокруг Na; II тип — 9-вершинник вокруг Na; соединяясь общими ребрами эти полиэдры образуют цепочку, параллельную оси с; III тип — 12-вершинник вокруг более крупного Ва — параллелепипеда с дополнительными вершинами над четырьмя боковыми гранями. Две другие (горизонтальные) грани — общие для соседних Ва-полиэдров

кремнекислородный радикал 2 атома О (из числа 14 в формуле) это те 5-е О, которые соединяют Ті-октаэдры в цепочке [ТіО₅]∞.

Межатомные расстояния, подлежащие дальнейшему уточнению, уже соответствуют обычно встречающимся:

> в Si-тетраэдрах Si — O = 1,58—1,71 Å; O — O = 2,45—2,85 Å; в Ti-октаэдрах Ti — O = 1,94—2,07 Å; O — O = 2,73—3,04 Å; в Na-полиэдрах Na— O = 2,40—2,91 Å; O — O = 2,58—3,41 Å; в Ва-полиэдрах Ва — O = 2,68—3,04 Å; O — O = 2,58—3,45 Å

Угол Si — O — Si составляет 165°. Сумма валентных усилий на кислородных атомах разного сорта колеблется в пределах 1,73—2,32. Элементы структуры батисита (цепочки [TiO₅]_∞, [Si₄O₁₂]_∞, линейки из атомов Ва) вытянуты вдоль оси z, что определяет положительный знак его оптики.

Поступило 29 VI 1962

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ С. М. Кравченко, Е. В. Власова, ДАН, 128, № 5 (1959). ² С. М. Кравченко, Е. В. Власова, Н. Г. Пиневич, ДАН, 133, № 3 (1960). ³ В. А. Копцик, Изв. АН СССР, сер. физ., 20, № 2 (1956). ⁴ Н. В. Белов, Кристаллохимия силикатов с крупными катионами, М., 1961. ⁵ Н. В. Белов, Структура ионных кристаллов, М., 1947. ⁶ Н. В. Белов, Л. М. Беляев, ДАН, 69, 805 (1949). ⁷ Ю. А. Пятенко, З. В. Пудовкина, Кристаллография, 5, № 4 (1960). ⁸ R. М. Douglass, Ат. Mineral., 43, 517 (1958).