УДК 549.753.33

МИНЕРАЛОГИЯ

Д. П. ШАШКИН, М. А. СИМОНОВ, академик Н. В. БЕЛОВ

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА БАБЕФФИТА $BaBePO_4F = Ba(Be,P)_2O_4F$

В 1962 г. А. С. Назаровой в редкометально-флюоритовом месторождении Сибири обнаружен барий-бериллиевый фосфат (1). Минерал встречен в виде зерен изометричной и редко уплощенно-таблитчатой формы, размерами от 0.15 imes 0.2 до 1 imes 1.5 мм, агрегативного строения. Ограненных кристаллов не отмечалось.

Химический анализ бабеффита, выполненный Н. Н. Кузпецовой (в процентах): BaO 56,50, BeO 11,63, P2O5 26,55, F 7,27, F2O3 0,3, H2O+110° 0,64; $\Sigma = 102.89 - 3.05$ ($\dot{O} \rightarrow F_2$) = 99,84. Исходя из него, А. С. Назарова дала формулу $Ba_4Be_5(PO_4)_4OF_4 \cdot nH_2O$ (n = 0, 3-0, 4), которая и принята за основу при структурной расшифровке. По предварительным данным минералу была приписана тетрагональная федоровская группа $D_{4h}^{19} = I_{41}^{4}/amd;$ a = 4.89, c = 16.74 Å.

Для детального рентгеноструктурного исследования были отобраны два изометричных обломка с линейными размерами $0.15 \times 0.2 \times 0.2$ мм. Юстировка образцов осуществлялась по лауэграммам методом Уманского --Квитки. В процессе структурной расшифровки установлена истинная ромбическая симметрия. Уточненные методом порошка (РКУ-114) параметры псевдотетрагональной ромбической ячейки (Лауэ-класс mmm): $a=6,93\pm$ $\pm 0.01; b = 16.74 \pm 0.03; c = 6.93 \pm 0.01$ Å. При определенном по методу М. М. Василевского удельном весе d = 4,31 в соответствующей псевдотетрагональной призме содержится Z = 2 ед. указанного состава.

Для расшифровки структуры бабеффита использованы три развертки слоевых линий вокруг осей a и c: $60F_{0kl}^{2}$ (max sin $\vartheta / \lambda = 1.15$); 70 $F_{h_{k}0}^{2}$ (max sin ϑ / $\lambda = 1,094$); 86 F_{hk1}^{2} (max sin ϑ / $\lambda = 1,115$ Å⁻¹) с интенсивностями, оцененными по ставшему в наших лабораториях станцартным

методу марок почернения с шагом $\sqrt{2}$. Закономерные погасания однозначно фиксировали гемиморфную федоровскую (алмазную) группу C_{2v}^{19} = = Fdd2*.

В соответствии с Z = 2 гранецентрированная F-ячейка бабеффита содержит 8 атомов Ва, 8 Ве **, 8 Р, 8 F и 32 атома О, для которых в рамках группы Fdd2 предусматриваются лишь общие положения с кратностью 16 и (на 2-ных поворотных осях) 8-кратные частные. Наличие в ячейке 8 атомов Ва, очевидно, в частных положениях обещало успешное применение метода тяжелого атома.

Анализ патерсоновской проекции UV при фиксированном в центросимметричной проекции ху-положении тяжелого Ва заставлял принять, что 8 атомов Р и 8 Ве занимают одно общее 16-кратное положение ***.

 ^{*} Подгруппа ранее указанной тетрагональной носле смены установки I на F(D_{2h}¹⁹ = F4₁ / ddm).
 ** 8 атомов Ве в соответствии с результатами геометрического анализа.

^{***} Этот представляющийся парадоксальным вывод (см. также далее) находит оправдание в ранее расшифрованных структурах Ве-фосфатов: гердерита (²), херлбу-тита (³), бериллонита (⁴), в которых Ве и Р заполняют разные, но «качественно» весьма близкие позиции, причем почти всегда можно указать «параллельный» боро-(или алюмо)силикат, в котором паре (ВеР)⁷⁺ соответствует равнозарядная пара (BSi)⁷⁺ или (AlSi)⁷⁺: датолит (²), данбурит (⁵), пефелин (⁴).

Полученные координаты x, y атомов (P, Be) уточнялись методом последовательных приближений с чередующимися построениями проекций электронной плотности и расчетом теоретических F по координатам максимумов, фиксированных на предыдущей ступени. Два сорта атомов O можно было локализовать лишь из разностных фурье-синтезов. При этом фактор расходимости в зоне (*hk*0) снижался с 30,6% на первом этапе по координатам Ba до 23,2%, которые не удалось уменьшить одним уточнением кородинат без введения температурного множителя. Это значение фактора расходимости соответствует тому минимальному $R^t =$ $= 0,75 (\sqrt[7]{1-0,75B-1}) s_m^{1,8}$, который может быть достигнут без температурного множителя (⁶). После уточнения и введения изотропной температурной поправки с B = 0,75 фактор расходимости опустился до $R_{hk0} =$ = 8,7%. Уточнение координат x, y построенной центросимметричной плоской модели выполнено автоматически на машине M-20 в Вычислительном центре Московского государственного университета методом наименьших квадратов по программам Б. Л. Тарнопольского, В. И. Андрианова (⁷).

Таблица 1

Атомы	x	y	z	Атомы	x	y	z
Ba	0	0	0	$ \begin{array}{c c} & O_2 \\ & O_3 \\ & (O, F)_4 \end{array} $	0	0	0,598
P, Be	0,004	0,083	0,505		0,204	0,095	0,370
O1	0,046	0,155	0,630		0, 1 67	0,078	0,340

Имея координаты x, y и руководствуясь кристаллохимическими соображениями, можно по патерсоновской карте вчерне локализовать (P, Be) и три сорта кислородных атомов в боковой проекции yz. Соответствующая модель уточнялась циклом чередующихся расчетов электронной плотности и разностными фурье-синтезами. После введения изотропной температурной поправки с B = 0,7 фактор расходимости и для ацентричной боковой проекции yz с 25,5% по координатам Ва упал до 7,6%. При расчетах распределения электронной плотности в обеих проекциях использовались усредненная f-кривая, соответствующая отношению P : Be — 1 : 1, и кривая рассеяния О для локализации как атомов О, так и атомов F. Удовлетворительному балансу вэлентности отвечает следующее распределение анионов: анионы O₁ занимают 8-кратное положение на осях 2-го порядка (00z), анионы O₂ — в общем 16-кратном положении, а остающиеся 8 атомов О вместе с 8 атомами F статистически * распределены по 16-кратной позиции.

В табл. 1 приведены координаты независимых базисных атомов, усредненные по двум проекции и соответствующие указалным коэффициентам расходимости. Вычисленные по этим координатам межатомные расстояния удовлетворительно согласуются с установленными ранее (табл. 2).

В соответствии с расшифрованной структурой химическую формулу бабеффита следует писать BaBePO₄F = Ba(Be, P)₂O₄F. В элементарной ромбической ячейке содержится Z' = 8 формульных единиц — Ba(Be, P)₂O₄F.

«Объемную» основу структуры бабеффита составляют перпендикулярные к длинной оси b слои из полярных (с осью 2) Ва-семивершинников (рис. 1A), которые в своем слое соединены вершинами каждый с 4 соседними в трельяжные сетки, также полярные (рис. 1E). Вдоль оси b 4 такие сетки геометрически связаны проходящими между ними «алмазными» плоскостями скольжения (d), на которых располагаются цепочки из (Be, P)-

^{*} По тем же причинам, которые заставили считать в одной позиции и Ве и Р. Как то отмечается далее, Ве- и Р-тетраэдры совместно создают каркас, весьма ажурный в тем смысле, что каждый тетраэдр участвует в ажурной вязи лишь тремя своими вершинами. 4-ная свободная должна быть двувалентным О в Р-тетраэдре и одновалентным F в Ве-тетраэдре по статистическому закону, соответствующему такому же распределению Ве и Р.

Рис. 1. Слои из Ва-полиэдров в структуре бабеффита. А — алмазная упаковка слоев, Б — трельяжная полярная сетка из Ва-семивершинников

Рис. 2. Бабьффит. Метаценочки из (Ве, Р)-тетраздров вдоль 4 алмазных плоскостей скольжения (2 из них отмечены прерывистыми линиями). Дробями отмечены разные уровни, на которых располагаются 4 тетраздра одного звена. А — проекция ab, B — проекция bc

тетраэдров пироксенового типа (рис. 2); они тянутся параллельно то одной, то другой взаимно перпендикулярным диагоналям псевдоквадратной грани *ac*. В четырехчленных звеньях каждой из 4 перекрещивающихся цепочек (вдоль *b*) по закону алмазной плоскости тетраэдры поочередно смотрят в разные стороны по оси *b*. Эти цепочки вполне подобны цепочкам в алмазной же структуре Zn-чкаловита (⁸), но в последнем перекрещивающиеся

(Р, Ве)-т е тр	аэдр	Ва-полиэдр		
атомы	<i>d</i> , À	атомы	d, Å	
$ \begin{array}{c} -O_{1} \\ -O_{2} \\ -O_{3} ** \\ -O_{0} \\ F)_{4} *** \\ -O_{2} \\ -O_{3} \\ -O_{3} \\ -O_{5} \\ -O_{5}$	1,51 1,53 1,70 1,61 2,62 2,69 2,53	$ \begin{bmatrix} Ba - O_1^* \\ Ba - O_2^{**} \\ Ba - O_3 \\ Ba - (O, F)_4 \\ O_1 - O_3 \\ O_4 - (O, F)_4 \\ O_2 - O_1 \end{bmatrix} $	2-2,75 1-2,79 2-3,33 2-2,93 4,90 3,59 3,21	

Таблица 2

2,60 2,90 5,21

 * Атомы, которые с соотгетствующими базисными связаны элементами симметрии группы.
 ** Атомы, берущиеся из соседней ячейки.

** Атомы, берущиеся из соседней ячейки. *** Атомы, имеющие одинаковое кристаллографическое положе-

2,49 2,60

ие.

Р, Ве Р, Ве Р, Ве Р, Ве

 $\begin{array}{c} O_1 \\ O_1 \\ O_1 \\ O_2 \\ O_2 \\ O_3 \\ O_3 \end{array}$

 $(O, F)_4$ $(O, F)_4$

цепочки [SiO₃] остаются индивидуальными, друг от друга не зависящими, тогда как в бабеффите цепочки задевают друг друга — имеют общие вершины — и создают трехмерную вязь, весьма ажурную, поскольку во взаимном сцеплении тетраэдров участвуют лишь 3 вершины из 4, и потому формулой каркаса становится $[Z_2O_5]_{\infty\infty\infty}$ (Z = Be, P), т. е. перед нами третья полиморфная разновидность димстасиликатного радикала после $[Z_2O_5]_{\infty\infty}$ -сеток и $[Z_2O_5]_{\infty}$ -бесконечных лент «2-й главы» кристаллохимии силикатов (⁹).

Авторы благодарят Ю. К. Егорова-Тисменко за существенную помощь при оформлении работы, а Г. А. Сидоренко за интерес к работе и ценное обсуждение

Всесоюзный научно-исследовательский	Поступило		
институт минерального сырья	13 VII 1967		

Московский государственный университет им. М. В. Ломоносова

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. С. Назарова, Н. Н. Кузнецова, Д. П. Шашкин, ДАН, 167, № 4, 895 (1966). ² П. В. Павлов, Н. В. Белов, Кристаллография, 4, № 3, 324 (1959). ³ В. Вакакин, Н. В. Белов, ДАН, 135, № 3, 587 (1960). ⁴ Н. И. Головастиков, Кристаллография, 6, № 6, 909 (1961). ⁵ В. В. Бакакин, В. Б. Кравченко, Н. В. Белов, ДАН, 129, № 2, 420 (1959). ⁶ А. В. Никитин, В. И. Симонов, Кристаллография, 8, № 3 (1963). ⁷ Б. Л. Тарнопольский, В. И. Андрианов, ЖСХ, 4, № 3, 434 (1963). ⁸ М. А. Симонов, Н. В. Белов, ДАН, 164, № 12 (1965). ⁹ Н. В. Белов, Структурный анализ силикатов и их кристаллохимия в СССР. Сборн. Проблемы кристаллохимии минералов и эндогенного минералообразования, «Наука», 1967.