Доклады Академии наук СССР 1982. Том 264, № 2

УДК 549.5+552.322(470.21)

МИНЕРАЛОГИЯ

А.В. ВОЛОШИН, Ю.П. МЕНЬШИКОВ, Я.А. ПАХОМОВСКИЙ

COCEДКОИТ* (SOSEDKOITE) (K, Na)₅ AI₂ (Ta, Nb, Sb)_{2 2} O₆₀ — НОВЫЙ МИНЕРАЛ ИЗ ГРАНИТНЫХ ПЕГМАТИТОВ

(Представлено академиком А.В. Сидоренко 31 VII 1981)

Новый сложный окисел тантала, калия, натрия и алюминия обнаружен в гранитных пегматитах Кольского полуострова и назван в память советского минералога А.Ф. Соседко (1901—1957 гг.).

Минерал образует игловидные, несколько уплощенные кристаллы и встречается в виде включений в микролите и цезстибтантите. Его выделения часто приурочены к трешинам в цезстибтантите, а также к границам последнего со стибиотанталитом. Развит он и по границе микролита с симпсонитом. Кристаллы соседкоита по длине достигают 0,1 мм при толщине 0,001—0,03 мм (рис. 1, см. вкл.).

Минерал бесцветный, прозрачный. Блеск алмазный. Спайность отсутствует. Микротвердость $800-860~{\rm кгe/mm^2}$ при нагрузке 20 гс. Обладает сильной анизотронией и двуотражением. Коэффициенты отражения (%) для разных длин волн (соответственно R_g и R_p , %): $486~{\rm mm}-13.5~{\rm u}$ 12.8; $551~{\rm mm}-12.8~{\rm u}$ 12.0; $589~{\rm mm}-13.3~{\rm u}$ 12.3; $656~{\rm mm}-11.3~{\rm u}$ 11.3.

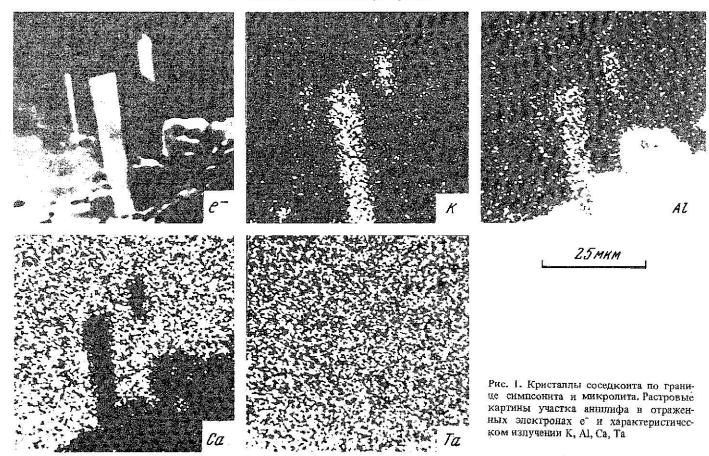
В катодных лучах минерал светится слабым голубым цветом. Плотность, рассчитанная на эмпирическую формулу, 6,90 г/см³.

Рентгенограмма порошка соседкоита (табл. 1) близка таковой синтетического соединения $K_3 \text{Li}_2 \text{Ta}_5 \text{O}_{1.5}$ [1], по аналогии с которым проведено ее индицирование. Минерал отнесен к ромбической сингонии с параметрами элементарной ячейки: $a_0 = 17,25$ (3), $b_0 = 17,73$ (3), $c_0 = 3,95$ (2) Å, Z = 1.

Соседкоит по структурным характеристикам близок ранкамаиту [2], от которого существенно отличается по составу главных компонентов (K, Na). В соседжоите также отсутствует вода. Химический состав соседкоита приведен в табл. 2, где для сравнения также приведены анализы ранкамаита из [2] и выполненный авторами на образце из коллекции А.С. Поваренных микрозондовым методом в условиях, аналогичных для соседкоита (табл. 2, №2). Другие элементы с атомным номером больше 11, кроме приведенных в табл. 1, в соседкоите не обнаружены. По данным атомно-абсорбционного анализа содержание Li в минерале меньше 0,1%.

Расчет состава, при условии O = 60, приводит к спедующему виду кристалнохимических формул:

соседкоит


 $K_{3,06} Na_{1,85} Ca_{0,09} Al_{1,92} Ta_{20,65} Nb_{1,03} Sb_{0,14} O_{60}$

ранкамаит

Na2,82 K2,16 Pb0,38 Al2,02 Ta15,69 Nb5,56 Fe0,62 (O, OH) 60

Утверждено Комиссией по новым минералам и названиям минералов Всесоюзного минералогического общества 16 декабря 1980 г., Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 21 апреля 1981 г.

К ст. А.В. Волошина и др., стр. 442

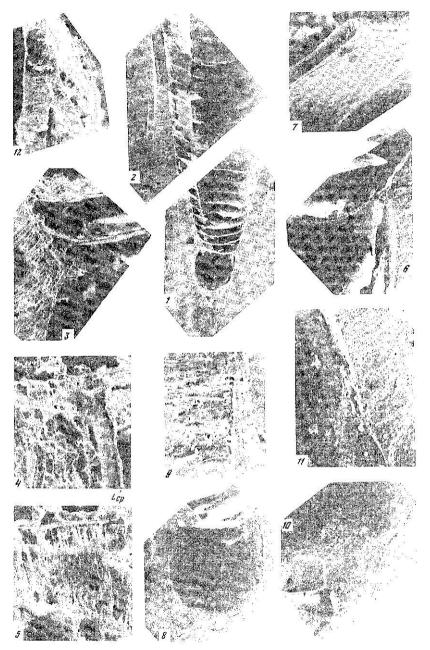


Рис. 2. Aulacoteuthis sp. I-7-9кв. № 81-у-3: I-0общий вид сфероконха и начало фрагмокона, 35 х, Z- сифон у вентральной стенки, 50 х, Z- соединение стенки сфероконха с началом фрагмокона, видны 1-3-я септы, 200 х, Z- соединение просепты с конотекой, Z=0 х, Z=0 то же, деталь, Z=000 х, Z=0 сфероконх, вид справа: замыкающая мембрана не сохранилась, в полости видны остатки органической пелликулы, справа от стенки сфероконха виден ростр, Z=000 х, Z=00 х, Z=000 х, Z=00 х, Z=00

Табиица 1 Межплоскостные расстояния соседкоита

Соседкоит			K ₃ Li ₂ Ta ₅ O ₁₅ [1]			
I	d _{uam}	d _{pacu}	hkl	I	d	hkl
2	8,8	8,9	020	2		
1	7,2	7,7	210			
5	6,1	6,2	220	4	6,30	220
2	5,47	5,47	310	30	5,63	130; 310
3	4,42	4,43	040	12	4,48	040
				10	4,45	400
2	4,24	4,19	410		.,	
2	4,12	4,12	330	(55	3,98	240
10	3,95	3,95	001; 240	75	3,97	420
	-1	5,55	001, 210	70	3,93	001
5	3,47	3,47	150	60	3,49	150; 510
2	3,28	3,28	250	Ģ0	\mathcal{I}_{1} T \mathcal{I}	130, 310
2	3,15			35	3,22	121, 211
2	3,13	3,20	311			131; 311
Ä	2.02	2.02	2541	20	3,15	44()
9	3,03	3,02	350}	100	3,05	350; 530
2	2,99	2,98	530∫			
2	2,95	2,95	060	25	2,979	060
			000	l 25	2,957	600
1	2,85	2,85				
5	2,79	2,80	260	75	2,818	260; 620
2	2,611	2,612	431			
	2,574	2 680		∫ 45	2,616	151
3	4,374	2,570	511	ે 40	2,611	511
				8	2,458	441
2	2,396	2,397	351	20	2,411	351
5	2,376	2,374	720			
		277 3 7760 - 2		6	2,368	0,61; 601
				[12	2,290	261
4	2,280	2,274	730	12	2,288	621
				10	2,163	280
4	2,102	3.005	CC 1	10	2,156	820
1	2,007	2,095	551			
2	2,007	2,023	.750	£ = 0	1.000	400 040
6	1,974	1,974	002; 480	{50 30	1,993 1,964	480; 840 002
2	1,933	1,932	081	(JU	דטכוג	002
2	1,862	1,863		20	1,875	390; 930
2	1,845		390	20	1,0/3	370; 330
2 2	1,822	1,842	850			
		1,823	930			
1	1,767	1,766	770			
1	1,744	1,741	860			
2	1,713	1,710	590			
4	1,686	1,686	950			
3	1,648	1,647	, 780			
2	1,595	1,593	861			
2	1,575	1,574	10.1.1			
2	1,545	1,545	880			
1	1,497	1,492	0.11.1			
1	1,468	1,468	182			
L			102			

Соседкоит				K ₃ Li ₂ Ta ₅ O ₁₅ [1]		
I	d _{изм}	dpacy	liki	1	d	likl
1	1,354	1,355	392			
1	1,306	1,306	862			
2	1,207	1,206	7.12.1			
1	1,074	1,074	11.8.2			
1	1,066	1,065	0.14.2			
1	1.005	1,003	3.11.3			

Примечание. Условия съемки: камера РКУ 114.6 мм, Ге-излучение.

Таблица 2 Химический состав соседкоита и ранкаманта

Компонент		Соседкоит	Ранкамаит		
	мас.%	AK _K	Кĸ	1[2]	2
K ₂ O	2,79	0.0591	3,06	1,80	l 2,16
Na ₂ O	1,15	0,0370	1,85	2,31	1,86
CaO	0,10	0,0017	0,09	_	0,05
Al_2O_3	1,96	0,0385	1,92	3,40	2,18
Ta ₂ O _s	91,25	0,4129	20,65	69,47	73,60
Nb, O,	2,71	0,0203	1,03	17,40	15,69
Sb ₂ O ₅	0,47	0,0032	0,14	25 A	1750
Сумма	100,43			99,98	98,41

Примечания в нас. Анализы соседкоита и ранкамаита (ан. 2) выполнены на электронном микро-анализаторе MS-46 "Сатеса", ускоряющее напряжение 15 кВ, ток зонда 30 нА, аналитические линии для K, Na, Ca, Al, Fe — $K_{\rm Cl}$, лля Ta, Nb, Sb, Pb — $L_{\rm Cl}$, эталоны на Na — рамзаит, K—вадеит, Ca—диопсид, Al — пироп, Fe — гематит, Ta, Nb — металиы, Sb — синтетическое соединение Sb₂S₃, Pb — галенит и синтетическое соединение PbSe. Минералы проанализированы в нескольких образцах не менее, чем в 10 точках (премя одного измерения 10 с) на каждом образце. Пересчет относительных интенсивностей на концентрации выполнен на ЭВМ "Наири-2" по оригинальной программе [3]. Ошибка определения главных элементов 1 отн.%, элементов-примессй — 2—3 отн.%. АК $_{\rm K}$ — атомные количества катионов в формуле минерала, рассчитанные на О = 60. В ранкамаите, кроме того, определены: ан. 1 — PbO 2,63, Li₂O 0,11, SiO₂ 0,96, H₂O 1,90%; ан. 2 — PbO 1,81, Fe,O₄ 1,06%.

В общем случае составы этих минералов должны отвечать формуле $(K, Na)_5 Al_2 (Ta, Nb, Sb)_{22} (O, OH)_{60}$. Таким образом, соседкоит представляет собой калиевый, существенно танталовый безводный член —

или

а ранкамант - натриевый, водосодержащий член этой группы минералов:

(Na, K), Al₂ (Ta, Nb)_{2,2} (O, OH)₆₀.

Соседкоит является одним из поздних танталовых минералов в гранитных петматитах. Его образование связано с перераспределением тантала в процессе калиевого мегасоматоза гранитных петматитов, о чем свидетельствует и ассоциация соседкоита с тончайшими пластинчатыми выделениями ортоклаза и мусковита в микролите и цезстибтантите. Соседкоит также находится в тесной ассоциации с другими поздними минералами тантала — алюмотантитом и натротантитом. Одиночные кристаллы соседкоита в цезстибтантите часто ориентированы друг относительно друга под углом 70–90°. Такие кристаллы соседкоита отмечаются только в таких выделениях цезстибтантита, которые образованись по стибиотанталиту, и ориентировка кристаллов соседкоита в этом случае обусловлена направлениями спайности стибиотанталита.

Эталонные образцы с соседкоитом хранятся в Минералогическом музее АН СССР, Москва, и минералогическом музее Геологического института Кольского филиала АН СССР, Апатиты.

Геологический институт Кольского филиала Академии наук СССР, Аватиты Поступило 6 X 1981

ЈІИТЕРАТУРА

1. Fukuda J. — J. Appl. Phys. Japan, 1970, vol. 9, p. 599. — 2. Knorring O. et al. — Bull. Geol. Soc. Finland, 1969, vol. 41, p. 47—56. — 3. Кравченко-Бережной Р.А., Медведева Э.М., Пахомовский Я.А. и др. — Зав. паб., 1976, т. 9, с. 1081.

УДК 549.324.31 (571.56 + 571.65)

МИНЕРАЛОГИЯ

В.С. ГРУЗДЕВ, Э.Я. ПРУШИНСКАЯ, Э.М. СПИРИДОНОВ, Т.Л. ЕВСТИГНЕЕВА, Т.Н. ЧВИЛЕВА

СУРЬМЯНИСТЫЙ ПИРИТ

(Представлено академиком В.И. Смирновым 10 IX 1981)

Химические и структурные особенности пирита — самого распространенного сульфида в земной коре — изучены достаточно обстоятельно. В состав пирита, помимо Fe и S, в количестве более 1% входят Co, Ni, Cu, As, Sb; для кобальта и никеля установлен неограниченный изоморфизм с железом (ряд пирит — каттьерит — вазсит); известен зональный по составу медистый пирит с содержанием меди до 10% [1-3]; существует изоструктурный с пиритом минеран фукучилит Cu₃ FeS₈ [4] с 37,9% меди. Менес обычны в пирите существенные примеси мышьяка и сурьмы: содержание As, изоморфно замещающего S, достигает 8% [5-10], содержание Sb 3% (в мышьяковистом пирите полиметаллического месторождения Забайкалья) [10].

В настоящем сообщении приведены результаты изучения пирита с необычным высоким содержанием сурьмы — до 21,7%. Этот Sb-пирит был обнаружен в 1974 г. В.С. Груздевым и Э.Я. Прушинской в сурьмяных месторождениях Восточной Якутии и Магаданской области. Месторождения залегают в терригенных толщах