X-RAY STRUCTURAL INVESTIGATION OF Na2MoO4 · 2H2O CRYSTALS

L. O. Atovmyan and O. A. D'yachenko

UDC 548.736

An x-ray structural investigation of Na₂MoO₄ · 2H₂O crystals was performed. The lattice parameters are: $a = 13.823 \pm 0.004$, $b = 10.562 \pm 0.003$, $c = 8.514 \pm 0.002$ Å, N = 8. The space group is Pcab. The structure is built up of MoO₄²⁻ anions connected together by a system of hydrogen bonds in a continuous chain. The mean Mo-O distance is 1.76 Å, and the angle O-Mo-O is 109.5°.

It is known from the available structural data on the oxidic compounds of molybdenum that the distance between the oxygen atoms in MoO₆ octahedra is, as a rule, maintained within quite narrow limits. A shift of a molybdenum atom from the central point of a polyhedron is the chief external expression of distortions characteristic of such octahedra. These shifts, which reflect the complex picture of the σ - and π -valence interactions, lead to unequivalence in the lengths of the Mo-O bonds [1].

The shift of molybdenum from the center of an octahedron takes place in a quite definite manner. Thus, for example, one of the types of distortions is accomplished as a result of the possibility of localization of three π -bonds in the octahedron in three cis-disposed molybdenum-ligand contacts. The transition from this polyhedron, intermediate between an octahedron and a tetrahedron, to a purely tetrahedral coordination is accompanied by a redistribution of the π -interaction in all four ligands [1].

The molybdenum atom has tetrahedral coordination only in its highest oxidation state (speaking about the solid phase). Actually, such a coordination is achieved in certain complex oxides α - and β -Mo₄O₁₁, Mo₁₈O₅₂ [2], in sodium dimolybdate [3], and in a large group of orthomolybdates [4-14]. None of the simple and complex orthomolybdates whose structure has been studied contains water molecules in its composition.

We were interested in the structure of $Na_2MoO_4 \cdot 2H_2O$ crystals mainly because of their compositional similarity with crystals of $K_2OsO_4 \cdot 2H_2O$, in which water molecules enter the inner sphere of the complex with the formation of an octrahedral configuration from atoms of oxygen surrounding an atom of osmium [15].

On the other hand, the picture is different for the complex $K_2[OsO_3(NO_2)_2] \cdot 3H_2O$, in which entrance of the water molecules into the inner sphere was also assumed for forming octahedral coordination [16, 17]: octahedral coordination is managed as a result of anion dimerization [18].

It is possible that the tendency toward octahedral coordination in oxidic compounds of osmium is determined by the trans-stabilization of the π -bonds, whereas for oxidic compounds of molybdenum, it is characterized by cis-stabilization of the π -bonds [1].

	Coordinates and errors							0	
	x	σ(x)	ν	σ(y)	z	σ(z)	B _j , Ų	σ (B _j)	e1/Å3
$\begin{array}{c} Mo \\ Na_1 \\ Na_2 \\ O_1 \\ O_2 \\ O_3 \\ O_4 \\ (H_2O)_1 \\ (H_2O)_2 \end{array}$	0,4767 0,3526 0,415 0,391 0,459 0,596 0,462 0,701 0,297	0,0002 0,009 0,001 0,002 0,001 0,001 0,001 0,002 0,001 0,001	0,1983 0,449 0,504 0,148 0,359 0,179 0,106 0,407 0,357	0.0002 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002	0,5153 0,742 0,333 0,361 0,552 0,445 0,675 0,463 0,227	$\begin{array}{c} 0,0007\\ 0,003\\ 0,003\\ 0,004\\ 0,005\\ 0,005\\ 0,005\\ 0,005\\ 0,005\\ 0,005\\ 0,005\end{array}$	0,98 1,4 1,3 2,1 1,0 1,5 2,1 1,8 1,4	0,03 0,2 0,2 0,6 0,3 0,4 0,5 0,4 0,5	107,5 16,8 16,1 9,5 12,0 10,3 9,6 11,7 9,4

TABLE 1

Branch of the Institute of Chemical Physics. Translated from Zhurnal Strukturnoi Khimii, Vol. 10, No. 3, pp. 504-507, May-June, 1969. Original article submitted November 13, 1967.

TABLE 2. Interatomic Distances (Å) and Valence Angles (°) $[\sigma(Mo-O) = 0.03, \sigma(Na - O) = 0.04, \sigma(O - O) = 0.04$ Å, $\sigma(O - Mo - O) = 1.5^{\circ}, \sigma(O - H_2O - O) = 2.0^{\circ}]$

$\begin{array}{c} \text{Mo} - \text{O}_{1} \\ \text{O}_{2} \\ \text{O}_{3} \\ \text{O}_{4} \end{array}$ $\begin{array}{c} \text{Na}_{2} - \text{O}_{1} \\ \text{O}_{2} \\ \text{O}_{2} \\ \text{O}_{2} \\ \text{O}_{4} \\ (\text{H}_{2}\text{O})_{1} \\ (\text{H}_{2}\text{O})_{2} \\ (\text{H}_{2}\text{O})_{1} - \text{O}_{1}' \\ \text{O}_{3} \end{array}$	1,85 1,74 1,77 1,68 2,27 2,49 2,47 2,47 2,47 2,55 2,42 2,81 2,82	$\begin{array}{c} Na_1 - O_2 \\ O_3 \\ O_4 \\ (H_2O)_1 \\ (H_2O)_2 \\ O_1 - O_2 \\ O_3 \\ O_4 \\ O_2 - O_3 \\ O_4 \\ O_3 - O_4 \\ (H_2O)_2 - O_1 \\ O_3' \end{array}$	2,39 2,31 2,35 2,43 2,29 2,91 2,95 2,89 2,83 2,87 2,80 2,80 2,80 2,84
$\begin{array}{c} O_1 - MO - O_2 \\ O_2 - MO - O_3 \\ O_1 - MO - O_4 \\ O_2 - MO - O_3 \\ O_2 - MO - O_4 \\ O_3 - MO - O_4 \end{array}$	108,4 109,1 109,3 107,8 113,6 108,6	$O_3 - (H_2O)_1 - O_1'$ $O_1 - (H_2O)_2 - O_3'$	106,7 90,0

Therefore, the difference in the direction of the stabilizing effect of the π -bonds in complex compounds of osmium and molybdenum must evidently be manifested also in a different geometry of the anions in crystals of K₂OsO₄ • 2H₂O and Na₂MoO₄ • 2H₂O.

Crystals of Na₂MoO₄ \cdot 2H₂O are formed from aqueous solutions in the form of thin transparent and very brittle plates. A commercial sample (TU 4-03-48) was used for the investigation.

The crystals belong to the space group Pcab. The lattice parameters, accurately measured on a DRON-1 diffractometer with a single crystal attachment, agree well with those previously given in [19]: $a = 13.823 \pm 0.004$, $b = 10.562 \pm 0.003$, $c = 8.514 \pm 0.002$ Å, $d_{meas} = 2.56$ g/cm³, N = 8, μ (Mo, K α) = 21.7 cm⁻¹, F(000) = 880. The experimental data were obtained in KFOR with unfiltered molybdenum radiation. Five hundred and ninety-nine separate non-null reflections were recorded (maximum sin $\vartheta/\lambda = 1.05$). The intensities of the reflections were determined visually. Since we could not get spherical crystals, the absorption was disregarded.

The structural investigation was started with the analysis of the three-dimensional distribution of the Patterson function. Final interpretation of the structure was made using the method of successive approximations. Refinement of the MNK structure was started with R = 0.238. For the refinement, we used the weight system, which considers the reliability of the determination of the reflection intensities (the maximum value of the blackening mark is equal to 100):

$$15 < I_{hkl} < 100, \quad w = 1, \quad I_{hkl} < 15, \quad w = I/15, \quad I_{hkl} > 100, \quad w = \frac{300 - I}{200}$$

Refinement of the coordinates of all atoms, of the individual isotropic temperature corrections, and also of the general and layer coefficients of the reduction to the absolute scale led to a final R = 0.114.

Table 1 presents the values of the atomic coordinates, the individual isotropic temperature coefficients, the errors of their determination, and the peak heights of the electron density. Table 2 presents the interatomic distances and the valence angles. Figure 1 shows the structure in projection on the x0z plane.

Fig. 1

TABLE 3

NaCo _{2.31} (MoO ₄) ₃ [14]		a-MnMoO4 [9]		Na2MoO4 · 2H2O	Na2Mo2O7 [3]		K ₃ MO ₃ O ₁₀ [20]		MoO ₃ [21]
1,726 1,751 1,773 1,811	1,760 1,760 1,761 1,817	1,731 1,731 1,795 1,795	1,724 1,724 1,738 1,851	1,68 1,74 1,77 1,85	$1,70_8$ $1,75_2$ $1,78_4$ $1,78_4$	1,684 1,684 1,90 1,90 2,267 2,267	1,64 1,70 1,90 1,95 2,08	1,71 1,71 1,99 1,99 2,14 2,14	1,67 1,73 1,95 1,95 2,25 2,25 2,25

It is evident from Fig. 1 that the water molecules do not enter the inner sphere of the complex. The $MOO_4^{2^-}$ anions form hydrogen bonds with the water molecules, as a result of which continuous chains $MOO_4^{2^-} - H_2O - MOO_4^{2^-}$... are formed.

A comparison of the Mo-O bond lengths in MoO_4 tetrahedra, MoO_5 pentahedra, and MoO_6 octahedra given in Table 3 indicates the extent of the gradiation from the tetrahedral to the distorted octahedral configuration, emphasizing the same deep analogy in the electronic structures of the molybdenum complexes.

LITERATURE CITED

- 1. M. A. Porai-Koshits and L. O. Atovmyan, Crystallochemistry of Coordination Compounds of Molybdenum [in Russian], in: Results of Crystallochemical Science [in Russian], Izd. VINITI, Moscow (1968), p. 1966.
- 2. L. Kihlborg, Arkiv Kemi, 21, 44, 471 (1964).
- 3. M. Seleborg, Acta Chem. Scand., 21, 2, 499 (1967).
- 4. I. Lindqvist, Acta Chem. Scand., 4, 1066 (1950).
- 5. W. H. Zachariasen, Nork. Geol. Tidsskr., B9, 65 (1926).
- 6. L. G. Sillen and A. L. Nylander, Arkiv Kemi, Min., Geol., 17A, 4 (1943).
- 7. L. G. Sillen and H. Sundvall, Arkiv Kemi, Min., Geol., 17A, 10 (1943).
- 8. J. Leciejewicz, Z. Kristallogr., 121, 2-4, 158 (1965).
- 9. S. C. Abrahams and J. M. Reddy, J. Chem. Phys., 43, 7, 2533 (1965).
- 10. L. M. Plyasova. R. F. Klevtsova, S. V. Borisov, and L. M. Kefeli, Dokl. Akad. Nauk SSSR, 167, 1, 84 (1966).
- 11. Yu. K. Egorov-Tismenko, M. A. Simonov, and N. V. Belov, Kristallografiya, 12, 3, 511 (1967).
- 12. H. A. Eick and L. Kihlborg, Acta Chem. Scand., 20, 3, 722 (1966).
- 13. A.V. Chichagov, L.N. Dem'yanets, V.V. Ilyukhin, and N.V. Belov, Kristallografiya, 11, 4, 686 (1966).
- 14. J. A. Ibers and G. W. Smith, Acta Crystallogr., 17, 2, 190 (1964).
- 15. L. O. Atov myan, V. G. Andrianov, and M. A. Porai-Koshits, Zh. Strukt. Khim., 2, 6, 743 (1961).
- 16. G. B. Bokii, L. O. Atovmyan, and T. S. Khodashova, Dokl. Akad. Nauk SSSR, 128, 1, 78 (1959).
- 17. W. P. Griffith, J. Chem. Soc., 245 (1964).
- 18. L. O. Atovmyan and O. A. D'yachenko, Zh. Strukt. Khim., 8, 1, 169 (1967).
- 19. R. J. Poljak and L. N. Becka, Anales Asociación Química Argentina, 46, 3, 199 (1958).
- 20. M. Seleborg, Acta Chem. Scand., 20, 8, 2195 (1966).
- 21. L. Kihlborg, Arkiv Kemi, 21, 34, 357 (1963).