Crystal structure and revised chemical formula for burckhardtite, $\mathrm{Pb}_{2}\left(\mathrm{Fe}^{3+} \mathrm{Te}^{6+}\right)\left[\mathrm{AlSi}_{3} \mathrm{O}_{8}\right] \mathrm{O}_{6}$: a double-sheet silicate with intercalated phyllotellurate layers

Andrew G. Christy ${ }^{1, *}$, Anthony R. Kampf ${ }^{2}$, Stuart J. Mills ${ }^{3}$, Robert M. Housley ${ }^{4}$ and Brent Thorne ${ }^{5}$
${ }^{1}$ Centre for Advanced Microscopy, Australian National University, Canberra, ACT 0200, Australia
${ }^{2}$ Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
${ }^{3}$ Geosciences, Museum Victoria, GPO Box 666, Melbourne 3001, Victoria, Australia
${ }^{4}$ Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
53898 S. Newport Circle, Bountiful, UT 84010, USA

[Received 5 May 2014; Accepted 27 June 2014; Associate Editor: E. Grew]

ABSTRACT

The crystal structure of burckhardite from the type locality, Moctezuma, Sonora, Mexico, has been refined to $R_{1}=0.0362$ and $\mathrm{w} R_{2}=0.0370$ for 215 reflections with $I>2 \sigma(I)$. Burckhardtite is trigonal, space group $P \overline{3} 1 m$, with the unit-cell parameters $a=5.2566(5) \AA, c=13.0221(10) \AA, V=311.62(5) \AA^{3}$ and $Z=1$ for the ideal formula unit $\mathrm{Pb}_{2}\left(\mathrm{Fe}^{3+} \mathrm{Te}^{6+}\right)\left[\mathrm{AlSi}_{3} \mathrm{O}_{8}\right] \mathrm{O}_{6}$. There is no long-range order of $\left(\mathrm{Fe}^{3+}\right.$, $\left.\mathrm{Te}^{6+}\right)$ or $\left(\mathrm{Al}^{3+}, \mathrm{Si}^{4+}\right)$. New microprobe data were used to estimate site scattering factors, and Raman spectroscopic data showed no evidence of $\mathrm{O}-\mathrm{H}$ stretching bands. Burckhardtite is not closely related to the micas, as supposed previously, but is a double-sheet silicate in which the aluminosilicate anion resembles that of minerals such as cymrite and kampfite. The $\left[\left(\mathrm{Fe}^{3+} \mathrm{Te}^{6+}\right) \mathrm{O}_{6}\right]^{3-}$ part of the structure is not bonded directly to the aluminosilicate layer, but forms a discrete anionic phyllotellurate layer that alternates with the $\left[\mathrm{AlSi}_{3} \mathrm{O}_{8}\right]^{-}$double sheets. Similar phyllotellurate layers are known from several synthetic phases. In burckhardtite, Pb^{2+} cations intercalate between phyllosilicate and phyllotellurate layers, forming a $\mathrm{Pb}_{2}\left[\mathrm{FeTeO}_{6}\right]$ module that is topologically similar to a slab of the structure of rosiaite, $\mathrm{Pb}\left[\mathrm{Sb}_{2} \mathrm{O}_{6}\right]$. The crystal symmetry, structure, classification as a double-sheet silicate and chemical formula, including the determination of the $6+$ valence of Te and absence of essential $\mathrm{H}_{2} \mathrm{O}$, are all new findings for the mineral.

Keywords: crystal structure, burckhardtite, phyllotellurate, phyllosilicate, double-sheet silicate, Moctezuma.

Introduction

Burckhardtite, was originally described from the Moctezuma mine (Bambolla mine) in Sonora, Mexico by Gaines et al. (1979) as a silicatetellurite with the formula $\mathrm{Pb}_{2}\left(\mathrm{Fe}^{3+}, \mathrm{Mn}^{3+}\right) \mathrm{Te}^{4+}$ $\left(\mathrm{AlSi}_{3} \mathrm{O}_{10}\right) \mathrm{O}_{2}(\mathrm{OH})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$. Crystals occur as carmine-red platelets up to $20 \mu \mathrm{~m}$ across and are intergrown to form larger rosettes up to 0.1 mm across. Burckhardtite is an extremely rare mineral

[^0]and has been observed only in two other localities: the Bird Nest drift on Otto Mountain, Baker, California (Kampf et al., 2010) and the Reef mine, Carr Canyon, Arizona (Walstrom, 2012). Because of the small amount of singlephase material available, Gaines et al. (1979) had to make several assumptions about the mineral: (1) the valence of Te was assumed to be $4+$ based on the association with paratellurite, moctezumite and zemannite; (2) $\mathrm{H}_{2} \mathrm{O}$ was taken to be a significant constituent, as estimated by difference of the EMPA microprobe analyses from $100 \mathrm{wt} . \%$ total; (3) burckhardtite was assumed to be
C-centred monoclinic by analogy with micas. Gaines et al. (1979) estimated unit-cell parameters as $a=5.21 \AA, b=9.04 \AA, c=12.85 \AA$ and $\beta=90^{\circ}$, but noted that "a number of minor lines fail to index readily", supporting the need for further study. On the basis of the assumed relationship to micas, a structure was proposed, based on sheets of $\left[\mathrm{Pb}_{2} \mathrm{FeTeO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right]^{7+}$ or $\left[\mathrm{Pb}_{2} \mathrm{FeTeO}(\mathrm{OH})_{2}\right]^{7+}$, sandwiched between a pair of mica-like sheets of composition $\left[\mathrm{AlSi}_{3} \mathrm{O}_{10}(\mathrm{OH})_{2}\right]^{7-}$. Given the unverified assumptions in the characterization of the mineral to date, its interest as a possible Te-bearing mica analogue, and as part of our greater study on the crystallography and chemistry of Te oxysalts (Mills and Christy, 2013; Christy and Mills, 2013), we have re-examined crystals of burckhardtite from the Moctezuma mine and report the results of the structure investigation, along with new analytical data which we have compared with those of Gaines et al. (1979). The crystals used in this study were obtained from two small fragments removed from a larger specimen, a portion of which is shown in Fig. 1. These are preserved in the collections of the Natural History Museum of Los Angeles County, catalogue number 64173.

Experimental

Electron microprobe analysis

Electron microprobe (EMP) analyses for the burckhardtite sample used in this study were obtained on a JEOL8200 microprobe at the California Institute of Technology, using 15 kV accelerating voltage, $2 \mu \mathrm{~m}$ spot size and 5 nA probe current. Standards used were: anorthite (Al, Si and Ca$)$, forsterite (Mg), synthetic Mn olivine (Mn), fayalite (Fe), galena (S and Pb), benitoite (Ba) and pure elements for Cu, Se and Te . The elements $\mathrm{Mg}, \mathrm{Cu}, \mathrm{Se}$ and Ba were always below detection limits. The Raman spectrum (see section below) showed no evidence of unanalysed light components such as CO_{3} or $\mathrm{H}_{2} \mathrm{O}$. The variablevalence elements Mn, Fe and Te are expressed as $\mathrm{Mn}_{2} \mathrm{O}_{3}, \mathrm{Fe}_{2} \mathrm{O}_{3}$ and TeO_{3}, consistent with the strong purple-red colour attributable to Mn^{3+} (Fig. 1) and the bond-valence sums of the structure refinement (see section below). Analyses were recalculated to 14 oxygen atoms, consistent with the structure refinement. Data are summarized in Table 1, and are broadly in agreement with those of Gaines et al. (1979). The mounted grains were polycrystalline and
porous, which accounts for the low totals. The structure refinement indicates an ideal stoichiometry $A_{2} M_{2}\left[T_{4} \mathrm{O}_{8}\right] \mathrm{O}_{6}$, where $A=$ asymmetricallycoordinated large cation (mainly Pb^{2+}), $M=$ octahedrally-coordinated cation (mainly Te^{6+} and Fe^{3+}) and $T=$ tetrahedrally-coordinated cation (mainly Si and Al$)$. If $(\mathrm{Al}+\mathrm{Si}+\mathrm{S})$ are placed on T, ($\mathrm{Te}+\mathrm{Fe}+\mathrm{Mn}$) on M and $(\mathrm{Pb}+\mathrm{Ca})$ on A sites, the mean of the 7 EMP analyses of this present study gives the formula $\left(\mathrm{Pb}_{1.76} \mathrm{Ca}_{0.05}\right)_{\Sigma 1.81}$ $\left(\mathrm{Te}_{1.13}^{6+} \mathrm{Fe}_{0.83}^{3+} \mathrm{Mn}_{0.24}^{3+}\right)_{\Sigma 2.20}\left[\left(\mathrm{Si}_{2.85} \mathrm{Al}_{0.97} \mathrm{~S}_{0.01}\right)_{\Sigma 3.83}\right.$ $\left.\mathrm{O}_{8}\right] \mathrm{O}_{6}$. The analyses show considerable variation in the ratio of $(\mathrm{Te}+\mathrm{Fe}+\mathrm{Mn}):(\mathrm{Si}+\mathrm{Al})$ and a consistent deficiency of Pb ; such problems are common with EMPA of heavy elements, and may be due to extreme ZAF correction factors needed with the standards available. However, we note that $\mathrm{Al}:(\mathrm{Al}+\mathrm{Si})$ and $\mathrm{Te}:(\mathrm{Fe}+\mathrm{Mn})$ ratios were always close to 1:3 and 1:1 respectively, consistent with the ideal formula $\mathrm{Pb}_{2}\left(\mathrm{Fe}^{3+} \mathrm{Te}^{6 \dagger}\right)\left[\mathrm{AlSi}_{3} \mathrm{O}_{8}\right] \mathrm{O}_{6}$ derived from the structure refinement.

Raman spectroscopy

Raman spectra were obtained with a Renishaw M-1000 microRaman spectrometer system with a 514.3 nm Cobalt solid-state laser operating at 10% power through a $100 \times$ objective that produced 0.6 mW on an $\sim 1 \mu \mathrm{~m}$ diameter spot on the mounted and polished sample used for microprobe analysis.
The spectrum of burckhardtite is dominated by a strong band at $690 \mathrm{~cm}^{-1}$, attributed to the v_{1} symmetric stretching mode of TeO_{6}. This band occurs in the centre of the $615-810 \mathrm{~cm}^{-1}$ range

Fig. 1. Rosettes of hexagonal burckhardtite tablets with pearly-white flakes of probable dickite, on the specimen used in this study. Field of view $=1 \mathrm{~mm}$.

TABLE 1. Electron microprobe analyses of burckhardtite.

	- This study Mean wt. $\%$	(seven spots) - Range wt. $\%$	Gaines et al. (1979) Ot.
TeO_{3}	20.86	$18.18-20.86$	18.74^{*}
SO_{3}	0.12	$0-0.32$	-
SiO_{2}	17.91	$16.86-19.35$	20.28
$\mathrm{Al}_{2} \mathrm{O}_{3}$	5.19	$4.79-5.70$	5.44
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	6.91	$6.27-7.47$	7.25
$\mathrm{Mn}_{2} \mathrm{O}_{3}$	1.98	$1.42-2.51$	1.18
CaO	0.29	$0.12-0.53$	-
PbO	41.18	$38.62-43.08$	45.23
Total	94.43	$93.35-95.15$	96.41^{\dagger}
Recalculated to 14 oxygens			
Si	2.85	$2.68-3.08$	3.12
Al	0.97	$0.90-1.07$	0.98
S	0.01	$0-0.04$	-
Fe	0.83	$0.75-0.90$	0.84
Mn	0.24	$0.17-0.31$	0.14
Te	1.13	$0.99-1.25$	0.99
Pb	1.76	$1.65-1.85$	1.87
Ca	0.05	$0.02-0.09$	-
$\mathrm{Al} /(\mathrm{Al}+\mathrm{Si})$	0.254	$0.251-0.258$	0.239
$\mathrm{Te} /(\mathrm{Te}+\mathrm{Fe}+\mathrm{Mn})$	0.516	$0.505-0.527$	0.503
$\mathrm{Mn} /(\mathrm{Fe}+\mathrm{Mn})$	0.225		0.143

[^1]expected for such vibrations, and is very close to the strong $694 \mathrm{~cm}^{-1}$ observed for mojaveite, $\mathrm{Cu}_{6}\left[\mathrm{Te}^{6+} \mathrm{O}_{4}(\mathrm{OH})_{2}\right](\mathrm{OH})_{7} \mathrm{Cl}$ (Mills et al., 2014), which also contains $\mathrm{Te}(\mathrm{O}, \mathrm{OH})_{6}$ octahedra as components in an edge-sharing octahedral sheet. Additional strong bands in the burckhardtite spectrum at 646 and $619 \mathrm{~cm}^{-1}$ and a weak feature at $661 \mathrm{~cm}^{-1}$ may be compared with mojaveite bands at 654 and $624 \mathrm{~cm}^{-1}$. The spectrum of bairdite, $\mathrm{Pb}_{2} \mathrm{Cu}_{4}^{2+} \mathrm{Te}_{2}^{6+} \mathrm{O}_{10}$ $(\mathrm{OH})_{2}\left(\mathrm{SO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)$, is similarly dominated by a tellurate mode at $721 \mathrm{~cm}^{-1}$ (Kampf et al., 2013a) and that of eckhardite, $(\mathrm{Ca}, \mathrm{Pb}) \mathrm{Cu}^{2+} \mathrm{Te}^{6+} \mathrm{O}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)$, by peaks at 729 and $692 \mathrm{~cm}^{-1}$ (Kampf et al., 2013b).

Lower-frequency peaks in the Raman spectrum of burckhardtite were observed at 554, 477 (with shoulders at ~ 463 and 505), 391, 322, 295 and $202 \mathrm{~cm}^{-1}$. These will include tellurate and aluminosilicate bending modes. Stretching modes of the aluminosilicate anion gave only weak bands at 833 and $897 \mathrm{~cm}^{-1}$. The bands may be compared with those in the corresponding
wavenumber region for other double-sheet phyllosilicates. Cymrite, $\mathrm{Ba}\left[\mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}\right] \cdot \mathrm{H}_{2} \mathrm{O}$, has weak peaks at 800 and $953 \mathrm{~cm}^{-1}$ (Graham et al., 1992), while aluminosilicate stretches for 'K-cymrite', $\mathrm{K}\left[\mathrm{AlSi}_{3} \mathrm{O}_{8}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ and kokchetavite, $\mathrm{K}\left[\mathrm{AlSi}_{3} \mathrm{O}_{8}\right]$, are at 832.5 and $800 \mathrm{~cm}^{-1}$, respectively (Kanzaki et al., 2012) and for dmisteinbergite, $\mathrm{Ca}\left[\mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}\right]$, at 912,893 and $801 \mathrm{~cm}^{-1}$ (Fintor et al., 2013).

No bands attributable to $\mathrm{O}-\mathrm{H}$ were seen in the $2500-4000 \mathrm{~cm}^{-1}$ region, consistent with the absence of significant OH^{-}or $\mathrm{H}_{2} \mathrm{O}$ deduced from the structure refinement (see below).

Powder diffraction

X-ray diffraction data for burckhardtite were obtained on a Rigaku R-Axis Rapid II curved imaging plate microdiffractometer utilizing monochromatized $\mathrm{Mo} K_{\alpha}$ radiation. The observed powder d-spacings and intensities were derived by profile fitting using JADE 2010 software (Materials Data, Inc.). Unit-cell parameters
refined from the powder data using $J A D E 2010$ with whole pattern fitting are: $a=5.2540(4) \AA$ and $c=13.0121(12) \AA$. The observed d spacings fit well with those calculated from the structure and those reported by Gaines et al. (1979) (Table 2).

Single-crystal X-ray diffraction

Single-crystal data were collected on the same instrument noted above at 293 K , using a crystal fragment $\sim 35 \mu \mathrm{~m} \times 25 \mu \mathrm{~m} \times 10 \mu \mathrm{~m}$ in size. The Rigaku CrystalClear software package was used

Table 2. Powder X-ray data for burckhardtite (d spacings in \AA).

This study		Based on structure - This study			Gaines et al. (1979)	
$I_{\text {obs }}$	$d_{\text {obs }}$	$I_{\text {calc }}$	$d_{\text {calc }}$	$h k l$	$I_{\text {obs }}$	$d_{\text {obs }}$
83	13.03	99	13.0221	001	90	12.80
		1	6.5111	002		
17	4.547	13	4.5523	100	20	4.51
18	4.294	14	4.2973	101	20	4.26
81	3.730	76	3.7309	102	90	3.70
100	3.141	100	3.1415	103	100	3.11
		1	2.6481	104		
60	2.627	48	2.6283	110	70	2.60
		7	2.6044	005		
10	2.578	9	2.5763	$\overline{1} \overline{1} 1$	10	2.56
4	2.433	3	2.4372	112	10	2.42
		9	2.2762	200		2.26
		10	2.2606	105	30	
29	2.262	6	2.2483	113	30	2.24
		2	2.2422	201	30	2.24
30	2.151	\{ 6	2.1704	006	10	2.16
		\{ 21	2.1487	202	30	2.13
		1	2.0450	$\overline{1} 14$	5	2.04
21	2.0164	18	2.0158	203	20	2.00
5	1.9557	4	1.9591	106	5	1.952
		2	1.8654	204		
38	1.8497	33	1.8500	$\overline{1} 15$	60	1.840
		1	1.7221	107		
		3	1.7206	210		
8	1.7148	2	1.7139	205		
		2	1.7058	$\overline{2} \overline{1} 1$		
33		17	1.6735	$\overline{1} 1$		
	1.6680	$\{16$	1.6635	$\overline{2} 12$		
29	1.5992	27	1.5995	$\overline{2} 13$	50	1.590
312	$\begin{aligned} & 1.5684 \\ & 1.5309 \end{aligned}$	3	1.5707	206	5	1.563
		12	1.5327	108	20	1.526
		1	1.5212	214		
17	1.5155	13	1.5175	300	20	1.508
		4	1.5073	301		
5	1.4356	1	1.4404	207		
		4	1.4356	215	5	1.426
		1	1.4324	303		
		2	1.3789	109	5	1.371
		2	1.3483	216	5	1.340
8	1.3233	9	1.3240	208	10	1.318
15	1.3120		1.3142	220	20	1.306
		\{ 7	1.3111	305		

Only lines with $d>1.3 \AA$ are included.

Table 3. Assigned site-distribution scheme for burckhardtite, $A M_{2}\left[T_{4} \mathrm{O}_{8}\right] \mathrm{O}_{6}$, comparing electron counts estimated from atomic proportions in mean microprobe analysis and those from X-ray diffraction structure refinement.

Site	Population	$e_{\text {EMPA }}^{-}$	$e^{-} \overline{\text { XRD }}^{-}$
A	$\left(\mathrm{~Pb}_{0.97} \mathrm{Ca}_{0.03}\right)$	80.1	$80.5(25)$
M	$\left(\mathrm{Te}_{0.55} \mathrm{Fe}_{0.33} \mathrm{Mn}_{0.11}\right)$	39.2	$37.9(10)$
T	$\left(\mathrm{Si}_{0.75} \mathrm{Al}_{0.25}\right)$	13.75	$13.8(6)$

for processing of the diffraction data, including the application of an empirical multi-scan absorption correction using $A B S C O R$ (Higashi, 2001). The structure was solved in space group $P \overline{3} 1 m$ (No. 162) by direct methods using SIR2004 (Burla et al., 2005). SHELXL-2013 (Sheldrick, 2008) was used for the refinement of the structure. Initially, occupancies were refined for Pb on A, Te on M and Si on T, so as to estimate overall site scattering factors for the mixed species on these sites. The electron counts were found to agree closely with those calculated if site populations were as in the formula recalculated from the averaged microprobe data above. Species were
assigned in these proportions so as to fully occupy sites for the final refinement (Table 3), analogous to the method of Mills et al. (2012a). Neutralatom scattering curves were used (Ibers and Hamilton, 1974). The final model, with all atomic displacement parameters refined anisotropically, converged to $R_{1}=0.0362$ for 215 observed reflections $\left[I_{0}>2 \sigma I\right.$] and 0.0370 for all 223 unique reflections. Data collection and structure refinement details are provided in Table 4. The largest difference peak, $3.375 \mathrm{e} / \mathrm{A}^{3}$, is only $1.13 \AA$ from Pb . Other positive difference peaks are too small to suggest the presence of significant additional components such as $\mathrm{H}_{2} \mathrm{O}$. Atomic coordinates and displacement parameters are in Table 5, selected bond distances in Table 6 and bond-valence sums in Table 7. For bondvalence calculations, the cation-site occupancies of Table 3 were used, and bond values were calculated using appropriately weighted averages of those for the respective substituents. Bondvalence parameters used were those of Brese and O'Keeffe (1991) except for $\mathrm{Pb}^{2+}-\mathrm{O}\left(r_{0}=\right.$ $1.963 \AA, b=0.49 \AA$: Krivovichev and Brown, 2001) and $\mathrm{Te}^{6+}-\mathrm{O}\left(r_{0}=1.921 \AA, b=0.56 \AA\right.$: Mills and Christy, 2013). All bond-valence sums for oxygen atoms are very close to 2 ($1.89-2.05$ valence units) and would only

Table 4. Crystal data and structure refinement for burckhardtite.
Ideal formula
Temperature
Wavelength
Space group
Unit-cell dimensions
Volume
Z
Crystal size $(\mu \mathrm{m})$
Absorption coefficient $\left(\mathrm{mm}^{-1}\right)$
$\mathrm{F}(000)$
Theta range for data collection
Index ranges
Independent reflections
Refinement method
Data / restraints / parameters
Reflections with $I>2 \sigma(I)$
Gof on F^{2}
Final R indices $[I>2 \sigma(I)]$
R indices (all data)
Extinction coefficient
Largest diff. peak and hole $\left(e / \AA^{3}\right)$

Ideal formula
Wher
Space group
Unit-cell dimensions
Volume
Z
Crystal size ($\mu \mathrm{m}$)
F(000)
Theta range for data collection
Index ranges
Independent reflections
Data / restraints / parameters
Reflections with $I>2 \sigma(I)$
Gof on F^{2}
Final R indices $[I>2 \sigma(I)]$
R indices (all data)
Extinction coefficient
Largest diff. peak and hole $\left(e / \AA^{3}\right)$

```
\(\mathrm{Pb}_{2}\left(\mathrm{Fe}^{3+} \mathrm{Te}^{6+}\right)\left[\mathrm{AlSi}_{3} \mathrm{O}_{8}\right] \mathrm{O}_{6}\)
293(2) K
\(0.71075 \AA\)
P \(\overline{3} 1 m\)
\(a=5.2566(5) \AA\)
\(c=13.0221(10) \AA\)
311.62(5) \(\AA^{3}\)
1
\(35 \times 25 \times 10\)
30.033
405
3.13 to \(24.90^{\circ}\)
\(-5 \leqslant h \leqslant 5,-6 \leqslant k \leqslant 6,-15 \leqslant l \leqslant 15\)
1667 [ \(\left.R_{\text {int }}=0.0316\right]\)
Full-matrix least-squares on \(F^{2}\)
223 / 0 / 25
215
1.249
\(R_{1}=0.0362, w R_{2}=0.0772\)
\(R_{1}=0.0370, w R_{2}=0.0775\)
None
3.375 and -2.134
```

Table 5. Atom coordinates and displacement parameters $\left(\AA^{2}\right)$ for burckhardtite.

Site	Occupancy	x / a	y / b	z/c	$U_{\text {eq }}$	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
A	$0.97 \mathrm{~Pb}+0.03 \mathrm{Ca}$	1	0	0.31612(9)	0.0146(4)	0.0141(5)	0.0141(5)	0.0155(6)	0	0	0.0072(2)
M	$0.51 \mathrm{Te}+0.38 \mathrm{Fe}+0.11 \mathrm{Mn}$	2/3	1/3	1/2	0.0124(6)	$0.0086(8)$	$0.0086(8)$	$0.0199(14)$	0	0	0.0036(4)
T	$0.75 \mathrm{Si}+0.25 \mathrm{Al}$	1/3	2/3	0.1245(5)	0.0180(13)	0.0157(18)	0.0157(18)	0.023(3)	0	0	0.0073(9)
O1	1	1/3	2/3	0	0.021(5)	0.010(6)	0.010(6)	0.043(14)	0	0	0.004(3)
O2	1	0.454(3)	0	$0.1700(10)$	0.030(3)	0.040(7)	0.021(7)	$0.023(7)$	0	-0.001(5)	0.010(3)
O3	1	0.629(3)	0	$0.4165(8)$	0.018(3)	0.022(5)	0.013(6)	0.017(6)	0	$0.001(4)$	0.006(3)

Table 6. Bond distances (\AA) for burckhardtite. $A=$ $(\mathrm{Pb}, \mathrm{Ca}), M=(\mathrm{Te}, \mathrm{Fe}, \mathrm{Mn})$ and $T=(\mathrm{Si}, \mathrm{Al})$.

$$
\begin{aligned}
& A-\mathrm{O} 3: 2.349(12) \times 3 \\
& A-\mathrm{O} 2: 3.053(14) \times 3 \\
& A-\mathrm{O} 2: 3.442(14) \times 3 \\
& \langle A-\mathrm{O}\rangle: 2.948 \\
& M-\mathrm{O}: 1.986(7) \times 6 \\
& T-\mathrm{O}: 1.621(6) \times 1 \\
& T-\mathrm{O} 2: 1.647(5) \times 3 \\
& \langle T-\mathrm{O}\rangle: 1.6405
\end{aligned}
$$

increase if $\mathrm{Pb}-\mathrm{O}$ bond valences were larger, so as to correct the slight underbonding of Pb in Table 6. This confirms that these oxygen atoms are O^{2-} rather than OH^{-}, and along with the absence of $\mathrm{O}-\mathrm{H}$ bands in Raman spectrum or significant additional electron density peaks, implies that burckhardtite is ideally anhydrous.

Discussion

Crystal structure and chemistry

The crystal structure of burckhardtite is shown in Fig. 2. The true symmetry is trigonal, space group $P \overline{3} 1 m$. Note that the powder data of Gaines et al. (1979) do not demonstrate any deviation from a hexagonal unit-cell metric, in that pairs of reflections such as $11 l$ and $02 l$ were not resolved. The structure does indeed contain phyllosilicate sheets with 6-rings, but unlike the micas, two such sheets in burckhardtite are linked through apical oxygen atoms with no intervening octahedral sheet, to form an unbranched zweier double layer [$\left.\mathrm{AlSi}_{3} \mathrm{O}_{8}\right]^{-}$according to the classification of Liebau (1985). As all oxygen atoms are bridging, substitution of a cation with valence <4, such as Al^{3+}, is essential to provide a net negative charge on the double sheet. The double sheets are regularly intercalated with dioctahedral sheets, approximately $\left[\left(\mathrm{Fe}^{3+} \mathrm{Te}^{6+}\right) \mathrm{O}_{6}\right]^{3-}$, which also carry a negative charge. The charge is neutralized by Pb^{2+} ions, which decorate the outside of the dioctahedral sheets and connect them to the aluminosilicate double layers.

The rather regular octahedral coordination of the Te site in the crystal structure indicates that the cation is Te^{6+}, rather than Te^{4+}, as was assumed previously. All $\mathrm{Te}-\mathrm{O}$ distances are equal (1.986 \AA; Table 6) and the standard deviation of $\mathrm{O}-\mathrm{Te}-\mathrm{O}$ bond angles is 6.7°

Table 7. Bond valences and bond-valence sums for burckhardtite. Ideal sums for the A, M and T compositions used are 2.00, 4.53 and 3.75 valence units respectively.

O 1	O 2	O 3	Σ	
$A=\mathrm{Pb}_{0.97} \mathrm{Ca}_{0.03}$		$0.1065 \times 3 \rightarrow, \times 1 \downarrow$,	$0.4519 \times 3 \rightarrow$	1.819
$M=\mathrm{Te}_{0.51} \mathrm{Fe}_{0.38} \mathrm{Mn}_{0.11}$		$0.0480 \times 3 \rightarrow, \times 1 \downarrow$	$0.7196 \times 6 \rightarrow, \times 2 \downarrow$	4.318
$T=\mathrm{Si}_{0.75} \mathrm{Al}_{0.25}$	$1.0272 \times 2 \downarrow$	$0.9575 \times 3 \rightarrow, \times 2 \downarrow$		3.900
Σ	2.054	2.070		1.891

(angles are $3 \times 80.3^{\circ}, 6 \times 92.8^{\circ}$ and $3 \times 94.9^{\circ}$). By contrast, examination of $40 \mathrm{Te}^{4+} \mathrm{O}_{6}$ polyhedra by Christy and Mills (2013) showed them to exhibit much longer mean bond distances covering a broad range $(2.241-2.672 \AA)$, as well as larger bond-angle standard deviations (11.6-24.5 $)$. From a bond-valence perspective, if the Te site in burckhardtite were fully occupied by Te , the observed bond distance would yield a bondvalence sum of 5.64 if the $\mathrm{Te}^{4+}-\mathrm{O}$ bond-valence parameters of Mills and Christy (2013) are used and 5.34 if the $\mathrm{Te}^{6+}-\mathrm{O}$ parameters are used.

As noted above, the Raman spectrum and structure refinement shows that burckhardtite is anhydrous. Ratios of $M^{3+}: \mathrm{Te}^{6+}$ and $\mathrm{Al}: \mathrm{Si}$ are close to $1: 1$ and $3: 1$ respectively, implying that a simplified charge-balanced formula can be written as $\mathrm{Pb}_{2}\left(\mathrm{Fe}^{3+} \mathrm{Te}^{6+}\right)\left[\mathrm{AlSi}_{3} \mathrm{O}_{8}\right] \mathrm{O}_{6}$. This is consistent with the stoichiometry derived from the crystal structure, although the structure implies that there is no long-range order of $\left(M^{3+}, \mathrm{Te}\right)$ or $(\mathrm{Si}, \mathrm{Al})$.

Relationship to other minerals and synthetic compounds

Burckhardtite belongs to a small family of double-sheet phyllosilicate minerals. The simplest examples of these, in which only large cations occur between the silicate double sheets, are the feldspar polymorphs dmisteinbergite, $\mathrm{Ca}\left[\mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}\right]$ (Takéuchi and Donnay, 1959; Chesnokov et al., 1990) and kokchetavite, $\mathrm{K}\left[\mathrm{AlSi}_{3} \mathrm{O}_{8}\right]$ (Hwang et al., 2004), and their hydrated analogues cymrite, $\mathrm{Ba}\left[\mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (Drits et al., 1975) and 'K-cymrite' (Fasshauer et al., 1997; Zhang et al., 2009). A more complex example is kampfite, ideally $\mathrm{Ba}_{12}\left[\mathrm{Al}_{5} \mathrm{Si}_{11} \mathrm{O}_{32}\right]$ $\left[\left(\mathrm{CO}_{3}\right)_{0.875}\right]_{8} \mathrm{Cl}_{5}$ (modified slightly from Basciano and Groat, 2007), in which the intersheet region
contains a sequence of layers $\mathrm{Ba}-\mathrm{CO}_{3}-(\mathrm{Ba}+\mathrm{Cl})-$ $\mathrm{CO}_{3}-\mathrm{Ba}$. The tetrahedrally coordinated sites are partially vacant in strätlingite and vertumnite, closely-related minerals with ideal formulae $\mathrm{Ca}_{2} \mathrm{Al}\left[\left(\mathrm{AlSi} \square_{2}\right)\left(\mathrm{O}_{2}(\mathrm{OH})_{6} \square_{2}\right)\right](\mathrm{OH})_{6} \cdot 2.25 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Ca}_{2} \mathrm{Al}\left[\left(\mathrm{AlSi}_{1.25} \square_{1.75}\right)\left(\mathrm{O}_{3}(\mathrm{OH})_{5} \square_{2}\right)\right](\mathrm{OH})_{6}$ $\cdot 2.45 \mathrm{H}_{2} \mathrm{O}$ according to Rinaldi et al. (1990). The incomplete double sheets in these minerals are intercalated with a modified brucite-like trioctahedral layer $\left[\mathrm{Ca}_{2} \mathrm{Al}(\mathrm{OH})_{6}\right]^{1+}$ of $\mathrm{Al}(\mathrm{OH})_{6}$ octahedra and $\mathrm{Ca}(\mathrm{OH})_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)$-capped octahedra, very similar to that of the hydrocalumite group of minerals in the hydrotalcite supergroup (Sacerdoti and Passaglia, 1988; Mills et al., 2012b).

The $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ angle across the oxygen O 1 that bridges the two halves of the double sheet is 180° in burckhardtite. The bond distances and bondvalence sum for O1 imply that this atom is truly located at the special position of point symmetry 32 as in Table 5, rather than dynamically displaced around that position. This is supported by the anisotropy of the displacement parameters, which have $U^{33}>\left(U^{11}\right.$ and $\left.U^{22}\right)$, implying more displacement along the bond than normal to it. Although such linear coordination is rare for bridging oxygen atoms on the whole, it is a recurrent feature for the central oxygen atoms of double-sheet silicates, occurring also in dmisteinbergite and strätlingite (Takéuchi and Donnay, 1959; Rinaldi et al., 1990).

Burckhardtite is the first example of a phase where a complete aluminosilicate double sheet is intercalated with a dioctahedral layer, $\left[M_{2} \square X_{6}\right.$]. If the M cations were all Te^{6+} and the X anions were all O^{2-}, this sheet would be electrostatically neutral, but as in the aluminosilicate part of the structure, a net negative charge is provided by substitution of lower-valent cations, primarily Fe^{3+} in this case. Each X anion is bonded to only two M cations, which allows the possibility

Fig. 2. Crystal structure of burckhardtite viewed (a) down \mathbf{x} and (b) down \mathbf{z}. (Fe, Te) octahedra are red, ($\mathrm{Si}, \mathrm{Al})$ tetrahedra are brown and Pb atoms are grey spheres. Unit cell outlined in black.
of maintenance of a constant bond-valence sum on the anions by strict alternation of the two types of M cation. The large difference in valence between Te and Fe implies that such ordering would be favourable, and the observed $\mathrm{Te}: M^{3+}$ ratio $\approx 1: 1$ strongly suggests that the octahedrally coordinated cations do order within a given layer. However, there is no evidence of ordering in the third dimension, presumably because of the wide separation between successive octahedral layers. This situation is analogous to that in the layered double hydroxide phases of the hydrotalcite
supergroup, where two octahedrally coordinated cations may order strongly within a brucite-like layer, but decoupling between layers means that evidence of three-dimensional long-range order is rarely, if at all, observed (e.g. Mills et al., 2012b, Génin et al., 2014). In the single-crystal diffraction pattern of burckhardtite, we observed no streaks or diffuse scattering that might indicate additional short-range order.

The tetrahedral double layer $\left[\mathrm{AlSi}_{3} \mathrm{O}_{8}\right]^{-}$and trioctahedral sheet $\left[\mathrm{Fe}^{3+} \mathrm{Te}^{6+} \mathrm{O}_{6}\right]^{3-}$ of burckhardtite are both anionic. The charge is balanced
by layers of Pb^{2+} cations which lie between a tetrahedral double sheet on one side and a dioctahedral layer on the other. Pb is in $3+3+3$ coordination, forming three short bonds to O 3 in the octahedral layer and six longer bonds to O 2 in the tetrahedral double sheet (Table 6, Fig. 3). The Pb^{2+} lone pair is evidently directed along $\pm \mathbf{z}$ towards the centre of the ditrigonal silicate rings.

The $\mathrm{Pb}-\left[M_{2} X_{6}\right]-\mathrm{Pb}$ compound layer of burckhardtite can be regarded as a slab of rosiaite-like structure intercalated with the tetrahedral double sheet. Rosiaite $\left(\mathrm{PbSb}_{2} \mathrm{O}_{6}\right)$ has the same $P \overline{3} 1 m$ space group as burckhardtite and a very similar a parameter $(5.295 \AA)$. It has a structure in which two types of octahedrally coordinated cations occupy alternately $1 / 3$ or $2 / 3$ of the available sites between alternate layers of a hexagonal closepacked anion array (Basso et al., 1996), corresponding to the $\mathrm{Li}_{2} \mathrm{ZrF}_{6}\left(=\mathrm{ZrLi}_{2} \mathrm{~F}_{6}\right)$ archetype (Brunton, 1973), albeit with different relative valences of the two types of cation. We note that synthetic $\mathrm{PbSb}_{2} \mathrm{O}_{6}$ was reported initially to have a slight distortion of this structure type (P312 space group; Magnéli, 1941). In rosiaite, where the $\mathrm{Pb}-$ site symmetry is centrosymmetric $\overline{3} m$ and the Pb atom is sandwiched between two $M_{2} X_{6}$ layers, the Pb coordination polyhedron is nearly regular octahedral with six equivalent $\mathrm{Pb}-\mathrm{O}$ distances of $2.554 \AA$ and lone-pair stereoactivity is suppressed. However, in burckhardtite, there is a $M_{2} X_{6}$ layer on only one side of the Pb site which,

Fig. 3. The Pb environment in burckhardtite, showing Pb (grey sphere), three short bonds to O 3 and $3+3$ longer bonds to O 2 . The lone pair of the Pb atom is directed towards the centre of the aluminosilicate 6-ring (brown).
hence, has polar $3 m$ point symmetry; much longer bonds are made to the O atoms of the aluminosilicate sheet on the other side (Table 6, Fig. 3), consistent with the lone pair orienting in this direction, as noted above.

Phyllotellurate $M_{2} \mathrm{O}_{6}$ layers very similar to that of burckhardtite, with $1: 1$ substitution of Te^{6+} and a lower-valence M cation ensuring a net negative charge overall, are known from several synthetic tellurates with the $\mathrm{PbSb}_{2} \mathrm{O}_{6} / \mathrm{Li}_{2} \mathrm{ZrF}_{6}$ topology. However, in all of these cases, the two types of high-valence cations are long-range ordered to produce superstructures. They include $\mathrm{SrGeTeO}_{6}$, where ordering lowers the symmetry to $P 312$, and a suite of compounds $\operatorname{REECrTeO}$ ($R E E=$ $\mathrm{La}-\mathrm{Yb}$ and Y ; Kasper, 1969) plus $\mathrm{LaFeTeO}_{6}$ (Phatak et al., 2010) with a doubled c repeat and $P \overline{3} 1 c$ symmetry (isostructural with colquiriite, $\mathrm{CaLiAlF}_{6}$; Yin and Keszler, 1992). $\mathrm{LaFeTeO}_{6}$, in particular, has a $\left[\mathrm{Fe}^{3+} \mathrm{Te}^{6+} \mathrm{O}_{6}\right]^{3-}$ layer that is identical compositionally to the substituted phyllotellurate layer of burckhardtite. Similar layers with varying degrees of cation disorder also occur in the compounds $\mathrm{Na}_{2-x}\left[(\mathrm{Te}, \mathrm{Sn})_{2} \mathrm{O}_{6}\right]$, $\mathrm{Na}_{2}\left[\mathrm{GeTeO}_{6}\right]$ and $\mathrm{Na}_{2}\left[\mathrm{TiTeO}_{6}\right]$ with the ilmenite structure (Woodward et al., 1999), while a fully disordered phyllotellurate layer with cations in trigonal prismatic coordination rather than octahedral coordination was reported for $\mathrm{Sr}\left[\mathrm{MnTeO} \mathrm{O}_{6}\right]$ by Wulff and Müller-Buschbaum (1998).

Acknowledgements

The authors thank Fernando Cámara, Peter Leverett, Peter Williams and an anonymous reviewer for helpful suggestions which improved the manuscript. Part of this study has been funded by the Ian Potter Foundation grant "tracking tellurium" to SJM which we acknowledge gratefully. The X-ray diffraction study was funded by the John Jago Trelawney Endowment to the Mineral Sciences Department of the Natural History Museum of Los Angeles County and microprobe and Raman analyses were funded by a grant from the Northern California Mineralogical Association.

References

Basciano, L.C. and Groat, L.A. (2007) The crystal structure of kampfite. The Canadian Mineralogist, 45, 935-943.
Basso, R., Lucchetti, G., Zefiro, L. and Palenzona, A. (1996) Rosiaite, $\mathrm{PbSb}_{2} \mathrm{O}_{6}$, a new mineral from the

Cetine mine, Siena, Italy. European Journal of Mineralogy, 8, 487-492.
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192-197.
Brunton, G. (1973) $\mathrm{Li}_{2} \mathrm{ZrF}_{6}$. Acta Crystallographica, B29, 2294-2296.
Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., De Caro, L., Giacovazzo, C., Polidori, G. and Spagna, R. (2005) SIR2004: an improved tool for crystal structure determination and refinement. Journal of Applied Crystallography, 38, 381-388.
Chesnokov, B.V., Lotova, E.V., Nigmatulina, E.N., Pavlyuchenko, V.S. and Bushmakin, A.F. (1990) Dmisteinbergite $\mathrm{CaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$ (hexagonal) - a new mineral. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 119, 43-46 [in Russian].
Christy, A.G. and Mills, S.J. (2013) Effect of lone-pair stereoactivity on polyhedral volume and structural flexibility: application to $\mathrm{Te}^{\mathrm{IV}} \mathrm{O}_{6}$ octahedra. Acta Crystallographica, B69, 446-456.
Drits, V.A., Kashaev, A.A. and Sokolova, G.V. (1975) Crystal-structure of cymrite. Kristallografiya, 20, 280-286 [in Russian].
Fasshauer, D.W., Chatterjee, N.D. and Marler, B. (1997) Synthesis, structure, thermodynamic properties, and stability relations of K-cymrite, $\mathrm{K}\left[\mathrm{AlSi}_{3} \mathrm{O}_{8}\right] \cdot \mathrm{H}_{2} \mathrm{O}$. Physics and Chemistry of Minerals, 24, 455-462.
Fintor, K., Walter, H. and Nagy, Sz. (2013) Petrographic and micro-Raman analysis of chondrules and (Ca,Al)-rich inclusions of NWA 2086 CV3 type carbonaceous chondrite. Lunar and Planetary Science, 44, 1152.
Gaines, R.V., Leavens, P.B. and Nelen, J.A. (1979) Burckhardtite, a new silicate-tellurite from Mexico. American Mineralogist, 64, 355-358.
Génin, J.-M.R., Mills, S.J., Christy, A.G., Guérin, O., Herbillon, A.J., Kuzmann, E., Ona-Nguema, G., Ruby, C. and Upadhyay, C. (2014) Mössbauerite, $\mathrm{Fe}_{6}^{3+} \mathrm{O}_{4}(\mathrm{OH})_{8}\left[\mathrm{CO}_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$, the fully oxidized 'green rust' mineral from Mont Saint-Michel Bay, France. Mineralogical Magazine, 78, 447-465.
Graham, C.M., Tareen, J.A.K., McMillan, P.F. and Lowe, B.M. (1992) An experimental and thermodynamic study of cymrite and celsian stability in the system $\mathrm{BaO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}-\mathrm{H}_{2} \mathrm{O}$. European Journal of Mineralogy, 4, 251-269.
Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo.
Hwang, S.-L., Shen, P., Chu, H.-T., Yui, T.-F., Liou, J.G., Sobolev, N.V., Zhang, R.-Y., Shatsky, V.S. and Zayachkovsky, A.A. (2004) Kokchetavite: a new potassium-feldspar polymorph from the Kokchetav ultrahigh-pressure terrane. Contributions to Mineralogy and Petrology, 148, 380-389.

Ibers, J.A. and Hamilton, W.C. (editors) (1974) International Tables for X-ray Crystallography, Vol. IV. Kynock, Dordrecht, The Netherlands, 366 pp.
Kampf, A.R., Housley, R.M., Mills, S.J., Marty, J. and Thorne, B. (2010) Lead-tellurium oxysalts from Otto Mountain near Baker, California: I. Ottoite, $\mathrm{Pb}_{2} \mathrm{TeO}_{5}$, a new mineral with chains of tellurate octahedra. American Mineralogist, 95, 1329-1336.
Kampf, A.R., Mills, S.J., Housley, R.M., Rossman, G.R., Marty, J. and Thorne, B. (2013a) Leadtellurium oxysalts from Otto Mountain near Baker, California: X. Bairdite, $\mathrm{Pb}_{2} \mathrm{Cu}_{4}^{2+} \mathrm{Te}_{2}^{6+} \mathrm{O}_{10}(\mathrm{OH})_{2}$ $\left(\mathrm{SO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)$, a new mineral with thick HCP layers. American Mineralogist, 98, 1315-1321.
Kampf, A.R., Mills, S.J., Housley, R.M., Rossman, G.R., Marty, J. and Thorne, B. (2013b) Leadtellurium oxysalts from Otto Mountain near Baker, California: XI. Eckhardite, $(\mathrm{Ca}, \mathrm{Pb}) \mathrm{Cu}^{2+} \mathrm{Te}^{6+} \mathrm{O}_{5}$ $\left(\mathrm{H}_{2} \mathrm{O}\right)$, a new mineral with HCP stair-step layers. American Mineralogist, 98, 1617-1623.
Kanzaki, M., Xue, X., Amalberti, J. and Zhang, Q. (2012) Raman and NMR spectroscopic investigation of high-pressure K-cymrite $\left(\mathrm{KAlSi}_{3} \mathrm{O}_{8} \cdot \mathrm{H}_{2} \mathrm{O}\right)$ and its anhydrous form (kokchetavite). Journal of Mineralogical and Petrological Sciences, 107, 114-119.
Kasper, H.M. (1969) $\mathrm{LnCrTeO}_{6}-$ a new series of compounds based on the $\mathrm{PbSb}_{2} \mathrm{O}_{6}$ structure. Materials Research Bulletin, 4, 33-37.
Krivovichev, S.V. and Brown, I.D. (2001) Are the compressive effects of encapsulation an artifact of the bond valence parameters? Zeitshcrift für Kristallographie, 216, 245-247.
Liebau, F. (1985) Structural Chemistry of Silicates: Structure, Bonding and Classification. SpringerVerlag, New York, 347 pp.
Magnéli, A. (1941) The crystal structure of lead metaantimonate and isomorphous compounds. Arkiv för Kemi, Mineralogi och Geologi, B15, 1-6.
Mills, S.J., Bindi, L., Cadoni, M., Kampf, A.R., Ciriotti, M.E. and Ferraris, G. (2012a) Paseroite, $\mathrm{PbMn}^{2+}\left(\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}\right)_{2}\left(\mathrm{~V}^{5+}, \mathrm{Ti}, \mathrm{Fe}^{3+}, \square\right)_{18} \mathrm{O}_{38}$, a new member of the crichtonite group. European Journal of Mineralogy, 24, 1061-1067.
Mills, S.J., Christy, A.G., Kameda, T., Génin, J.-M.R. and Colombo, F. (2012b) Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides. Mineralogical Magazine, 76, 1289-1336.
Mills, S.J. and Christy, A.G. (2013) Revised values of the bond valence parameters for $\mathrm{Te}^{\mathrm{IV}}-\mathrm{O}, \mathrm{Te}^{\mathrm{VI}}-\mathrm{O}$ and $\mathrm{Te}^{\mathrm{IV}}-\mathrm{Cl}$. Acta Crystallographica, B69, 145-149.
Mills, S.J., Kampf, A.R., Christy, A.G., Housley, R.M., Rossman, G.R., Reynolds, R.E. and Marty, J. (2014)

Bluebellite and mojaveite, two new minerals from the central Mojave Desert, California, USA. Mineralogical Magazine, 78, 1325-1340.
Phatak, R., Krishnan, K., Kulkarni, N.K., Achary, S.N., Banerjee, A. and Sali, S.K. (2010) Crystal structure, magnetic and thermal properties of $\mathrm{LaFeTeO}_{6}$. Materials Research Bulletin, 45, 1978-1983.
Rinaldi, R., Sacerdoti, M. and Passaglia, E. (1990) Strätlingite: crystal structure, chemistry, and a reexamination of its polytype vertumnite. European Journal of Mineralogy, 2, 841-849.
Sacerdoti, M. and Passaglia, E. (1988) Hydrocalumite from Latium, Italy - its crystal structure and relationship with related synthetic phases. Neues Jahrbuch für Mineralogie Monatshefte, 1988, 462-475.
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112-122.
Takéuchi, Y. and Donnay, G. (1959) The crystal structure of hexagonal $\mathrm{CaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8}$. Acta Crystallographica, 12, 465-470.
Walstrom, R.E. (2012) "The Accidental Pocket, Cochise

County, Arizona". Northern California Mineralogical Society Annual Meeting, 2012. Cited in http:// www.mindat.org/min-804.html. Accessed on 18 June 2014.
Woodward, P.M., Sleight, A.W., Du, L.-S. and Grey, C.P. (1999) Structural studies and order-disorder phenomenon in a series of new quaternary tellurates of the type $A^{2+} M^{4+} \mathrm{Te}^{6+} \mathrm{O}_{6}$ and $A_{2}^{1+} M^{4+} \mathrm{Te}^{6+} \mathrm{O}_{6}$. Journal of Solid State Chemistry, 147, 99-116.
Wulff, L. and Müller-Buschbaum, H. (1998) Isolierte trigonale SrO_{6} - Prismen verknüpfen Kagomé-Netze im Strontium-Manganat(IV)-Tellurat(VI): $\mathrm{SrMnTeO}_{6}$. Zeitschrift für Naturforschung, B: A Journal in Chemical Sciences, 53, 283-286.
Yin, Y.B. and Keszler, D.A. (1992) Crystal-chemistry of colquiriite-type fluorides. Chemistry of Materials, 4, 645-648.
Zhang, R.Y., Liou, J.G., Iizuka, Y. and Yang, J.S. (2009) First record of K-cymrite in North Qaidam UHP eclogite, Western China. American Mineralogist, 94, 222-228.

[^0]: * E-mail: Andrew.Christy@anu.edu.au

 DOI: 10.1180/minmag.2014.078.7.18

[^1]: * Recalculated from TeO_{2} equivalent.
 ${ }^{\dagger}$ Not including assumed $\mathrm{H}_{2} \mathrm{O}$.

