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Introduction

In contrast to arsenides known as the ore-forming miner-
als in many types of metal deposits (e.g., Berry 1971; Leb-
lanc 1986; Martin-Crespo et al. 2004; Burisch et al. 2017), 
phosphides are considered exotic minerals on Earth. Since 
the first reports on schreibersite Fe3P in native iron from 
the Disko island in Greenland (e.g., Pauly 1969; Pedersen 
1981), several new findings of terrestrial phosphides were 
described. These occurrences can be subdivided accord-
ing to their proposed origin. Fe-Ni phosphides are known 
as phosphate reduction products in fulgurites – natural sili-
cate glasses formed as a result of the lightning strikes (e.g., 
Essene and Fisher 1986; Pasek et al. 2012; Minyuk et al. 
2014; Plyashkevich et al. 2016). Loose Fe-Ni phosphide 
grains occasionally found in placer deposits likely have cos-
mogenic (meteoritic) origin (Eremenko et al. 1974; Chen 
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Abstract
Orishchinite is a new terrestrial phosphide discovered in pyrometamorphic rocks of the Daba-Siwaqa combustion com-
plex in West Jordan. The mineral occurs as an accessory phase in the fused clinopyroxene-plagioclase rock (paralava) 
texturally resembling gabbro-dolerite. Orishchinite forms resorbed equant grains up to 0.2 mm outrimmed with 0.1–0.2 
thick zones of substituting murashkoite, FeP. Chemical composition (electron microprobe, wt%): Ni 38.49, Fe 22.38, Co 
0.47, Mo 18.80, P 19.46, Total 99.60, corresponding to the empirical formula (Ni1.04Fe0.64Mo0.31Co0.01)Σ2.00P on the basis 
of 3 apfu. The simplified formula is (Ni,Fe,Mo)2P and the ideal one is Ni2P. Macroscopically, orishchinite grains have 
yellowish-white colour with metallic lustre. The mineral is brittle. In reflected light, orishchinite is yellowish-white and 
non-pleochroic. It is very weakly anisotropic (ΔR589 = 1.3%). Reflectance values for the wavelengths recommended by 
the Commission on Ore Mineralogy of the International Mineralogical Association are [Rmax/Rmin (%), λ (nm)]: 48.1/47.5, 
470; 50.6/49.4, 546; 52.1/50.8, 589; 54.4/52.9.1, 650. The crystal structure was solved and refined to R1 = 0.016 based on 
224 unique observed [I ≥ 2σ(I)] reflections. Orishchinite is orthorhombic, space group Pnma, a 5.8020(7), b 3.5933(4), c 
6.7558(8) Å, V 140.85(3) Å3, Z = 4, Dx = 7.695 g cm-3. The strongest lines of the powder X-ray diffraction pattern [(d, 
Å) (I, %) (hkl)] are: 2.265(100)(112), 2.201(16)(202), 2.142(55)(211), 2.100(35)(103), 1.909(21)(013), 1.811(19)(113), 
1.796(31)(020). Orishchinite is dimorphous with transjordanite (hexagonal Ni2P) and can be considered the Ni-dominant 
analogue of allabogdanite.
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Geological setting and occurrence

The Hatrurim Formation, or the Mottled Zone in the South-
ern Levant is the world largest complex of sedimentary 
strata that experienced combustion metamorphism (Gross 
1977; Burg et al. 1992; Vapnik et al. 2007). This term incor-
porates the processes of high-temperature and low-pressure 
calcination and fusion of the sediments caused by the burn-
ing of organic matter, and can be classified as a subdivision 
of pyrometamorphism (Grapes 2011). The outcrops of pyro-
metamorphic rocks in the Middle East are exposed across 
the area of 150 × 200 km2 and can reach 200 m in thickness 
(Gross 1977; Britvin et al. 2022b). The majority of outcrops 
are confined to the surroundings of the Dead Sea basin in 
Israel, Palestinian Authority and Central-West Jordan. How-
ever, the northernmost site belonging to the Hatrurim For-
mation - the Maqarin springs - is situated on the borderline 
between Jordan and Syria, at the Unity Dam (El Wahdeh 
Dam) (Martin et al. 2016). The unprecedented, regional 
scale of combustion processes occurred in the Mottled Zone 
has raised numerous hypotheses aimed at explanation of 
their origin. The most popular ones include burning of bitu-
minous shales (e.g., Gross 1977; Geller et al. 2012) or com-
bustion of natural gas (methane) confined to mud volcanoes 
(Novikov et al. 2013). The discoveries of mineral phases 
having possible high-pressure origin inspired the forma-
tion scenarios that assume some external event as a trigger 
for the onset of combustion processes (Britvin et al. 2021c, 
2022c). The estimations of geological age of the Hatrurim 
Formation vary within wide range, from 250 ka to 16 Ma 
(e.g., Kolodny et al. 2014).

Orishchinite was discovered in the paralavas (fusion-
affected sedimentary rocks) exposed in the small quarry 
operated for marble and phosphorites and located in the 
Jizah District, Amman Governorate, Jordan (Britvin et al. 
2015). From the geological viewpoint, the quarry explores 
pyrometamorphic lithologies of the Daba-Siwaqa complex 
- the largest rock field belonging to the Hatrurim Formation. 
The stratigraphic position of this complex in West-Central 
Jordan was explored in detail in the course of general geo-
logical mapping and prospecting for uranium mineraliza-
tion (Khoury et al. 2014; Abzalov et al. 2015; Alqudah et 
al. 2015). The paralavas appear as fused patches of green-
grey to brown colour encased within less metamorphozed 
fine-grained chalks and marls (Fig. 1) (see also Abzalov et 
al. 2015). The rock-forming constituents of paralavas are 
millimeter-sized euhedral crystals of clinopyroxene of the 
join diopside-hedenbergite, and anorthite. Texturally, the 

et al. 1983). Iron phosphides in the assemblages of burned 
coal dumps (e.g., Nishanbaev et al. 2002), albeit formed as 
a result of anthropogenic activity, are now treated as miner-
als (Miyawaki et al. 2019). A separate group of phosphides 
is comprised by the phases which were not found in-situ 
in rock samples but were detected in heavy mineral con-
centrates from bulk rock probes subjected to mechanical 
grinding. This pool of phosphides, along with some other 
super-reduced phases, was reported from chromite probes 
originating from three chromium mines: Alapaevsk, Middle 
Urals, Russia (Zaccarini et al. 2016; Sideridis et al. 2018); 
Agios Stefanos, Central Greece (Ifandi et al. 2018; Sideridis 
et al. 2018; Zaccarini et al. 2019a, b; Bindi et al. 2020) and 
Cr-11 orebody, Luobusa, Tibet, China (Xiong et al. 2020). 
Note that, besides of a single grain of Ni5P phosphide from 
Alapaevsk, all these phosphides were extracted from chro-
mitites subjected to mechanical grinding and heavy mineral 
separation. At the end, one should point out two single find-
ings of iron phospfides not related to the listed categories. 
Borodaev et al. (1982) reported nearly pure schreibersite, 
Fe3P, which formed a pseudomorph after submerged wood 
collected at the deep bottom of the Red Sea. A single grain 
of Fe2P was reported in garnet peridotite from the drill core 
(Yang et al. 2005).

Phosphide assemblages of combustion pyrometamorphic 
complexes of the Hatrurim Formation (the Mottled Zone) 
in the Dead Sea basin, discovered and explored during last 
decade (Britvin et al. 2015, 2017b), represent a new type of 
super-reduced phosphorus speciation (Britvin et al. 2021b), 
where the diversity of discovered terrestrial phosphides 
exceeds that observed in extraterrestrial rocks Britvin et 
al. 2019a, b, 2020a, b,  c; 2022a). It should be noted that 
recently, the phosphide occurrence of similar origin was 
described at the Khamaryn-Khural-Khiid combustion meta-
morphic complex in Eastern Mongolia (Savina et al. 2020; 
Peretyazhko et al. 2021).

In this paper, we provide a description of a novel phos-
phide, orishchinite, belonging to the quaternary system 
Fe-Ni-Mo-P. The mineral is named in honour of Stepan 
Vasil’ovich Orishchin (Степан Васильович Орищин) 
(1955–2012), Soviet and Ukrainian crystal chemist, for 
his valuable contributions to the crystal chemistry of phos-
phides, arsenides and silicides of transition metals. Stepan 
Orishchin is an author of more than 40 articles in this field 
(e.g., Orishchin and Kuz’ma 1982; Orishchin et al. 1998, 
2000, 2002). Both the mineral and its name have been 
approved by the Commission on New Minerals, Nomen-
claure and Classification (CNMNC) of the International 
Mineralogical Association (IMA; reference number 2019-
039). The holotype specimen of orishchinite is deposited 
at the Fersman Mineralogical Museum of the Russian 
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Samples and methods

A 5 cm piece of phosphide-bearing paralava has been cut 
into a few slices, having an approximate thickness of 5 mm 
each. The sections have been polished from both sides and 
were examined in reflected light under polarizing micro-
scope. The areas suspected for the presence of phosphides 
were marked and, after coating with conductive carbon film, 
were subjected to electron microprobe investigation. The 
analyses were carried out in a wavelength-dispersive mode 
by means of an Oxford Instruments INCA WAVE 500 WDX 
spectrometer (20 kV, 15 nA) attached to a Hitachi S-3400 N 
SEM. Pure Ni, Fe, Co metals (Kα-lines), Mo metal (Lα) and 
InP (PKα) were used as analytical standards. Reflectance val-
ues of orishchinite were measured after removal of carbon 
film, using a Leica DM4500P microscope and Tidas MSP 
400 VIS spectrophotometer calibrated against Si standard. 
Microhardness was not measured to avoid possible damage 
or loss of brittle orishchinite grain intended for subsequent 
X-ray single-crystal study. Orishchinite (i.e., Ni-dominant) 
part of the grain shown in Fig. 2 was hand-picked from the 
polished section using the tungsten carbide needle, and then 
used for the X-ray structural investigation. The latter was 
performed by means of a Bruker Kappa APEX DUO CCD 
diffractometer using MoKα radiation. The collected data 
were processed using a standard built-in set of Bruker pro-
grams (Bruker 2004, 2005). The crystal structure was solved 
and refined using SHELX-2015 software incorporated into 
Olex2 v.1.2 graphical user interface (Sheldrick 2015; Dolo-
manov et al. 2009). Further details of data collection and 
structure refinement can be retrieved from the Crystallo-
graphic Information File (CIF) included into Supplementary 
information. The remaining part of composite orishchinite-
allabogdanite grain (Fig. 1) was carefully broken into 15–20 
grains which were embedded into epoxy resin, polished and 
checked with electron microprobe. A few more grains cor-

responding to orishchinite were detected, allowing X-ray 
powder diffraction study conducted with a Rigaku R-AXIS 
Rapid II diffractometer, curved (cylindrical) imaging plate 
detector (r = 127.4 mm), using CoKα radiation (λ = 1.79021 
Å); rotating anode (40 kV, 15 µA) with microfocus optics; 
Debye-Scherrer geometry, exposure time 60  min. The 
image plate-to-profile data conversion was performed with 
osc2xrd program (Britvin et al. 2017a). Unit-cell refine-
ment, indexing and calculated pattern were carried out with 
STOE WinXPOW v. 2.08 set of programs (Stoe 2003).

paralavas resemble gabbro-dolerites. Accessory miner-
als are comprised by hematite, pyrrhotite, trevorite, pow-
ellite, baryte and another phosphide – nickolayite FeMoP 
(Murashko et al. 2019). The paralavas contain numerous 
sub- to millimeter-sized bubbles and voids infilled with late 
hydrothermal calcite.

Fig. 1  Phosphide-bearing paralava (indicated by arrow) in a marble 
exposed in the wall of the quarry works. (a) General view. (b) Detail 
showing heterogeneous texture with numerous white voids filled with 
calcite
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corona is the same as in the previously described inter-
growths with barringerite, transjordanite and allabogdanite 
(Britvin et al. 2019b, 2020a, 2021c).

Murashkoite zones adjacent to orishchinite-allabogda-
nite interface appear as aggregate of vermicular microcrys-
tals, whereas the outer rim is composed of coarse-granular 
murashkoite. In reflected light, orishchinite and allabog-
danite parts belonging to the same grain are indistinguish-
able; they have the same yellowish-white colour, with no 
observable bireflectance or anisotropy. Reflectance values 
for orishchinite are provided in Table 2. The mineral is very 
brittle. The estimated Mohs’ hardness is between 5 and 6. 
The density calculated from the unit-cell parameters (sin-
gle-crystal data) and empirical formula (Table 1) is 7.500 g 
cm− 3. Chemical composition of orishchinite corresponds 
to a simplified formula (Ni,Fe,Mo)2P with Ni > Fe > Mo; 
allabogdanite, (Fe,Ni,Mo)2P has Fe-dominant composition 
(Table  2). The orishchinite-allabogdanite grain contains 

Appearance, chemical composition and 
physical properties

Orishchinite constitutes a small part of an irregularly 
shaped Ni-Fe-Mo phosphide grain reaching 0.2 mm in size, 
which was found in pyroxene-plagioclase matrix of para-
lava (Fig. 2). The grain in whole is comprised by a single 
crystal of phosphide with the stoichiometry M2P (M = Ni, 
Fe, Mo) (Fig. 2a,b), whose main part, having Fe-dominant 
composition, formally belongs to a Ni- and Mo-rich variety 
of allabogdanite (Britvin et al. 2002, 2021c) (Table 1). The 
chemical composition of the phosphide gradually changes 
across the grain, and a small, ~ 50 μm area at the grain cor-
ner is represented by orishchinite (Fig. 2a,b; Table 1). The 
whole orishchinite-allabogdanite grain is corroded and sur-
rounded by a “corona” up to 0.5 mm in width, composed 
by three zones of murashkoite, FeP (Britvin et al. 2019b) 
(Fig. 2; Table 1). The appearance and texture of murashkoite 

Fig. 2  (a) General view of orishchinite-bearing phosphide assemblage (Or + Ab) surrounded by a thick zone of murashkoite aggregates in pyrox-
ene-plagioclase paralava. SEM BSE image. (b) Detail of a view (a): allabogdanite-orishchinite grain surrounded by an aggregate of vermicular 
murashkoite. Photo in reflected light. (c) False color EDX elemental map of the same assemblage showing distribution of the main elements (Mo, 
Ni, Fe, P) across the allabogdanite-orishchinite grain. Orishchinite, (Ni,Fe,Mo)2P, constitutes a small (~ 50 μm) part of a grain which is mapped 
by blue-green (Ni-dominant) color. Legend: Px, pyroxene; Pl, plagioclase, Mr, murashkoite, FeP; Or, orishchinite; Ab, Mo-rich allabogdanite, 
(Fe,Ni,Mo)2P
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orishchinite represents a framework built up of two types of 
metal-phosphorus polyhedra, tetrahedra [M1P4] and square-
pyramidal [M2P5] (Tables 4 and 5; Fig. 3). Due to the sig-
nificant difference in scattering factors of Mo (Z = 42), and 
Fe or Ni (Z = 26 and 28, respectively), it was not a problem 
to determine that Mo is incorportated entirely into the M2 
position (Table 4). The free refinement of M1 and P sites 
using scattering curves for neutral Ni and P atoms (Wilson 
1992) gave site scattering factors equal to 28.00 e− for the 
M1 and 15.00 e− for the P site, corresponding to site popu-
lations of Ni1.00 and P1.00, respectively. These s.o.f. were 
fixed during the final refinements. The population at the M2 
site was freely refined using scattering curves for neutral 
Fe and Mo atoms, and resulted in the site scattering fac-
tor equal to 33.04 e− that corresponds to the calculated M2 
site population of (Fe0.56Mo0.44). These site populations cor-
roborate with the shorter Ni–P bond lengths in tetrahedron 
[NiP4] as compared to the longer bonds in square pyramid 
[(Fe,Mo)P5] (Table 6). The structural formula of orishchi-
nite is Ni1.00(Fe0.56Mo0.44)1.00P1.00. However, taking into 
account wide deviations from the stoichiometry known in 
Co2Si-type phosphides (Guérin et al. 1975; Guérin and Ser-
gent 1977; Oliynyk et al. 2013), one can not exclude the 
possibility of partial substitution of Ni for (Mo + Fe) at the 
M1 site, and vice versa. The latter can explain the observed 
discrepancy between the structural and empirical formulae 
of the mineral. The ideal structural formula of orishchinite 
could be expressed as Ni(Fe,Mo)P. However, taking into 
account the pertaining uncertainties in real site populations, 
and the lack of any reference data on the bond length cor-
relations in these compounds, the formula of orishchinite 
approved by IMA–CNMNC is (Ni,Fe,Mo)2P. The ideal 
end-member formula for the mineral is thus Ni2P, and there-
fore, orishchinite is currently regarded as the Ni-dominant 
analogue of allabogdanite, an orthorhombic modification of 

noticeable contents of Co. In contrast, surrounding murash-
koite is devoid of Co and has very low Ni contents (Table 2).

Crystal structure and powder diffraction

Orishchinite crystallizes in the TiNiSi subtype of Co2Si 
structure type, known for extraordinary tolerance towards 
incorporation of transition metals (Rundqvist and Nawapong 
1966; Guérin et al. 1975; Guérin and Sergent 1977), which 
motivates why Co2Si-type phosphides are the most numer-
ous among phosphide minerals (Table  3). Orishchinite is 
the first Ni-dominant mineral in this family. The good qual-
ity of X-ray single-crystal data (Table  4) allowed precise 
refinement of site populations, even the determination of 
Fe/Ni distribution sharing the same metal sites, as it was 
recently shown on the schreibersite-nickelphosphide series, 
Fe3P-Ni3P (Britvin et al. 2021a). The crystal structure of 

Table 1  Chemical compositions and calculated formulae of orishchinite, coexisting allabogdanite and murashkoite
Orishchinite Allabogdanite Murashkoite
(n = 7) (n = 13) (n = 5)

Constituent Mean min; max; esd Mean (wt min; max; esd mean min; max; esd
Fe 22.38 20.76; 23.66; 0.92 27.42 25.77; 28.69; 0.75 59.33 58.83; 59.95; 0.50
Co 0.47 0.43; 0.51; 0.03 0.44 0.33; 0.53; 0.07 b.d.l.
Ni 38.49 36.66; 40.53; 1.20 26.32 21.91; 29.33; 2.61 3.99 3.75; 4.45; 0.28
Mo 18.80 18.19; 19.88; 0.53 27.16 24.25; 31.2; 2.66 b.d.l.
P 19.46 19.40; 19.61; 0.07 18.84 18.32; 19.56; 0.36 36.22 36.03; 36.46; 0.17
Total 99.60 100.18 99.54
Calculated empirical formula*

(Ni1.04Fe0.64Mo0.31Co0.01)2.00P1.00 (Fe0.80Ni0.73Mo0.46Co0.01)2.00P0.99 (Fe0.92Ni0.06)0.98P1.02
All values are quoted in wt%
n = umber of analyses
min; max; esd = minimum value; maximum value; estimated standard deviation
bdl = below the detection limite (< 0.05 wt%)
* Formulae were calculated based on 3 (orishchinite, allabogdanite) and 2 (murashkoite) oxygen atoms per formula unit, respectively

Table 2  Reflectance values for orischinite
Rmax (%) Rmin (%) λ (nm) Rmax (%) Rmin (%) λ 

(nm)
45.5 45.2 420 52.5 51.2 600
46.3 46.0 440 53.4 51.8 620
47.4 47.2 460 54.1 52.5 640
48.1 47.5 470 54.4 52.9 650
48.5 47.8 480 54.8 53.3 660
48.8 48.4 500 55.7 54.0 680
49.6 48.7 520 56.4 55.0 700
50.3 49.2 540 56.8 55.8 720
50.6 49.4 546 57.0 56.7 740
51.1 49.9 560 58.9 56.9 760
51.8 50.5 580 59.1 57.8 780
52.1 50.8 589 61.9 58.5 800
Note: Data for wavelengths recommended by the IMA Commission 
on Ore Mineralogy (COM) are marked in bold font
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Discussion

The sources of Mo and Ni enrichment in the area of the 
Dead Sea Transform fault, and the fate of these elements 
in pyrometamorphic processes have been reviewed in the 
previous papers (Issar et al. 1969; Gilat 1994; Bogoch et 
al. 1999; Fleurance et al. 2013; Britvin et al. 2022b). In 
this article, we focus on the crystal-chemical aspects of 
Mo-phosphides formation, in particular, on the role of Mo 
in stabilization of low- or high-pressure phosphides in the 
polycomponent system Fe2P–Ni2P–(Mo2P). This is a con-
tinuation of the discussion on metastable phases having pos-
sible high-pressure origin, which were recently discovered 
in the rocks of the Hatrurim Formation on the Israel side of 
the Dead Sea basin (Britvin et al. 2021c, 2022c). Although 
pure Mo2P is not known, Mo is readily incorporated into 
the solid solutions Fe2P–Ni2P (Guérin et al. 1975; Guérin 
and Sergent 1977; Oliynyk et al. 2013). In this respect, it 
has to be noted that phosphides along the tie-line Fe2P–Ni2P 
may crystallize in two structural types. The crystal structure 
of low-pressure, hexagonal Fe2P polymorph barringerite 
(hereinafter LP-Fe2P) is characteristic of all (Fe1 − xNiх)2P 
phosphides formed at atmospheric pressure (Buseck 1969; 
Britvin et al. 2020a). However, at a pressure beyond 8 GPa, 
pure LP-Fe2P becomes metastable and transforms into a 
high-pressure, orthorhombic modification (HP-Fe2P) (Dera 

Fe2P (Britvin et al. 2002). The intensities and indexing of 
X-ray powder diffraction data for orishchinite (Table 7) con-
firm the results of X-ray structural analysis.

Table 3  Comparison of crystallographic data of orishchinite with that of related phosphide minerals
Mineral a Ideal 

formula
Struc-
ture 
type

Space 
group

a (Å) b (Å) c (Å) V 
(Å3)

Z

Orishchinite [1] Ni2P TiNiSi Pnma 5.802 3.593 6.756 140.8 4
Allabogdanite [2] Fe2P Co2Si Pnma 5.792 3.564 6.691 138.1 4
Transjordanite [3] Ni2P Fe2P P6̅2m 5.884 3.349 100.4 3
Barringerite [4] Fe2P Fe2P P6̅2m 5.867 3.465 103.3 3
Monipite [5] b MoNiP Fe2P P6̅2m 5.861 3.704 110.2 3
Florenskyite [6] b FeTiP TiNiSi Pnma 6.007 3.602 6.897 149.2 4
Andreyivanovite [7] b FeCrP TiNiSi Pnma 5.833 3.569 6.658 138.6 4
Nickolayite [8] FeMoP TiNiSi Pnma 5.952 3.707 6.847 151.1 4
Grammatikopoulosite [9] NiVP Co2Si Pnma 5.889 3.572 6.815 143.4 4
a References: [1] this work; [2] Britvin et al. (2002); [3] Britvin et al. (2015); [4] Buseck (1969); Britvin et al. (2017b); [5] Ma et al. (2014), Guérin 
and Sergent (1977); [6] Ivanov et al. (2000), Rundqvist and Nawapong (1966); [7] Zolensky et al. (2008), Kumar et al. (2004); [8] Murashko et 
al. (2019). [9] Bindi et al. (2020)
b Crystal structures for natural monipite, florenskyite and andreyivanovite were not determined. The unit cell parameters for monipite have 
been assigned on the basis of EBSD pattern which matches those of synthetic analogues. The unit-cell parameters for florenskyite and andrey-
ivanovite were determined using synchrotron-based Laue method

Table 4  Crystal parameters, data collection and structure refinement 
details for orishchinite
Crystal Data
Formula * Ni(Fe0.56Mo0.44)P
Crystal size (mm) 0.03 ⋅ 0.03 ⋅ 0.03
Crystal system Orthorhombic
Space group Pnma
a (Å) 5.8020 (7)
b (Å) 3.5933 (4)
c (Å) 6.7558 (8)
V (Å3) 140.85 (3)
Z 4
Dx (g cm− 3) 7.695
Data collection and refinement
Radiation MoKα 

(λ = 0.71073 Å)
Temperature (K) 293
2Θmax(°) truncated at 

60.00
Total reflections collected 1194
No. unique reflections 236
No. unique observed, I ≥ 2σ(I) 224
 h, k, l range –8→4, − 5→4, 

− 9→8
 F(000) 304
µ (mm− 1) 23.44
Rint.,Rσ 0.022, 0.017
R1 [F ≥ 4σ(F)], wR2 0.016, 0.036
 S = GoF 1.14
Residuals (e Å−3) (min, max) –0.68, 0.60
Data completeness 1.000
* As determined by site occupancy refinement

Table 5  Sites, Wyckoff positions, fractional atomic coordinates, iso-
tropic displacement parameters (Å2) and site occupancies for orish-
chinite
Site x y z Uiso Occupancy
M1 (4c) 0.64106(9) 3/4 0.43655(7) 0.00690(18) Ni1.00
M2 (4c) 0.02995(8) 3/4 0.66966(6) 0.00665(17) Fe0.56Mo0.44
P (4c) 0.25768(17) 3/4 0.37710(14) 0.0049(2) P1.00
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correspond to the spectra of structurally confirmed allabog-
danite (Vereshchagin et al. 2021).

In contrast to Fe2P, the high-pressure, Co2Si-type modi-
fication of Ni2P is unknown, and this phosphide persists as 
a low-pressure, hexagonal form up to 50 GPa (Dera et al. 
2009). Consequently, incorporation of Ni into the solid solu-
tions (Fe1 − xNiх)2P would have stabilized the low-pressure, 
hexagonal modification of these phosphides, displacing the 
expected onset of the LP-HP transition in the field of pres-
sures exceeding 8 GPa.

Studies in the system Fe2P–Mo2P at atmospheric pres-
sure showed the existence of orthorhombic, Co2Si-type 
(Mo1 − xFex)2P solid solutions in a very wide compositional 
range (x = 0.30–0.82). The hexagonal phase in this range 
is unknown (Oliynyk et al. 2013). The mineral nickolay-
ite, ideally FeMoP, discovered in the same rock sample as 
orishchinite, also crystallizes with the Co2Si structure type 
(Murashko et al. 2019). Consequently, one can conclude 
that substitution of Fe for Mo in (Mo1 − xFex)2P phosphides 
at atmospheric pressure favors stabilization of the Co2Si 
(HP-Fe2P) structure type. On the contrary, solid solutions 
of the join Ni2P–Mo2P, both synthetic and natural ones (the 
mineral monipite, MoNiP) adopt the hexagonal LP-Fe2P 
structure type only (Guérin et al. 1975; Guérin and Sergent 
1977).

Therefore, the simultaneous incorporation of Mo and Ni 
into the Fe2P-based solid solutions implies superposition of 
two counter-directional tendencies: stabilization of ortho-
rhombic (Co2Si-type) structure by Mo vs. Ni-induced stabi-
lization of hexagonal (LP-Fe2P) structure. It has been shown 
that even subordinate incorporation of Mo and Ni might 
considerably displace the low- to high-pressure transition 
boundary, from 8 GPa for pure Fe2P to 25 GPa for allabog-
danite containing 4 wt% Ni and 2.5 wt% Mo (Britvin et al. 
2021c). In case of Ni-dominant and Mo-rich orishchinite, 
(Ni,Fe,Mo)2P, the substitution effect on low- to high-pres-
sure transition boundary might be even stronger, but the lat-
ter requires further investigations.

et al. 2008), which crystallizes with the Co2Si structure 
type and is known in nature as the mineral allabogdanite 
(Britvin et al. 2002, 2019c). A recent work (Litasov et al. 
2020) showed that allabogdanite could be synthesized at 
atmospheric pressure, but these data should be treated care-
fully as the Raman spectra of obtained phosphide do not 

Table 6  Selected bond lengths (Å) in the crystal structure of orish-
chinite
Bond Lengh Bond Length
M1–P 2.2244(11) P–M1 2.2244(11)
M1–P 2.2604(11) P–M1 2.2604(11)
M1–P 2.2711(7) × 2 P–M1 2.2711(7)
M2–P 2.3774(11) P–M2 2.3774(11)
M2–P 2.4724(8) × 2 P–M2 2.4724(8)
M2–P 2.5904(8) × 2 P–M2 2.5904(8)

Fig. 3  Crystal structure of orishchinite. (a) A view slightly inclined 
relative to the b-axis. Chains (rods) of edge- and corner-sharing square 
pyramids [M1P5] (green) and tetrahedra [M2P4] (blue). (b) Projection 
onto (010) plane
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