Crystal structure of sternbergite, AgFe₂S₃

By Franz Pertlik, Vienna

With 2 figures and 3 tables in the text

Pertlik, F.: Crystal structure of sternbergite, $AgFe_2S_3$. – N. Jb. Miner. Mh., 1987, H. 10, 458–464, Stuttgart 1987.

Abstract: The crystal structure of sternbergite, $AgFe_2S_3$, [a = 6.615(2), b = 11.639(4), c = 12.693(4) Å; space group: Ccmb- D_{2h}^{18} ; Z = 8] has been determined from single crystal X-ray data and was refined to R = 0.078 for 449 reflections. The structure contains Fe₂S₃ layers parallel to (001) built up by edge sharing FeS₄ tetrahedra [Fe-S: 2.24(1) Å to 2.31(1) Å]. These layers are linked parallel to c by Ag atoms, with the Ag in a distorted tetrahedral coordination [Ag-S: 2.48(1) Å, 2.52(1) Å, and 2.63(1) Å, 2×]. The angle S-Ag-S between the two shortest Ag-S bonds is 138.6°, the other five angles vary from 99.4° to 105.6°, indicating a tendency towards a linear [2] coordination, as characteristic for a Ag(I) atom.

Key words: Crystal structure, crystal chemistry, AgFe₂S₃ structure, sternbergite.

Introduction

The first description of the mineral sternbergite from Jáchymov, Czechoslovakia, was given by HAIDINGER (1828) and a detailed investigation of the morphology was performed by PEACOCK (1936). By the means of single crystal X-ray work on sternbergite, two different extinction rules and therefore two different holohedral space groups resp. their hemihedral subgroups were published: Ccmm-D_{2h}¹⁷ by BUERGER (1937) and Cmma-D_{2h}²¹ by PEACOCK (1942). The lattice constants, given by these authors, are equal within limits of error (cf. Table 1). To get an information about the symmetry and the crystal structure of sternbergite, the present X-ray investigations were performed.

A crystal fragment of a specimen of sternbergite from the type locality Jáchymov, Czechoslovakia (HAIDINGER, 1828) from the collection of the "Landesmuseum Joanneum, Graz" (Inv. Nr. 6202, year of acquisition 1862) was used for the initial structure determination. The structure refinement was carried out on a second specimen from Měděnec, Krušné hory Mts., Czechoslovakia. Within investigations of the mineralisation of the polymetallic veins of this skarn deposit, and especially of the "Silber Kies" minerals (cf. RAM-DOHR, 1955), by ŠREIN et al. (1986) crystal of sternbergite, suitable for single crystal X-ray work, were isolated.

Structure of sternbergite

Structure determination

For the X-ray data collection of a preliminary structure determination a crystal chip from Jáchymov was used. The structure type was found by direct methods and difference Fourier summations. Due to the fact, that the used crystal showed extremely broad X-ray peaks (20° in ω on Weissenberg films, CuK α radiation) the expected agreement between observed and calculated structure factors was very bad (R ~ 20%). To obtain a crystal more suitable for X-ray work – to support the structure type – a cluster of crystals, formed by sternbergite and argentopyrite, from Měděnec was investigated in detail. At least a crystal out of a range of about fourty individuals was found more suitable for structure refinement than the first one. The results of this refinement are described in detail.

The accurate 2ϑ values for refinement of the lattice parameters (47 reflections) as well as the X-ray intensity data of sternbergite were collected with a Stoe four-circle diffractometer AED 2 (for details cf. Table 1). The intensities were corrected for absorption (empirical ψ scans of three reflections, min. and max. transmission factors 0.35 and 0.37) as well as for Lorentz and polarization effects. The atomic parameters obtained from the first structure determination were used in the starting set of the refinement.

The structure parameters for all atoms were fit by least squares techniques. Complex neutral atomic scattering functions were used (International Tables 1974). A correction for extinction was found to be neglectible. The results are listed in Table 2. Some selected interatomic distances and bond angles are given in Table 3.

The reasons for the unsatisfactory accuracy even for the structure refinement was the poor quality and the small size of the available crystal fragment of sternbergite. Fig. 3 in the article written by ŠREIN et al. (1986) gives an

Table 1. Summary of crystal	data, da	ta of	intensity	y measuremen	its and	l crysta	l structure
refinement for sternbergite.							

$a = 6.615(2) [6.61^{I} \ 6.62^{II}] \text{\AA}$	Stoe four-circle diffractometer
$b = 11.639(4) [11.64^{I} \ 11.58^{II}]$ Å	program system STRUCSY on an ECLIPSE S 140
$c = 12.693(4) [12.67^{I} 12.65^{II}] \text{\AA}$	crystal dimension: $0.12 \times 0.04 \times 0.04 \text{ mm}^3$
space group: Ccmb-D ¹⁸ _{2h}	graphite-monochromatized MoKa radiation
$\hat{Z} = 8 [Ag\hat{F}e_2S_3]$	$2 \theta/\omega$ -scan mode with a step width of 0.03°
$gobs^{III} = 4.101 - 4.215 \text{ g} \cdot \text{cm}^{-3}$	steps/reflection: 80 + (α_1, α_2) splitting
$\rho calc = 4.28 \text{ g} \cdot \text{cm}^{-3}$	time/step: 0.5 to 3.0 s
μ MoK $\alpha \sim 103$ cm ⁻¹	range of data: $2^{\circ} < 2\theta < 50^{\circ}$
no of variables: 31	measured reflections: $1050 (\pm h k l)$
R/Rw = 0.078/0.052	independent reflections: 449
$\mathbf{w} = [\sigma(Fo)]^{-2}$	reflections with Fo > $2\sigma_{Fo}$: 314

I: BUERGER (1937), II: PEACOCK (1942), III: DANA & DANA (1946).

Franz Pertlik

Table 2. Atomic parameters for sternbergite. Space group: Ccmb-D¹⁸_{2h}. The equivalent positions are: (0, 0, 0; ½, ½, 0) + (x, y, z; x, \bar{y} , z; ½-x, y, ½+z; ½-x, \bar{y} , ½+z); (e.s.d.'s in parentheses). ATF [pm²] = exp ($-2 \pi^2 \sum_{i=1}^{3} \sum_{j=1}^{3} U_{ij} h_i h_j a_i^x a_j^x$).

		1 = 1 j = 1						
atom	x/a		y/b		z/c			
Ag	0.8531(4)		0.0		0.6996(2)			
Fe	0.8335(5)		0.3351(2)	0.3351(2)		0.5635(2)		
S(1)	0.6952(14)	0.0	0.0		0.8800(8)		
S(2)	0.6658(8)	, ,	0.1786(5)		0.6179(4)			
atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃		
Ag	283(15)	248(15)	596(18)	0	83(16)	0		
Fe	186(15)	87(15)	261(15)	10(14)	17(14)	4(16)		
S(1)	323(56)	99(44)	440(55)	0	- 89(42)	0		
S(2)	224(26)	142(30)	340(30)	-41(39)	- 8(29)	41(25)		

Table 3. Selected interatomic distances (Å) and bond angles (°) for sternbergite (e.s.d.'s in parentheses). (^a) Common edges of two Fe-S₄ tetrahedra, (^b) Fe-Fe distances within one Fe₂S₃ layer.

S(1)	= 2.52(1)	S(1)	- S(1')	1 67(2)	120 (7)
S(12)		U(*)	- 3(1)	4.0/(2)	138.6(7)
S(1)	= 2.48(1)		-S(2)	3.93(1)	99.4(2) 2 ×
S(2)	$= 2.63(1) 2 \times$	S(1')	-S(2)	4.07(1)	105.6(2) 2 ×
. ,		S(2)	- S(2')	4.16(1)	104.3(3)
S(1)	= 2.24(1)	S(1)	- S(2)	3.75(1)	113.2(2)
S(2)	= 2.24(1)		- S(2')	3.78(1)	112.3(3)
S(2')	= 2.31(1)		- S(2'')	3.74(1)	110.6(3)
S(2")	= 2.31(1)	S(2)	-S(2')	$3.60(1)(^{a})$	104.6(3)
. ,			- S(2")	3.70(1)	108.8(3)
		S(2')	– S(2")	3.71(1)(^a)	107.0(3)
Ag	= 2.52(1)	Ag	– Ag'	3.55(1)	90.5(5)
Ag'	= 2.48(1)		– Fe	3.57(1)	97.0(3) 2 ×
Fe	$= 2.24(1) 2 \times$	Ag'	– Fe	4.10(1)	120.2(2) 2 ×
		Fe	– Fe'	3.84(1)	117.6(4)
Ag	= 2.63(1)	Ag	– Fe	4.27(1)	122.0(2)
Fe	= 2.24(1)		– Fe'	4.05(1)	109.7(2)
Fe'	= 2.31(1)		– Fe''	4.30(1)	120.7(2)
Fe"	= 2.31(1)	Fe	– Fe'	2.78(1)	75.4(3)
			– Fe''	3.86(1)	115.8(3)
		Fe'	– Fe''	2.73(1)	72.5(3)
	S(2) S(1) S(2) S(2') S(2') S(2'') Ag Ag Fe Fe Fe Fe' Fe'	$S(2) = 2.63(1) 2 \times$ $S(1) = 2.24(1)$ $S(2) = 2.24(1)$ $S(2') = 2.31(1)$ $S(2'') = 2.31(1)$ $Ag = 2.52(1)$ $Ag' = 2.48(1)$ $Fe = 2.24(1) 2 \times$ $Ag = 2.63(1)$ $Fe = 2.24(1)$ $Fe' = 2.31(1)$ $Fe'' = 2.31(1)$	$\begin{array}{rcl} S(2) &= 2.63(1) \ 2 \times & S(1) \\ && S(2) \\ S(1) &= 2.24(1) \\ S(2) &= 2.24(1) \\ S(2) &= 2.31(1) \\ S(2') &= 2.31(1) \\ S(2') &= 2.31(1) \\ S(2') \\ && S(2) \\ && S(2') \\ && S(2) \\ $	$\begin{array}{rcl} S(2) &= 2.53(1) \ 2 \times & S(1) &= -S(2) \\ && S(2) &= -S(2') \\ S(2) &= 2.24(1) && S(1) &- S(2) \\ S(2) &= 2.31(1) && -S(2') \\ S(2') &= 2.31(1) && S(2) &- S(2') \\ && -S(2'') \\ S(2'') &= 2.31(1) && S(2) &- S(2') \\ && -S(2'') \\ S(2') &= -S(2'') \\ S(2') &- S(2'') \\ S(2'') &- $	$\begin{array}{rcl} S(2) &= 2.63(1)\ 2\times & S(1) &= -S(2) & 4.07(1) \\ && S(2) &= -S(2') & 4.16(1) \\ S(1) &= 2.24(1) & S(1) &- S(2) & 3.75(1) \\ S(2) &= 2.34(1) & -S(2') & 3.78(1) \\ S(2') &= 2.31(1) & S(2) &- S(2') & 3.74(1) \\ S(2'') &= 2.31(1) & S(2) &- S(2'') & 3.70(1) \\ && -S(2'') & 3.70(1) \\ S(2') &- S(2'') & 3.71(1)(^a) \\ Ag &= 2.52(1) & Ag &- Ag' & 3.55(1) \\ Ag' &= 2.48(1) & -Fe & 3.57(1) \\ Fe &= 2.24(1)\ 2\times & Ag' &-Fe & 4.10(1) \\ Fe &- Fe' & 3.84(1) \\ Ag &= 2.63(1) & Ag &-Fe & 4.27(1) \\ Fe' &= 2.31(1) & -Fe'' & 4.30(1) \\ Fe'' &= 2.31(1) & -Fe'' & 4.30(1) \\ Fe'' &= 2.31(1) & -Fe'' & 3.86(1) \\ Fe'' &= -Fe'' & 2.73(1) \\ \end{array}$

Fe - Fe' = $2.73(1)(^{b})$ - Fe'' = $2.78(1)(^{b})$.

impression of the difficulties to find a crystal fragment suitable for structure determination.

Discussion

The Ag atom in the structure of sternbergite has a clear four-coordination by S atoms (cf. Table 3). The two Ag-S(1) bonds are shorter by 6.06 and 4.55 %

460

Structure of sternbergite

Fig. 1. AgS₄ polyeder connected over common S atom corners to a chain parallel [100]. Distances are given in Å, angles in °. The drawing is inclined to the direction [100] by about 5° .

than the two Ag-S(2) bonds; the angle S(1)-Ag-S(1') is 138.6°. Therefore the coordination polyhedron around the Ag atom can best be described as a distorted tetrahedron with a tendency towards a linear [2] coordination. This crystal chemical behaviour is typical for monovalent Ag atoms and occurs in a lot of crystal structures (cf. FRUEH, 1958, 1969; WELLS, 1975). The AgS₄ polyhedra are connected over common S atom corners to chains parallel [100]. One of these chains is drawn in Fig. 1.

The Fe atom is tetrahedrally coordinated to S atoms with Fe-S distances ranging from 2.24 to 2.31 Å. These values are in good agreement with the distances found in the FeS₄ tetrahedra of the minerals chalcopyrite [2.257(1) Å, $4 \times$; HALL & STEWART, 1973] and cubanite [from 2.258(1) to 2.304(1) Å; SZYMAŃSKI, 1974]. Shorter Fe-S distances are determined in the spinel type

461

Franz Pertlik

structures of greigite (2.15 Å, $4 \times$; SKINNER et al., 1964) and daubréelite (2.21 Å, $4 \times$; LUNDQVIST, 1943). The reason for this might be the inflexibility of the close-packed arrangement of the sulfur atoms. Two further minerals with FeS₄ tetrahedra are mooihoekite (Fe-S: 2.26 to 2.31 Å; HALL & ROWLAND, 1973); and valleriite (Fe-S: 2.30 to 2.41 Å; EVANS & ALLMANN, 1968). In both these minerals the Fe atoms are replaced in parts by Cu atoms. In kerstite [Fe-S: 2.336(1) Å, $4 \times$] resp. stannite [Fe-S: 2.348(2) Å, $4 \times$] a partial replacement of the Fe atoms by Zn atoms is described (HALL et al., 1978); therefore a detailed comparison with sternbergite is problematic.

The structure of sternbergite shows, that the iron atoms are located at one crystallographic position – if the space group Ccmb is correct. Fortunately this assumption of the centric space group is supported by Mössbauer studies (IMBERT & WINTENBERGER, 1967). These investigations show an antiferromagnetic order of the iron atoms, one valence state for all the Fe atoms, and gave evidence for the same crystallographic site for all the Fe atoms in sternbergite (cf. VAUGHAN & BURNS, 1972). Therefore another space group than the holo-

Fig. 2. Layers built up of FeS₄ tetrahedra by connection over common S atom edges and corners. Such a single layer parallel (001) from $z \sim 0.30$ to ~ 0.80 is given. The common edges of the FeS₄ tetrahedra are drawn as dot-dash lines.

462

hedral space group Ccmb – especially a hemihedral one – with a splitting of the Fe atoms to two different positions is out of discussion.

Each FeS₄ tetrahedron is combined via common S atom edges and corners to four neighbouring tetrahedra and the S atoms themselves show in parts of the structure a close packing arrangement. The connection of the FeS₄ tetrahedra results in distorted six membered rings resp. in Fe₂S₃ layers (Fig. 2) parallel to (001). In the direction c these layers are only linked by the Ag atoms, corresponding with the good cleavage perpendicular [001]. The two crystallographically different S atoms are more or less tetrahedrally coordinated by silver resp. iron atoms (cf. Table 3).

Acknowledgements

The author thanks Prof. Dr. J. ZEMANN (Vienna, Austria) for proposing this problem. It is a pleasure to extend appreciation to Dr. F. ČECH (Prague, Czechoslovakia) and Dr. W. POSTL (Graz, Austria) for providing the single crystals of sternbergite.

References

- BUERGER, N. W. (1937): The unit cell and space group of sternbergite, AgFe₂S₃. Amer. Mineral. 22, 847–854.
- DANA, J. D. & DANA, E. S. (1946): The system of mineralogy. Vol. I. John Wiley and Sons, Inc. New York.
- Evans, H. T. Jr. & Allmann, R. (1968): The crystal structure and crystal chemistry of valleriite. Z. Kristallogr. 127, 73–93.
- FRUEH, A. J. Jr. (1958): The crystallography of silver sulfide, Ag₂S. Z. Kristallogr. 110, 136–144.
 - (1969): Silver, 47-А. Crystal Chemistry. Handbook of Geochemistry, Vol. II/4 (WEDEPOHL, K.-H., ed.). Springer: Berlin, Heidelberg, New York.
- HAIDINGER, W. (1828): Description of sternbergite, a new mineral species. Trans. Roy. Soc. Edinburgh 11, 1-7.
- HALL, S. R. & ROWLAND, J. F. (1973): The crystal structure of synthetic mooihoekite, Cu₉Fe₉S₁₆. – Acta Cryst. **B 29**, 2365–2372.
- HALL, S. R. & STEWART, J. M. (1973): The crystal structure refinement of chalcopyrite, CuFeS₂. – Acta Cryst. **B 29**, 579–585.
- HALL, S. R., SZYMAŃSKI, J. T. & STEWART, J. M. (1978): Kesterite, Cu₂(Zn,Fe)SnS₄, and stannite, Cu₂(Fe,Zn)SnS₄, structurally similar but distinct minerals. Canad. Mineral. 16, 131–137.
- IMBERT, P. & WINTENBERGER, M. (1967): Étude des propriétés magnétiques et des spectres d'absorption par effet Mössbauer de la cubanite et de la sternbergite. – Bul. Soc. Fr. Minéral. Cristallogr. 90, 299–303.
- International tables for X-ray crystallography (1974): Vol. IV. The Kynoch Press, Birmingham.
- LUNDQVIST, D. (1943): The crystal structure of daubréelite. Arkiv f. Kemi, Min. och Geol. 17 B, 1–4.
- PEACOCK, M. A. (1936): On the crystal form of sternbergite. Amer. Mineral. 21, 103–108.
 - (1942): On sternbergite and frieseite. Amer. Mineral. 27, 229.

RAMDOHR, P. (1955): Die Erzmineralien und ihre Verwachsungen. – Akademie-Verlag, Berlin.

SKINNER, B. J., ERD, R. C. & GRIMALDI, F. S. (1964): Greigite, the thio-spinel of iron; a new mineral. – Amer. Mineral. 49, 543–555.
ŠREIN, V., ŘIDKOŠIL, T., KAŠPAR, P. & ŠOUREK, J. (1986): Argentopyrite and

SREIN, V., RIDKOŠIL, T., KAŠPAR, P. & SOUREK, J. (1986): Argentopyrite and sternbergite from polymetallic veins of the skarn deposit Měděnec, Krušné hory Mts., Czechoslovakia. – N. Jb. Miner. Abh. 154, 207–222.

SZYMAŃSKI, J. T. (1974): A refinement of the structure of cubanite, CuFe₂S₃. – Z. Kristallogr. 140, 218–239.

VAUGHAN, D. J. & BURNS, R. G. (1972): Mössbauer spectroscopy and bonding in sulphide minerals containing four-coordinated iron. – Proc. 24th Intern. Geol. Congr., Montreal, 14, 156–167.

WELLS, A. F. (1975): Structural inorganic chemistry (4th ed.). Clarendon Press, Oxford.

Manuscript received by the editor March 27, 1987.

Author's address:

Institut für Mineralogie und Kristallographie der Universität Wien, Dr. Karl-Lueger-Ring 1, A-1010 Wien, Austria.