Russian Journal of Inorganic Chemistry, Vol. 38, No. 9, 1993. Translated from Zhurnal Neorganicheskoi Khimii, Vol. 38, No. 9, 1993, pp. 1450 - 1452. Original Russian Edition Copyright © 1993 by Zhurnal Neorganicheskoi Khimii, Tali, Tabachenko, Kovba. English Translation Copyright © 1993 by Interperiodica.

## SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS

## Crystal Structure of Cu<sub>4</sub>UO<sub>2</sub>(MoO<sub>4</sub>)<sub>2</sub>(OH)<sub>6</sub>

R. Tali, V. V. Tabachenko, and L. M. Kovba

Lomonosov Moscow State University, Moscow, Russia

Received January 29, 1993

Abstract – The formation of  $Cu_4UO_2(MoO_4)_2(OH)_6$  in the  $UO_3$ – $CuO-MoO_3-H_2O$  system was established by the method of hydrothermal synthesis. The obtained crystals are monoclinic; the unit-cell parameters are: a = 19.8392(11) Å, b = 5.5108(3) Å, c = 6.1009(4) Å;  $\gamma = 104.477^\circ$ ; Z = 2; space group B2/m,  $\rho_{calcd} = 4.864$  g/cm<sup>3</sup>. The structure was calculated from 1393 independent nonzero reflections. Further least-squares refinements resulted in the value R = 0.030. The layers of copper coordination octahedra sharing edges can be distinguished in the framework structure. The symmetric uranyl groups are linked by tetrahedral molybdate anions into endless straight ribbons aligned in the c axis. The coordination polyhedron of the uranium atoms can be described as a tetragonal bipyramid. MoO<sub>4</sub> groups link the copper octahedra and compensate for the charge of the copper layer.

During the investigation of uranyl compounds with molybdate groups and divalent cations, the synthesis of compounds in the UO<sub>3</sub>-CuO-MoO<sub>3</sub>-H<sub>2</sub>O system was performed under hydrothermal conditions over a period of 14 days (T = 280°C, p = 500 bar). Among the individual phases formed in the above mentioned system, we found compounds in the form of bright green crystals. The results of X-ray analysis of these crystals correspond to the formula  $Cu_4UO_2(MoO_4)_2(OH)_6$  (I). The determination of the structure of I is obviously interesting because it represents a rare case of high content of divalent cations in the compounds of this group, and because it provides new information about secondary uranium minerals. The crystals of I are monoclinic, the unit-cell parameters are: a = 19.8392(11) Å, b = 5.5108(3) Å, c = 6.1009(4) Å;  $\gamma = 104.477(4)^\circ$ ;

| 11.5. | u, A                                                        | 1                                                                                                         | nki                                                                                                          | a, A                                                                                                                                                        | 1                                                                                                                                                                                                           | nki                                                                                                                                                                                                                                 | <i>a</i> , A                                           | 1                                                      | nki                                                    |                                                        |
|-------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| 200   | 3.252                                                       | 100                                                                                                       | 501                                                                                                          | 2.637                                                                                                                                                       | 15                                                                                                                                                                                                          | 212                                                                                                                                                                                                                                 | 2.127                                                  | 10                                                     | 301                                                    | -                                                      |
| 101   | 3.203                                                       | 30                                                                                                        | 600                                                                                                          | 2.627                                                                                                                                                       | 60                                                                                                                                                                                                          | <b>4</b> 20                                                                                                                                                                                                                         | 2.119                                                  | 5                                                      | 420                                                    |                                                        |
| 010   | 3.196                                                       | 20                                                                                                        | 410                                                                                                          | 2.575                                                                                                                                                       | 10                                                                                                                                                                                                          | 402                                                                                                                                                                                                                                 | 2.090                                                  | 5                                                      | 711                                                    |                                                        |
| 400   | 3.110                                                       | 30                                                                                                        | 610                                                                                                          | 2.503                                                                                                                                                       | 50                                                                                                                                                                                                          | 701                                                                                                                                                                                                                                 | 2.077                                                  | 5                                                      | 721                                                    |                                                        |
| 301   | 3.080                                                       | 50                                                                                                        | 511                                                                                                          | 2.475                                                                                                                                                       | 85                                                                                                                                                                                                          | 212                                                                                                                                                                                                                                 | 2.058                                                  | 15                                                     | 820                                                    |                                                        |
| 210   | 3.050                                                       | 70                                                                                                        | 002                                                                                                          | 2.428                                                                                                                                                       | 30                                                                                                                                                                                                          | 810                                                                                                                                                                                                                                 | 2.043                                                  | 10                                                     | 222                                                    |                                                        |
| ī11   | 2.907                                                       | 70                                                                                                        | 202                                                                                                          | 2.359                                                                                                                                                       | 20                                                                                                                                                                                                          | 620(121)                                                                                                                                                                                                                            | 2.015                                                  | 15                                                     | 901                                                    |                                                        |
| 111   | 2.649                                                       | 7                                                                                                         | 012                                                                                                          | 2.177                                                                                                                                                       | 85                                                                                                                                                                                                          | 612                                                                                                                                                                                                                                 | 1.991                                                  | 15                                                     | 422                                                    |                                                        |
| 311   |                                                             |                                                                                                           |                                                                                                              |                                                                                                                                                             |                                                                                                                                                                                                             |                                                                                                                                                                                                                                     |                                                        | 1                                                      |                                                        |                                                        |
|       | 200<br>101<br>010<br>400<br>301<br>210<br>111<br>111<br>311 | 200 3.252   101 3.203   010 3.196   400 3.110   301 3.080   210 3.050   111 2.907   111 2.649   311 3.110 | 200 3.252 100   101 3.203 30   010 3.196 20   400 3.110 30   301 3.080 50   210 3.050 70   111 2.649 7   311 | 200 3.252 100 501   101 3.203 30 600   010 3.196 20 410   400 3.110 30 610   301 3.080 50 511   210 3.050 70 002   111 2.907 70 202   111 2.649 7 012   311 | 200 3.252 100 501 2.637   101 3.203 30 600 2.627   010 3.196 20 410 2.575   400 3.110 30 610 2.503   301 3.080 50 511 2.475   210 3.050 70 002 2.428   111 2.907 70 202 2.359   111 2.649 7 012 2.177   311 | 200 3.252 100 501 2.637 15   101 3.203 30 600 2.627 60   010 3.196 20 410 2.575 10   400 3.110 30 610 2.503 50   301 3.080 50 511 2.475 85   210 3.050 70 002 2.428 30   111 2.907 70 202 2.359 20   111 2.649 7 012 2.177 85   311 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

Table 1. X-ray diffraction data for Cu<sub>4</sub>UO<sub>2</sub>(MoO<sub>4</sub>)<sub>2</sub>(OH)<sub>6</sub>

Table 2. Atomic coordinates and individual thermal parameters of atoms in the structure of Cu<sub>4</sub>UO<sub>2</sub>(MoO<sub>4</sub>)<sub>2</sub>(OH)<sub>6</sub>

| Atom            | x/a        | y/b       | z/c       | B, Å <sup>2</sup> | Atom | x/a       | y/b       | z/c       | B, Å <sup>2</sup> |
|-----------------|------------|-----------|-----------|-------------------|------|-----------|-----------|-----------|-------------------|
| U               | 0          | 0         | 0         | 0.681(5)          | 02   | 0.0498(3) | 0.378(1)  | 0.500     | 1.5(1)            |
| Мо              | 0.41922(3) | 0.2977(1) | 0         | 0.700(8)          | 03   | 0.3007(3) | 0.1689(9) | 0.500     | 0.82(8)           |
| Cu <sub>1</sub> | 0.24959(5) | 0.5046(2) | 0         | 0.77(1)           | 04   | 0.0677(3) | 0.286(1)  | 0         | 1.5(1)            |
| Cu <sub>2</sub> | 0.250      | 0         | 0.250     | 0.75(1)           | 05   | 0.4339(2) | 0.1461(8) | 0.2492(7) | 1.38(6)           |
| 0 <sub>1</sub>  | 0.2040(2)  | 0.2873(6) | 0.2455(7) | 0.82(6)           | 06   | 0.3282(3) | 0.250(1)  | 0         | 1.18(9)           |

Z = 2; space group B2/m,  $\rho_{calcd} = 4.864$  g/cm<sup>3</sup>. The X-ray diffraction data for compound I are presented in Table 1. The refinement of the parameters was carried out for 24 reflections. The experimental data for structure determination were obtained on a CAD-4 automated diffractometer. After the absorption correction was applied, the structure was calculated from 1393 independent nonzero reflections satisfying the criterion  $I > 3\sigma(I)$ . The X-ray powder diffraction pattern was obtained using a camera-monochromator of the Guinier type (CuK<sub>\alpha</sub> radiation). All calculations were performed on a Micro Vax II computer.

Further least-squares refinement of atomic coordinates and anisotropic thermal parameters led to the values R = 0.030,  $R_w = 0.031$ . Atomic coordinates and individual thermal parameters, main interatomic distances and bond angles are listed in Tables 2, 3, and 4, respectively. The structure of the compound is presented in Fig. 1.

In the structure of  $Cu_4UO_2(MoO_4)_2(OH)_6$ , it is possible to distinguish the layers of copper octahedra aligned in the (011) plane. It is possible to divide these octahedra into two groups according to coordination type. The  $Cu_2$  atom (located at the center of symmetry) is coordinated to four oxygen atoms of the hydroxyl groups ( $O_1$  and  $O_3$ ) and to two oxygen atoms of the molybdate groups ( $O_6$ ). These last are separated from the copper atom by a much longer distance. All oxygen atoms of the hydroxyl groups of the hydroxyl groups are tridentate-



Fig. 1. The structure of  $Cu_4UO_2(M_6O_4)_2(OH)_6$ .

bridged; oxygen atoms of the molybdate groups are tetradentate-bridged.

The coordination sphere of the  $Cu_1$  atom (in the *m*-planes) involves five oxygen atoms of the hydroxyl groups and one oxygen atom of the molybdate group.

Table 3. The basic interatomic distances (Å) in the structure of  $Cu_4UO_2(MoO_4)_2(OH)_6$ 

| Atom 1 | Atom 2 | Distance |
|--------|--------|----------|--------|--------|----------|--------|--------|----------|--------|--------|----------|
| U      | 20(4)  | 1.796(3) | Cu(1)  | 20(1)  | 2.012(2) | O(1)   | O(1)   | 2.588(4) | O(2)   | O(5)   | 2.786(4) |
| U      | 40(5)  | 2.288(2) | Cu(1)  | O(3)   | 2.265(3) | O(1)   | O(1)   | 2.995(4) | O(2)   | O(5)   | 2.978(4) |
| Мо     | O(2)   | 1.738(3) | Cu(1)  | O(6)   | 2.343(3) | O(1)   | O(3)   | 2.908(3) | O(2)   | O(6)   | 2.753(5) |
| Mo     | 20(5)  | 1.793(2) | Cu(2)  | 20(1)  | 2.016(2) | O(1)   | O(3)   | 2.674(3) | O(3)   | O(6)   | 2.988(4) |
| Мо     | O(6)   | 1.759(3) | Cu(2)  | 20(3)  | 1.933(2) | O(1)   | O(6)   | 2.934(3) | O(4)   | O(5)   | 2.992(4) |
| Cu(1)  | 20(1)  | 1.989(2) | Cu(2)  | 20(6)  | 2.359(2) | O(2)   | O(2)   | 2.652(7) | O(4)   | O(5)   | 2.823(4) |
|        |        |          |        |        |          |        |        |          | O(5)   | O(6)   | 2.765(3) |

Table 4. The basic bond angles in the structure of  $Cu_4UO_2(MoO_4)_2(OH)_6$ 

| Atom 1 | Atom 2 | Atom 3 | Angle, deg | Atom 1 | Atom 2 | Atom 3 | Angle, deg |
|--------|--------|--------|------------|--------|--------|--------|------------|
| O(4)   | U      | O(4)   | 180(0)     | O(1)   | Cu(1)  | O(1)   | 87.7(1)    |
| O(4)   | U      | O(5)   | 93.4(1)    | O(1)   | Cu(1)  | O(1)   | 101.0(1)   |
| O(5)   | U      | O(5)   | 84.0(1)    | O(1)   | Cu(1)  | O(1)   | 177.81(7)  |
| O(5)   | U      | O(5)   | 96.0(1)    | O(3)   | Cu(1)  | O(6)   | 165.1(1)   |
| O(5)   | U      | O(5)   | 180(0)     | O(1)   | Cu(2)  | O(1)   | 180.0(0)   |
| O(2)   | Mo     | O(5)   | 114.96(9)  | O(1)   | Cu(2)  | O(6)   | 83.83(9)   |
| O(2)   | Mo     | O(6)   | 103.8(2)   | O(3)   | Cu(2)  | O(3)   | 180.0(0)   |
| O(5)   | Mo     | O(5)   | 115.9(2)   | O(3)   | Cu(2)  | O(6)   | 92.37(8)   |
| O(5)   | Mo     | O(6)   | 102.2(9)   | O(6)   | Cu(2)  | O(6)   | 180.0(0)   |
| O(1)   | Cu(1)  | O(1)   | 80.61(8)   |        |        |        | 1          |

RUSSIAN JOURNAL OF INORGANIC CHEMISTRY Vol. 38 No. 9 1993

The distortion of the octahedron is attributed to the different kinds of oxygen atoms surrounding the Cu(1) atom and to the Jahn–Teller effect, as in the case of Cu<sub>2</sub>. All CuO<sub>6</sub> octahedra are joined into sheets by shared edges. The linear and symmetric uranyl groups are united by the tetrahedral molybdate anions into endless straight ribbons composed of  $[UO_2(MoO_4)_2]_n^{2n-}$ , and aligned in the c axis. The coordination polyhedron of the uranium atom can be described as a tetragonal bipyramid that is rarely encountered in the structures of similar compounds. Four oxygen atoms belonging to four molybdate groups are arranged in the equatorial plane of the bipyramid, and the oxygen atoms of the uranyl group are located in the axial positions.

The molybdate anions of tetrahedral coordination are located between two neighboring uranyl groups aligned in the *c* axis. These link the sheets of copper octahedra and compensate the sheet charge. Two oxygen atoms of the  $MoO_4$  tetrahedron coordinate two different uranyl groups, the third oxygen atom is included in the coordination sphere of three copper atoms, and the fourth is terminal. The structure of the naturally occurring mineral derriksite  $Cu_4UO_2(SeO_3)_2(OH)_6$  was reported in the literature [1]. Despite the difference in the composition, the parameters of the structure are close to the synthesized compound (a = 5.570(2) Å, b = 19.088(8) Å, c = 5.965(2) Å) with allowance for the rearrangement of the cell vectors. The difference in the space groups, however, indicates significant differences in these structures: the pattern of layer alternation is retained, but appear to be shifted in the structure of derriksite as compared to the structure of  $Cu_4UO_2(MOO_4)_2(OH)_6$ .

Moreover, the terminal oxygen atom in the  $MoO_4$  tetrahedron is absent in the SeO<sub>3</sub> group in the derriksite (the coordination number of Se is reduced to three). This accounts for the structural differences between the two compounds.

## REFERENCES

 Cesbron, F., Acta Crystallogr., Sect. C.: Cryst. Struct. Commun., 1983, vol. 39, p. 1605.