AN ELECTRON DIFFRACTION STUDY OF THE SECOND SUPERLATTICE IN $\mathrm{PbBi}_{4} \mathrm{Te}_{7}$

A. G. Talybov and B. K. Vainshtein
Institute of Crystallography, Academy of Sciences, USSR, Translated from Kristallografiya, Vol. 7, No. 1, pp. 43-40, January-February, 1962
Original article submitted April 24, 1961

Superlattice II of $\mathrm{PbBi}_{4} \mathrm{Te}_{7}$ has a hexagonal cell $\left(\mathrm{a}=4.44, \mathrm{c}=71.7 \mathrm{~A}\right.$, space group $\left.\mathrm{D}_{3}^{3} \mathrm{~d}\right)$ and has 36-layer cubic packing (four sets of nine layers). The sets differ in the array of Pb atoms, which randomly populate alternate layers in a set.

The pseudobinary phase diagram for PbTe and $\mathrm{Bi}_{2} \mathrm{Te}_{3}$ contains the compound $\mathrm{PbBi}_{4} \mathrm{Te}_{7}$ (composition 1 : 2), which has been demonstrated by x-ray phase analysis [1]. Our electron-diffraction measurements [2] show that there are structures having hexagonal unit cells:

$$
\begin{array}{rll}
\text { I. } & a=4.50 \pm 0.02 \mathrm{~A}, & c_{\mathrm{I}}=17.60 \pm 0.05 \mathrm{~A}, \\
\text { II. } & a=4.44 \pm 0.02 \mathrm{~A}, & c_{\mathrm{II}}=71.7 \pm 0.2 \mathrm{~A}=4 c_{\mathrm{I}} \\
\text { III. } & a=4.44 \pm 0.02 \mathrm{~A}, & c_{\mathrm{III}}=107.4 \pm 0.3 \mathrm{~A}=6 c_{\mathrm{I}} .
\end{array}
$$

The volume per molecule of $\mathrm{PbBi}_{4} \mathrm{Te}_{7}$ is $407 \mathrm{~A}^{3}$, which is almost exactly the sum of the molecular volumes for $\mathrm{PbTe}\left(64 \mathrm{~A}^{3}\right.$) and $\mathrm{Bi}_{2} \mathrm{Te}_{3}\left(2 \cdot 169 \mathrm{~A}^{3}\right.$) $[3,4]$, this sum being $402 \mathrm{~A}^{3}$.

Structures I-III may be considered as those of a single phase having differing degrees of order; the latter two are superlatices with respect to I, which is a known structure [2]. The simple structure I is as follows (Fig. 1); it consists of nine layers stacked in a closepacked cubic array $A B C A B C A B C$... . This is fitted to the formula $\mathrm{PbBi}_{4} \mathrm{Te}_{7}$, which contains 12 atoms, by virtue of a joint random distribution over certain layers for the Te and Pb atoms. The formula for this is:

\[

\]

This centrosymmetric array is described by group D_{3}^{3} d $-\overline{\mathrm{P}} \mathrm{m} 1$. Layers A_{1} and $C_{1}-B_{3}$ are uniformly populated by Bi atoms; Te atoms do the same in layers $\mathrm{B}_{1}-\mathrm{C}_{3}$, while Te and Pb together populate $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{~B}_{3}$ in the proportions $\mathrm{Te}_{3 / 16} \mathrm{~Pb}_{13 / 16}$. This gives us the formula

$$
\mathrm{Bi}_{3} \mathrm{Te}_{2} \quad\left(\mathrm{Te}^{13} / 16 \mathrm{~Pb}_{3} / 10\right) 4={ }^{3 / 4}\left(\mathrm{~Pb} \mathrm{Bi}_{4} \mathrm{Te}_{7}\right) .
$$

Here we present structure II, which is produced when the alloy is distilled onto NaCl at room temperature and the film is annealed at $200^{\circ} \mathrm{C}$ for 40 min .

Fig. 1. Structure I of $\mathrm{PbBi}_{4} \mathrm{Te}_{7}$.

Figure 2a shows an oblique-texture pattern from structure II; all strong reflections correspond to one for structure I, which shows that structure II is very similar to structure I. Some of the ellipses also show reflections corresponding to a period $c_{\text {II }}=4 c_{I}$; some of these reflections are shown in Fig. 2b (a section of Fig. 2a enlarged).

Systematic absences occur only on the zero layer line, which contains only reflections having $\mathrm{h}-\mathrm{k}=3 \mathrm{n}$.

The possible space groups are:

$$
\begin{array}{lr}
D_{3 d}^{3}-P \overline{3} m 1, & D_{3}^{2}-P 321 \\
C_{3 i}^{1}-P \overline{3}, & C_{3 v}^{1}-P 3 m 1
\end{array}
$$

The strongest reflections lie on the layer lines having $l=12 \mathrm{n}$, and they obey the rhombohedral condition $\mathrm{h}+\mathrm{k}-l / 12=3 \mathrm{n}$, as for structure $\mathrm{I}[2]$. This implies a cubic ABC ... pseudoperiod of

TABLE. Calculated and Measured* Structure Factors

$h k l$	Φ	Φ_{0}	$h k l$	Φ	Φ_{0}	$h k l$	Φ

10.4	+1.18	0.65	20.52	-0.20	0.58			
10.12	+0.36	0	20.60	+5.13	5.01	13.24	+5.11	4.16
10.16	-0.43	0.76	20.64	+0.10	028	13.28	+0.08	0.45
10.24	+12.16	10.30	21.4	+0.65	0.45	13.40	+0.40	0.79
10.28	+0.18	0.22	21.12	+0.20	0	13.48	+0.13	0
10.32	-0.32	0.36	21.24	+7.03	6.13	13.60	+3.70	2.68
10.40	+1.47	1.13	21.28	+0.12	0.17	13.64	+0.07	0.74
10.44	+0.64	0.75	21.32	-0.22	0.26	40.12	+0.13	0
10.48	+0.20	0	21.40	+0.49	0.80	40.24	+4.59	3.66
10.52	-0.23	0.95	21.44	+0.47	0.66	40.60	+2.60	1.91
10.4	-0.46	0.26	21.48	+0.15		$\overline{4} 0.12$	+4.79	3.85
$\overline{10.12}$	+15.16	13.40	21.52 21.60	+0.17 +4.59	0.55 3.86	40.24	+0.13	0
10.16 10.24	+0.24 +0.30	0.34 0.26	21.60 21.64	+4.59 +0.09	3.86 0.59	$\overline{40.60}$	+0.09	0.22
$\overline{10.28}$	+0.82	1.08	21.84	+0.09	0.22	32.12	+0.13	0
10.32	+0.80	0.90	21.88	+0.09	0.67	32.24	+0.04	3.36
10.40	-0.29	0.22	12.4	-0.26	0.19	32.48	+0.10	0
10.44	+0.14	0.17	12.12	+7.63	9.50	32.60	+3.21	2.71
10.48	+7.42	6.36	12.24	+0.19	0.55	23.12	+4.27	3.66
10.52	+0.12	0.50	12.28	$+0.55$	0.95	23.24	+0.12	
11.0	+11.82	11.10	12.32	+0.57	0.69	23.48	+3.37	2.86
11.16	+0.80	0.90	12.40	-0.20	0.32	23.60	+0.10	
11.20	+0.80	0.65	12.44	+0.10	0.14	410	+4.08	3.48
11.36	+7.87	8.15	12.48	+5.35	4.60	41.36	+3.60	3.06
11.40	+0.15	0.92	12.52	+0.09	0.84	50.12	+3.51	3.12
11.52	+0.54	0.97	12.60	+0.13	0	50.24	+0.10	
11.56	+0.47	0.77	12.64	+0.40	090	50.48	+3.01	2.39
11.72	+4.41	3.95	12.84	$+3.37$	2.49	50.12	+0.10	0
11.76	+0.08	1.00	12.88	$+0.07$	0.52	50.24	+3.41	2.59
20.4	+0.32	0.32	30.0	+6.91	6.03	50.48	+0.09	0.24
20.8	+0.58	0.30	30.16	+0.56	0.79	${ }_{330}$	+ +3.40	3.04
20.12	+9.78	11.30	30.20	+0.53	0.70	33.36	+3.40	2.88
20.24	+0.24	0	30.36	+0.31	1.46	42.12	+3.18 +3.28	2.64
20.28	+0.71	1.05	30.40	+0.10	0.85	42.24	+3.88 +0.09	0
20.32	+0.64	0.77	30.52	+0.40	0.77	42.48	+2.28 +2.28	2.34
20.40 20.44	-0.31 +0.14	0.54 0.20	30.56 30.72	+0.40 +3.60	0.45	24.12	+0.09	0.26
20.48	+0.4	0.20 5.62	30.72 30.76	+3.60 +0.05	2.96 0.86	24.24	+3.19	2.72
20.52	+0.11	0.30	220	+5.83 +5.83	5.20	24.48 51.12	+0.09 +0.0	
20.60	+0.15	0	22.16	+0.22	0.79	51.12 51.24	+0.10 +3.03	
20.64	+0.42	1.23	22.36	- +0.28	1.65	51.48	+3.03 +0.09	${ }_{0}^{2.83}$
20.4	+0.80	0.41	31.12	+5,49	4.75	15.12	+3.03 +3.09	3.04
20.8 20.12	+0.80	0.41	31.24	+0,14		15.24	+0.10	0
$\overline{2} .024$	+0.26 +8.68	8.20	31.28 31.40	+0.41 $-0,16$	0.70 0.35	15.48	+2.70	1.48
$\overline{2} .028$	+0.15	0.21	32.48	+4,20	3.12	600	+2.82	2.34
$\overline{2} .032$	-0.27	0.32	31.60	+0,11	0	43.12	+0.09	0
2.040	+0.57	0.93	31.64	+0.29	0.96	34.12	+2.70	2.13
2 2 0.44	+0.56	0.76				520	+2.68	2.04
20.48	+0.17	0	13.12	+0.15	0	52.36	+2.43	1.90

b) $l=2 \mathrm{n}$

10.10	-3.54	3.61	
01.10	-1.27	1.30	01.22
10.14	+3.90	4.25	10.26
01.14	+1.22	1.32	10.26
10.22	-1.05	0.53	01.50

-3.35
+0.97
+2.75
+1.86
+0.58
c) $l \neq 2 n$

$h \mathrm{k} l$	A	B	Φ	$\cos \alpha$	$\sin a$	Φ_{0}
109	-1.21	-1.21	1.71	0.708	0.708	1.3
10.15	+0.79	-0.79	1.21	0.707	1.707	1.71
10.19	-0.45	+0.45	0.63	0.712	0.712	0.58
0.19	+0.32	+0.32	0.44	0.714	0.714	0.35
01.15	+0.28	-0.28	0.40	0.714	0.714	0.62
01.19	-0.59	+0.59	0.84	0.708	0.708	0.76

* As modified by dynamic corrections.

Fig. 2. a) Oblique-texture pattern from phase II of $\mathrm{PbBi}_{4} \mathrm{Te}_{7}$; b) the first $\overline{1} 01 l$ ellipse enlarged. The reflections are indicated by arrows.

$$
c^{\prime}=\frac{c_{\mathrm{I}}}{3}=\frac{c_{\mathrm{II}}}{12}=5,97 \mathrm{~A}
$$

The cell contains four sets each of nine layers (36 layers in all).

Each layer is $71.7 / 36=1.98$ A thick (i. e., about 2 A), which is characteristic of other semiconductor phases containing Bi and $\mathrm{Te}[5,6]$.

We used Φ^{2} and Φ series in the analysis of structure II.
The intensities of reflections on the oblique-texture patterns were measured visually and by means of a microphotometer [6]; the observed intensities were converted to the structure factors by means of the formula [7]:

$$
\begin{equation*}
\Phi_{h k l}^{2}=\frac{\mathrm{I}_{h k l}}{p d_{h k o} \cdot d_{h k l}} \tag{3}
\end{equation*}
$$

A dynamic correction was applied [8]; the mean size of the scattering regions was found to be 400 A .

The superlattice reflections for structure II were much weaker than the reflections for structure I, which is described by (2), so the superlattice must be based on four sets of type (2), but these must all differ slightly. The Φ^{2} and Φ constructions showed that the differences lie in the distribution of the Pb atoms over the layers $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{~A}_{3}$ (2) (Fig. 1), in which the atoms are uniformly distributed in structure I . These differences in distribution give rise to slight differences in the scattering power of the sets relative to that power for I or for any given power for II.

Structure II gives reflections with $l \neq 4 n$ as a result of these changes in scattering power; we may consider structure I (disordered) as a zero matrix (see [9]), whose alterations are responsible for the reflections with $l \neq 4 \mathrm{n}$.

A Φ^{2} series [an A (00z) section] constructed from reflections with $l=4$ n gave almost exactly the picture found for structure I; the complete A (00 z) section(Fig. 3a) is not very different, because the reflections with $l \neq 4 \mathrm{n}$ are relatively weak. The complete picture has peaks separated by 5.97 A (every third layer), which confirms that the packing is cubic.

The most reliable information on the changes is found from the $A(00 z)$ synthesis from the superlattice reflections only (Fig. 3b); this is a component part of Fig. 3a. Most of these reflections have l even; the table shows that few have l odd. This indicates that the four-set structure has a two-set substructure; for this reason, the component derived from the odd l is shown separately in Fig. 3b.

The superlattice synthesis gives a strong peak at ${ }^{{ }^{\mathrm{II}}}$ / 2 on account of the substructure; there is a minimum at ${ }^{c_{\text {II }}} / 4$, which shows that the distance between identical points in adjacent sets is $\mathrm{c}_{\mathrm{II}} / 4=\mathrm{c}_{\mathrm{I}}$, which means that the distributions are entirely different (other distances of $\mathrm{c}_{\mathrm{II}} / 4$ would otherwise occur). The strongest peak lies at $\mathrm{c}_{\text {II }} / 12=5.97 \mathrm{~A}$, which corresponds to the distance between layers separated by two others. The

Fig. 3. $A(00 z)$ section (a) and components thereof as constructed from reflections with $l \neq 4 \mathrm{n}$ and $l \neq 2 \mathrm{n}$.
peak for the fifteenth layer is placed symmetrically with respect to the first; the sole explanation for this is as follows. The redistribution occurs within a set of four layers $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{~A}_{3}$; the distance between such layers in adjacent sets is at least six layers, so the three-layer distance is one within a set, which cannot be other than the $A_{2}-A_{3}$ distance. Then, in one set at least, the Pb atoms populate mainly the A_{2} and A_{3} layers, leaving the $\mathrm{B}_{2} \mathrm{C}_{2}$ layers free (the substructure implies that this occurs in every alternate set). If we denote each layer by a number only (then $A_{1} B_{1} C_{1} A_{2} B_{2} \ldots=0,1,2,3,4 \ldots$), these layers are 3 and 6 (first set) and $3+18=21,6+18=24$ (third set; Fig. 6).

The next strong peak in Fig. 3b gives a distance of seven or eight layers (also 10-11, which is symmetrically placed). This is clearly a distance between layers in different sets, because the largest distance within a set is that for three layers. If we consider the layers $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{~A}_{3}$ as two adjacent nine-layer sets:

then the distances of seven and eight layers are $A_{3}-B_{2}$ and $A_{3}-C_{2}$, which automatically gives $A_{2}-B_{2}$ and $A_{2}-C_{2}$ as 10 - and 11-layer distances.

The repeat distance of four sets can arise only if the second set differs from the fourth, because the first and third are the same. This is simple to provide if we as sume, for example, that the 7-(or 10-) layer distance is that between Pb atoms in the first and second sets, while the 8-(or 11-) layer distance is the same between third and fourth sets. The A $(00 \mathrm{z})$ section indicates that the Pb atoms occur preferentially in layers 3 and 6 (first
set), 13 (second set), 21 and 24 (third set), and 32 (fourth set). The differences between these numbers give all the distances between layers observed in Fig. 3b.

This gives us six positions for Pb , whereas the fourset formula $4 \cdot 3 / 4$ ($\mathrm{PbBi}_{4} \mathrm{Te} \mathrm{e}_{7}$) gives only three Pb for 36 layers. We may suppose that each of these positions is taken with a probability $1 / 2$ by a Pb atom and also with a probability of $1 / 2$ by a Te atom. Other possible arrays do not give satisfactory agreement with the observed superlattice intensities, so the above model was used. There is a further point here that has been glossed over so far. The Φ^{2} series of Fig, 3 b in principle gives only distances between atoms lying on the same vertical line, such as $A-B, B-B$, and $C-C$. These distances are ascribed to layers $A-B, A-C$, and so on in (4). The reason is that the resolving power of the Φ^{2} series in the horizontal plane is small. One might assume that the cubic packing law is violated in the second set [see (4)], the order being $\mathrm{B}_{2} \mathrm{~A}_{2}$ instead of $\mathrm{A}_{2} \mathrm{~B}_{2}$. The seven-layer distance would then be between A_{3} in the first set and A_{2} in the second; the same applies to the fourth set (permutation $\mathrm{C}_{2} \mathrm{~A}_{3} \rightarrow \mathrm{~A}_{3} \mathrm{C}_{2}$).

We used the series $\varphi(00 \mathrm{z})$ and $\varphi(1 / 3 / 3 \mathrm{z})$ in the subsequent analysis; the space group is $D_{3 d}^{3}-P \overline{3} \mathrm{~m} 1$, which has centers of symmetry at 000 and $00 \frac{1}{2}$. Now (2) and (4) indicate that these centers coincide with the centers of the first and third sets, which lie between $\mathrm{B}_{2} \mathrm{C}_{2}$ layers. The calculations are made much simpler if we bear in mind that each set has the symmetry $D_{3 \dot{d}}^{3}$ (if we neglect the redistribution of the Pb atoms). This means that the structure factors for $l=4 n$ are precisely those for structure I; all are real. The reflections with $l \neq 4 n$ arise from the randomly distributed Pb atoms among the Te atoms in layers $3,6,13,21,24$, and 32 . The zero matrix does not give reflections with $l \neq 4 \mathrm{n}$, but the modified structure has the above layers filled by effective difference atoms $(1 / 2 \mathrm{~Pb}+1 / 2 \mathrm{Te})-\mathrm{Te}=1 / 2(\mathrm{~Pb}-\mathrm{Te})$, which gives rise to an effective atomic scattering factor for electrons of $f^{*}=[f(\mathrm{~Pb})-f(\mathrm{Te})] / 2$ for the reflections with $l \neq 4 n$.

We have given the layers the above logical numbering, for which the origin (000) lies at the center of atom B_{II} in the first set and the \underline{Z} (the coordinates of the other atoms) are $\mathrm{N} / 36$ (in which N is the number of the set); on this basis we have calculated the superlattice reflections from the formulas for group C_{3}^{1} whose points have coordinates $003 / 36 ; 006 / 36 ; 1 / 3{ }^{2} / 33 / 36 ; 00^{21} / 36$; $00^{24} / 36 ;{ }^{2} / 3^{1 / 3}{ }^{32} / 36$. These formulas take the form

$$
\begin{align*}
& A_{h k l}=f\left[\cos 2 \pi \frac{l}{12}+\cos 2 \pi \frac{l}{6}\right. \\
& \quad+\cos 2 \pi \frac{7 l}{12}+\cos 2 \pi \frac{2 l}{3} \\
& \quad+\cos \pi i \cdot \cos \pi\left(\frac{k-h}{3}+\frac{13 l}{18}\right) \\
& \left.+\cos \pi i \cdot \cos \pi\left(\frac{h-k}{3}+\frac{16 l}{18}\right)\right] \tag{5}
\end{align*}
$$

while the analogous expression for $\mathrm{B}_{\mathrm{hk} l}$ has all cosines (except $\cos \pi i$) replaced by sines. The table gives the signs and phases so calculated, as well as the corresponding $\left|\Phi_{0}\right|$:

(Asterisks denote the centers of symmetry in group $\mathrm{D}_{3 \mathrm{~d}}^{\mathbf{9}}$). The $\mathrm{hk} l$ and $\overline{\mathrm{h}} \mathrm{k} l$ reflections are fused in these texture patterns from $\mathrm{PbBi}_{4} \mathrm{Te}_{7}$ although the structure factors are always different. The contribution from each $\left|\Phi_{0}\right|$ in each pair was calculated theoretically.

Figure 4 shows $\varphi(00 z)$ with its components as broken lines; that for $l=4 \mathrm{n}$ is the main one, while that for l $\neq 4 \mathrm{n}$ arises from the altered distribution of the Pb . This reveals atoms whose x and y coordinates are 0 . The result for $l \neq 4 n$ shows clearly the altered distribution of

Fig. 4. One-dimensional $\delta(00 \mathrm{z})$ section (full line), and components (broken lines) constructed from reflections with $l=4 \mathrm{n}$ and $l \neq 4 \mathrm{n}$.

Fig. 5. One-dimensional $\varphi\left(1 / 3{ }^{2} / 3 \mathrm{z}\right)$.section derived from the reflections with $l \neq 4 n$, together with the contributions from those reflections for each of the four sets.

Fig. 6. Superlattice II of $\mathrm{PbBi}_{4} \mathrm{Te}_{7}$.
the Pb in positions ${ }^{3} / 36,6 / 36\left(21 / 36,{ }^{24} / 36\right)$ and the positions ${ }^{12} / 36 ;{ }^{15} / 36\left({ }^{30} / 36,{ }^{33} /{ }_{36}\right)$ thus left to the Te. The peak heights for the synthesis (full line) correspond precisely to the relation $\mathrm{Bi}, 1 / 2(\mathrm{~Pb}+\mathrm{Te})$, Te . (The heights of the middle peaks indicate a Pb content of 49%.)

Figure 5 shows $\varphi(1 / 3 / 3 \mathrm{z})$, as constructed from the reflections with $l=4 n$, with the contribution from those with $l \neq 4 \mathrm{n}$. The latter shows the predicted reduced Te (Pb) peak heights for the first and third sets, as well as the increase in the second set; there is also a certain increase in the fourth set. This means that we were not quite correct in making the original assumption that the Pb from the $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{~A}_{3}$ (2) layers in the initial structure passes only to position B_{2} in the second set, because the same occurs to a smaller extent in the fourth set. That is, the second set contains in position $B_{2}(1 / 32 / 313 / 36)$ rather less than $1 / 2 \mathrm{~Pb}$ (about $1 / 3$), about $1 / 6$ being in posi-
tion $C_{2}\left({ }^{2} /{ }^{1 / 3}{ }^{14} / 36\right)$; on the other hand, the fourth set has at position $\mathrm{B}_{2}\left(1 / 3{ }^{2} / 3{ }^{31} / 36\right)$ about $\mathrm{Pb} / 6$ and at $\mathrm{C}_{2}\left({ }^{2} / 3\right.$ $1 / 3{ }_{3}{ }^{32} /{ }_{36}$) about $\mathrm{Pb} / 3$. Moreover, there is a possible change in the sequence of layers. We consider the model as proven, because the intensities (particularly those of the superlattice reflections) are in satisfactory agreement; again, there are no unexplained peaks on the Fourier synthesis.

To sum up, structure II of $\mathrm{PbBi}_{4} \mathrm{Te}_{7}$ has some of its layers randomly populated, but these are fewer than in structure I, the structure being as in (6).

The structure shows several repeat periods; the strongest is $\mathrm{c}^{\prime}=5.97 \mathrm{~A}=\mathrm{c}_{\mathrm{II}} / 12$ (cubic packing), the next being $\mathrm{c}_{\mathrm{I}}=\mathrm{c}_{\mathrm{II}} / 4$ (nine-layer sets), and the third $\mathrm{c}_{\mathrm{II}} / 2$ (the two-set substructure). Figure 6 shows the structure.

The reliability factor computed from all the tabulated amplitudes is 22%.

All peaks lie almost exactly at the ideal positions (the \underline{z} are multiples of $1 / 96$). The shortest distances between atoms in a layer are 4.44 A ; those between atoms in adjacent layers $(\mathrm{Bi}-\mathrm{Te}, \mathrm{Te}(\mathrm{Pb})-\mathrm{Te}, \mathrm{Te}-\mathrm{Te}, \mathrm{Te}(\mathrm{Pb})$ -Bi) are 3.32 A .

Structure II is more highly ordered than structure I, but the order is not complete, although the structure is readily produced under certain conditions; this feature entitles us to consider it as a distinct phase.

LITERA TURE CITED

1. E. I. Elagina and N. Kh. Abrikosov, Zh. neorgan. khimii, 4, 7, 1638-1642 (1959).
2. A. G. Talybov and B. K. Vainshtein, Kristallografiya, 6, 4 (1961) [Soviet Physics-Cryst., Vol. 6,p.432].
3. G. B. Bokii, Introduction to Chemical Crystallography [in Russian], Izd-vo MGU (1954).
4. S. A. Semiletov. Kristallografiya, 1, 4, 403-406 (1956).
5. S. A. Semiletov. Tr. In-ta kristallogr. , 10 (1954).
6. A. G. Talybov. Kristallografiya, $\underline{6}, 1$ (1961)[Soviet Physics-Cryst. , Vol. 6, p. 40].
7. B. K. Vainshtein. Structural Electron Diffraction [in Russian], Led-vo AN SSSR, (1956).
8. G. G. Dvoryankina and Z. G. Pinsker, Kristallografiya, 3, 4 (1958)[Soviet Physics-Cryst., Vol. 3, p. 439].
9. B. G. Lyashchenko, Kristallografiya, $\underline{6}$, 4 (1961) [Soviet Physics-Cryst., Vol. 6,p. 404].

All abbreviations of periodicals in the above bibliography are letter-by-letter transliterations of the abbreviations as given in the original Russian journal. Some or all of this periodical literature may well be available in English translation. A complete list of the cover-to-cover English translations appears at the back of this issue.

